1
|
Eksi YE, Bisgin A, Sanlioglu AD, Azizoglu RO, Balci MK, Griffith TS, Sanlioglu S. Generation of a Beta-Cell Transplant Animal Model of Diabetes Using CRISPR Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:145-159. [PMID: 36289162 DOI: 10.1007/5584_2022_746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since insulin deficiency results from pancreatic beta-cell destruction, all type 1 and most type 2 diabetes patients eventually require life-long insulin injections. Insulin gene synthesis could also be impaired due to insulin gene mutations as observed in diabetic patients with MODY 10. At this point, insulin gene therapy could be very effective to recompense insulin deficiency under these circumstances. For this reason, an HIV-based lentiviral vector carrying the insulin gene under the control of insulin promoter (LentiINS) was generated, and its therapeutic efficacy was tested in a beta-cell transplant model lacking insulin produced by CRISPR/Cas9-mediated genetically engineered pancreatic beta cells. To generate an insulin knockout beta-cell transplant animal model of diabetes, a dual gene knockout plasmid system involving CRISPR/Cas9 was transfected into a mouse pancreatic beta cell line (Min6). Fluorescence microscopy and antibiotic selection were utilized to select the insulin gene knockout clones. Transplantation of the genetically engineered pancreatic beta cells under the kidney capsule of STZ-induced diabetic rats revealed LentiINS- but not LentiLacZ-infected Ins2KO cells transiently reduced hyperglycemia similar to that of MIN6 in diabetic animals. These results suggest LentiINS has the potential to functionally restore insulin production in an insulin knockout beta-cell transplant animal model of diabetes.
Collapse
Affiliation(s)
- Yunus Emre Eksi
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Reha Onur Azizoglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mustafa Kemal Balci
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, School of Medicine, Minneapolis, MN, USA
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
2
|
Kahraman S, Dirice E, Basile G, Diegisser D, Alam J, Johansson BB, Gupta MK, Hu J, Huang L, Soh CL, Huangfu D, Muthuswamy SK, Raeder H, Molven A, Kulkarni RN. Abnormal exocrine-endocrine cell cross-talk promotes β-cell dysfunction and loss in MODY8. Nat Metab 2022; 4:76-89. [PMID: 35058633 DOI: 10.1038/s42255-021-00516-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
MODY8 (maturity-onset diabetes of the young, type 8) is a dominantly inherited monogenic form of diabetes associated with mutations in the carboxyl ester lipase (CEL) gene expressed by pancreatic acinar cells. MODY8 patients develop childhood-onset exocrine pancreas dysfunction followed by diabetes during adulthood. However, it is unclear how CEL mutations cause diabetes. In the present study, we report the transfer of CEL proteins from acinar cells to β-cells as a form of cross-talk between exocrine and endocrine cells. Human β-cells show a relatively higher propensity for internalizing the mutant versus the wild-type CEL protein. After internalization, the mutant protein forms stable intracellular aggregates leading to β-cell secretory dysfunction. Analysis of pancreas sections from a MODY8 patient reveals the presence of CEL protein in the few extant β-cells. The present study provides compelling evidence for the mechanism by which a mutant gene expressed specifically in acinar cells promotes dysfunction and loss of β-cells to cause diabetes.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Pharmacology, New York Medical College of Medicine, Valhalla, NY, USA
| | - Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Danielle Diegisser
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Pharmacology, New York Medical College of Medicine, Valhalla, NY, USA
| | - Jahedul Alam
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Manoj K Gupta
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Ling Huang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chew-Li Soh
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danwei Huangfu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Helge Raeder
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kahraman S, Manna D, Dirice E, Maji B, Small J, Wagner BK, Choudhary A, Kulkarni RN. Harnessing reaction-based probes to preferentially target pancreatic β-cells and β-like cells. Life Sci Alliance 2021; 4:4/4/e202000840. [PMID: 33514654 PMCID: PMC7898467 DOI: 10.26508/lsa.202000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Highly sensitive approaches to target insulin-expressing cells would allow more effective imaging, sorting, and analysis of pancreatic β-cells. Here, we introduce the use of a reaction-based probe, diacetylated Zinpyr1 (DA-ZP1), to image pancreatic β-cells and β-like cells derived from human pluripotent stem cells. We harness the high intracellular zinc concentration of β-cells to induce a fluorescence signal in cells after administration of DA-ZP1. Given its specificity and rapid uptake by cells, we used DA-ZP1 to purify live stem cell-derived β-like cells as confirmed by immunostaining analysis. We tested the ability of DA-ZP1 to image transplanted human islet grafts and endogenous mouse pancreatic islets in vivo after its systemic administration into mice. Thus, DA-ZP1 enables purification of insulin-secreting β-like cells for downstream applications, such as functional studies, gene-expression, and cell-cell interaction analyses and can be used to label engrafted human islets and endogenous mouse islets in vivo.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Debasish Manna
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonnell Small
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA .,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Tasyurek HM, Eksi YE, Sanlioglu AD, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S. HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes. Gene Ther 2018; 25:269-283. [PMID: 29523882 DOI: 10.1038/s41434-018-0011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/25/2017] [Accepted: 02/13/2018] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance, glucose intolerance and beta cell loss leading to hyperglycemia. Vasoactive intestinal peptide (VIP) has been regarded as a novel therapeutic agent for the treatment of T2DM because of its insulinotropic and anti-inflammatory properties. Despite these beneficial properties, VIP is extremely sensitive to peptidases (DPP-4) requiring constant infusion or multiple injections to observe any therapeutic benefit. Thus, we constructed an HIV-based lentiviral vector encoding human VIP (LentiVIP) to test the therapeutic efficacy of VIP peptide in a diet-induced obesity (DIO) animal model of T2DM. VIP gene expression was shown by immunocytochemistry (ICC) and VIP peptide secretion was confirmed by ELISA both in HepG2 liver and MIN6 pancreatic beta cell lines. Functional properties of VIP were demonstrated by cAMP production assay and glucose-stimulated insulin secretion test (GSIS). Intraperitoneal (IP) delivery of LentiVIP vectors into mice significantly increased serum VIP concentrations compared to control mice. Most importantly, LentiVIP delivery in DIO animal model of T2DM resulted in improved insulin sensitivity, glucose tolerance and protection against STZ-induced diabetes in addition to reduction in serum triglyceride/cholesterol levels. Collectively, these data suggest LentiVIP delivery should be evaluated as an experimental therapeutic approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Hale M Tasyurek
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, 07058, Antalya, Turkey
| | - Yunus E Eksi
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, 07058, Antalya, Turkey
| | - Ahter D Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, 07058, Antalya, Turkey
| | - Hasan A Altunbas
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, 07058, Antalya, Turkey
| | - Mustafa K Balci
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, 07058, Antalya, Turkey
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, School of Medicine, Minneapolis, MN, 55455, USA
| | - Salih Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, 07058, Antalya, Turkey.
| |
Collapse
|
5
|
Agrawalla BK, Lee HW, Phue WH, Raju A, Kim JJ, Kim HM, Kang NY, Chang YT. Two-Photon Dye Cocktail for Dual-Color 3D Imaging of Pancreatic Beta and Alpha Cells in Live Islets. J Am Chem Soc 2017; 139:3480-3487. [DOI: 10.1021/jacs.6b12122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bikram Keshari Agrawalla
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Hyo Won Lee
- Department
of Energy Systems Research, Ajou University, Suwon 443749, Korea
| | - Wut-Hmone Phue
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Anandhkumar Raju
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| | - Jong-Jin Kim
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Hwan Myung Kim
- Department
of Energy Systems Research, Ajou University, Suwon 443749, Korea
| | - Nam-Young Kang
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| | - Young-Tae Chang
- Department
of Chemistry and Medicinal Chemistry Program, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Laboratory
of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, # 02-02 Helios, 138667 Singapore
| |
Collapse
|
6
|
Ashkenazi E, Baranovski BM, Shahaf G, Lewis EC. Pancreatic islet xenograft survival in mice is extended by a combination of alpha-1-antitrypsin and single-dose anti-CD4/CD8 therapy. PLoS One 2013; 8:e63625. [PMID: 23717456 PMCID: PMC3661573 DOI: 10.1371/journal.pone.0063625] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/04/2013] [Indexed: 12/31/2022] Open
Abstract
Clinical pancreatic islet transplantation is under evaluation for the treatment of autoimmune diabetes, yet several limitations preclude widespread use. For example, there is a critical shortage of human pancreas donors. Xenotransplantation may solve this problem, yet it evokes a rigorous immune response which can lead to graft rejection. Alpha-1-antitrypsin (AAT), a clinically available and safe circulating anti-inflammatory and tissue protective glycoprotein, facilitates islet alloimmune-tolerance and protects from inflammation in several models. Here, we examine whether human AAT (hAAT), alone or in combination with clinically relevant approaches, achieves long-term islet xenograft survival. Rat-to-mouse islet transplantation was examined in the following groups: untreated (n = 6), hAAT (n = 6, 60-240 mg/kg every 3 days from day -10), low-dose co-stimulation blockade (anti-CD154/LFA-1) and single-dose anti-CD4/CD8 (n = 5-7), either as mono- or combination therapies. Islet grafting was accompanied by blood glucose follow-up. In addition, skin xenografting was performed in order to depict responses that occur in draining lymph nodes. According to our results hAAT monotherapy and hAAT/anti-CD154/LFA-1 combined therapy, did not delay rejection day (11-24 days untreated vs. 10-22 day treated). However, host and donor intragraft inflammatory gene expression was diminished by hAAT therapy in both setups. Single dose T-cell depletion using anti-CD4/CD8 depleting antibodies, which provided 14-15 days of reduced circulating T-cells, significantly delayed rejection day (28-52 days) but did not achieve graft acceptance. In contrast, in combination with hAAT, the group displayed significantly extended rejection days and a high rate of graft acceptance (59, 61, >90, >90, >90). In examination of graft explants, marginal mononuclear-cell infiltration containing regulatory T-cells predominated surviving xenografts. We suggest that temporal T-cell depletion, as in the clinically practiced anti-thymocyte-globulin therapy, combined with hAAT, may promote islet xenograft acceptance. Further studies are required to elucidate the mechanism behind the observed synergy, as well as the applicability of the approach for pig-to-human islet xenotransplantation.
Collapse
Affiliation(s)
- Efrat Ashkenazi
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| | - Boris M. Baranovski
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| | - Galit Shahaf
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| | - Eli C Lewis
- Ben-Gurion University of the Negev, Faculty of Health Sciences, Department of Clinical Biochemistry and Pharmacology, Be’er Sheva, Israel
| |
Collapse
|
7
|
Sanlioglu AD, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S. Clinical utility of insulin and insulin analogs. Islets 2013; 5:67-78. [PMID: 23584214 PMCID: PMC4204021 DOI: 10.4161/isl.24590] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect--rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/prevention & control
- Drug Monitoring
- Evidence-Based Medicine
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/therapeutic use
- Insulin/administration & dosage
- Insulin/analogs & derivatives
- Insulin/metabolism
- Insulin/therapeutic use
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/analogs & derivatives
- Insulin, Regular, Human/genetics
- Insulin, Regular, Human/therapeutic use
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/chemistry
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Ahter D. Sanlioglu
- Human Gene and Cell Therapy Center; Akdeniz University Faculty of Medicine; Antalya, Turkey
- Department of Medical Biology and Genetics; Akdeniz University Faculty of Medicine; Antalya, Turkey
| | - Hasan Ali Altunbas
- Human Gene and Cell Therapy Center; Akdeniz University Faculty of Medicine; Antalya, Turkey
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Akdeniz University Faculty of Medicine; Antalya, Turkey
| | - Mustafa Kemal Balci
- Human Gene and Cell Therapy Center; Akdeniz University Faculty of Medicine; Antalya, Turkey
- Department of Internal Medicine; Division of Endocrinology and Metabolism; Akdeniz University Faculty of Medicine; Antalya, Turkey
| | | | - Salih Sanlioglu
- Human Gene and Cell Therapy Center; Akdeniz University Faculty of Medicine; Antalya, Turkey
- Department of Medical Biology and Genetics; Akdeniz University Faculty of Medicine; Antalya, Turkey
| |
Collapse
|
8
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Abstract
Despite the fact that insulin injection can protect diabetic patients from developing diabetes-related complications, recent meta-analyses indicate that rapid and long-acting insulin analogues only provide a limited benefit compared with conventional insulin regarding glycemic control. As insulin deficiency is the main sequel of type-1 diabetes (T1D), transfer of the insulin gene-by-gene therapy is becoming an attractive treatment modality even though T1D is not caused by a single genetic defect. In contrast to human insulin and insulin analogues, insulin gene therapy targets to supplement patients not only with insulin but also with C-peptide. So far, insulin gene therapy has had limited success because of delayed and/or transient gene expression. Sustained insulin gene expression is now feasible using current gene-therapy vectors providing patients with basal insulin coverage, but management of postprandial hyperglycaemia is still difficult to accomplish because of the inability to properly control insulin secretion. Enteroendocrine cells of the gastrointestinal track (K cells and L cells) may be ideal targets for insulin gene therapy, but cell-targeting difficulties have limited practical implementation of insulin gene therapy for diabetes treatment. Therefore, recent gene transfer technologies developed to generate authentic beta cells through transdifferentiation are also highlighted in this review.
Collapse
|
10
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, July-October 2011. Xenotransplantation 2012; 18:400-4. [PMID: 22168146 DOI: 10.1111/j.1399-3089.2011.00682.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|