1
|
Vilarrasa N, San Jose P, Rubio MÁ, Lecube A. Obesity in Patients with Type 1 Diabetes: Links, Risks and Management Challenges. Diabetes Metab Syndr Obes 2021; 14:2807-2827. [PMID: 34188505 PMCID: PMC8232956 DOI: 10.2147/dmso.s223618] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity affects large numbers of patients with type 1 diabetes (T1D) across their lifetime, with rates ranging between 2.8% and 37.1%. Patients with T1D and obesity are characterized by the presence of insulin resistance, of high insulin requirements, have a greater cardiometabolic risk and an enhanced risk of developing chronic complications when compared to normal-weight persons with T1D. Dual treatment of obesity and T1D is challenging and no specific guidelines for improving outcomes of both glycemic control and weight management have been established for this population. Nevertheless, although evidence is scarce, a comprehensive approach based on a balanced hypocaloric diet, physical activity and cognitive behavioral therapy by a multidisciplinary team, expert in both obesity and diabetes, remains as the best clinical practice. However, weight loss responses with lifestyle changes alone are limited, so in the "roadmap" of the treatment of obesity in T1D, it will be helpful to include anti-obesity pharmacotherapy despite at present there is a lack of evidence since T1D patients have been excluded from anti-obesity drug clinical trials. In case of severe obesity, bariatric surgery has proven to be of benefit in obtaining a substantial and long-term weight loss and reduction in cardiovascular risk. The near future looks promising with the development of new and more effective anti-obesity treatments and strategies to improve insulin resistance and oxidative stress. Advances in precision medicine may help individualize and optimize the medical management and care of these patients. This review, by gathering current evidence, highlights the need of solid knowledge in all facets of the treatment of patients with obesity and T1D that can only be obtained through high quality well-designed studies.
Collapse
Affiliation(s)
- Nuria Vilarrasa
- Department of Endocrinology and Nutrition, Hospital Universitario de Bellvitge-IDIBELL, Barcelona, Spain
- CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Correspondence: Nuria Vilarrasa Hospital Universitario de Bellvitge-IDIBELL, C/Feixa Llarga s/n, 08907 L´Hospitalet de Llobregat, Barcelona, SpainTel +34 93-5338511Fax +34 933375248 Email
| | - Patricia San Jose
- Department of Endocrinology and Nutrition, Hospital Universitario de Bellvitge-IDIBELL, Barcelona, Spain
| | - Miguel Ángel Rubio
- Department of Endocrinology & Nutrition, Hospital Clínico San Carlos, IDISSC, Madrid, 28040, Spain
| | - Albert Lecube
- CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, Lleida, 25198, Spain
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain
| |
Collapse
|
2
|
Giuliani C, Franceschi C, Luiselli D, Garagnani P, Ulijaszek S. Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Adv Nutr 2020; 11:1671-1685. [PMID: 32647890 PMCID: PMC7666896 DOI: 10.1093/advances/nmaa078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ecological sensing and inflammation have evolved to ensure optima between organism survival and reproductive success in different and changing environments. At the molecular level, ecological sensing consists of many types of receptors located in different tissues that orchestrate integrated responses (immune, neuroendocrine systems) to external and internal stimuli. This review describes emerging data on taste and chemosensory receptors, proposing them as broad ecological sensors and providing evidence that taste perception is shaped not only according to sense epitopes from nutrients but also in response to highly diverse external and internal stimuli. We apply a biological anthropological approach to examine how ecological sensing has been shaped by these stimuli through human evolution for complex interkingdom communication between a host and pathological and symbiotic bacteria, focusing on population-specific genetic diversity. We then focus on how these sensory receptors play a major role in inflammatory processes that form the basis of many modern common metabolic diseases such as obesity, type 2 diabetes, and aging. The impacts of human niche construction and cultural evolution in shaping environments are described with emphasis on consequent biological responsiveness.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Donata Luiselli
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Cultural Heritage (DBC), Laboratory of Ancient DNA (aDNALab), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Stanley Ulijaszek
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Molinas AJR, Desmoulins LD, Hamling BV, Butcher SM, Anwar IJ, Miyata K, Enix CL, Dugas CM, Satou R, Derbenev AV, Zsombok A. Interaction between TRPV1-expressing neurons in the hypothalamus. J Neurophysiol 2019; 121:140-151. [PMID: 30461371 PMCID: PMC6383661 DOI: 10.1152/jn.00004.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.
Collapse
Affiliation(s)
- Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Brooke V Hamling
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Sierra M Butcher
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Imran J Anwar
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney L Enix
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University , New Orleans, Louisiana
- Neuroscience Program, Brain Institute, Tulane University , New Orleans, Louisiana
| |
Collapse
|
4
|
Derbenev AV, Zsombok A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol 2016; 38:397-406. [PMID: 26403087 PMCID: PMC4808497 DOI: 10.1007/s00281-015-0529-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Diabetes mellitus and obesity, which is a major risk factor in the development of type 2 diabetes mellitus, have reached epidemic proportions worldwide including the USA. The current statistics and forecasts, both short- and long-term, are alarming and predict severe problems in the near future. Therefore, there is a race for developing new compounds, discovering new receptors, or finding alternative solutions to prevent and/or treat the symptoms and complications related to obesity and diabetes mellitus. It is well demonstrated that members of the transient receptor potential (TRP) superfamily play a crucial role in a variety of biological functions both in health and disease. In the recent years, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) were shown to have beneficial effects on whole body metabolism including glucose homeostasis. TRPV1 and TRPA1 have been associated with control of weight, pancreatic function, hormone secretion, thermogenesis, and neuronal function, which suggest a potential therapeutic value of these channels. This review summarizes recent findings regarding TRPV1 and TRPA1 in association with whole body metabolism with emphasis on obese and diabetic conditions.
Collapse
Affiliation(s)
- Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
- Department of Medicine, Endocrinology Section, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Dajani R, Li J, Wei Z, Glessner JT, Chang X, Cardinale CJ, Pellegrino R, Wang T, Hakooz N, Khader Y, Sheshani A, Zandaki D, Hakonarson H. CNV Analysis Associates AKNAD1 with Type-2 Diabetes in Jordan Subpopulations. Sci Rep 2015; 5:13391. [PMID: 26292654 PMCID: PMC4543987 DOI: 10.1038/srep13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Previous studies have identified a number of single nucleotide polymorphisms (SNPs) associated with type-2 diabetes (T2D), but copy number variation (CNV) association has rarely been addressed, especially in populations from Jordan. To investigate CNV associations for T2D in populations in Jordan, we conducted a CNV analysis based on intensity data from genome-wide SNP array, including 34 T2D cases and 110 healthy controls of Chechen ethnicity, as well as 34 T2D cases and 106 healthy controls of Circassian ethnicity. We found a CNV region in protein tyrosine phosphatase receptor type D (PTPRD) with significant association with T2D. PTPRD has been reported to be associated with T2D in genome-wide association studies (GWAS). We additionally identified 16 CNV regions associated with T2D which overlapped with gene exons. Of particular interest, a CNV region in the gene AKNA Domain Containing 1 (AKNAD1) surpassed the experiment-wide significance threshold. Endoplasmic reticulum (ER)-related pathways were significantly enriched among genes which are predicted to be functionally associated with human or mouse homologues of AKNAD1. This is the first CNV analysis of a complex disease in populations of Jordan. We identified and experimentally validated a significant CNVR in gene AKNAD1 associated with T2D.
Collapse
Affiliation(s)
- Rana Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan.,Cell Therapy Center, University of Jordan, Amman, Jordan
| | - Jin Li
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Cardinale
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nancy Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy Faculty of Pharmacy-University of Jordan, Amman, Jordan.,Faculty of pharmacy, Zarqa University, Zarqa, Jordan
| | - Yousef Khader
- Department of Community Medicine, Public Health and Family Medicine, Faculty of Medicine, Jordan University for Science and Technology, Irbid, Jordan
| | - Amina Sheshani
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| | - Duaa Zandaki
- Department of Biology and Biotechnology, Hashemite University, Zarqa, Jordan
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Dunn TN, Adams SH. Relations between metabolic homeostasis, diet, and peripheral afferent neuron biology. Adv Nutr 2014; 5:386-93. [PMID: 25022988 PMCID: PMC4085187 DOI: 10.3945/an.113.005439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is well established that food intake behavior and energy balance are regulated by crosstalk between peripheral organ systems and the central nervous system (CNS), for instance, through the actions of peripherally derived leptin on hindbrain and hypothalamic loci. Diet- or obesity-associated disturbances in metabolic and hormonal signals to the CNS can perturb metabolic homeostasis bodywide. Although interrelations between metabolic status and diet with CNS biology are well characterized, afferent networks (those sending information to the CNS from the periphery) have received far less attention. It is increasingly appreciated that afferent neurons in adipose tissue, the intestines, liver, and other tissues are important controllers of energy balance and feeding behavior. Disruption in their signaling may have consequences for cardiovascular, pancreatic, adipose, and immune function. This review discusses the diverse ways that afferent neurons participate in metabolic homeostasis and highlights how changes in their function associate with dysmetabolic states, such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Tamara N. Dunn
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, CA; and
| | - Sean H. Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, CA; and,Obesity and Metabolism Research Unit, USDA–Agricultural Research Service Western Human Nutrition Research Center, Davis, CA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
7
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
8
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Discovery Research Alliance, Ono Pharmaceutical Co. LtdOsaka, Japan
| | - Arpad Szallasi
- Department of Pathology and Laboratory Medicine, Monmouth Medical CenterLong Branch, NJ, USA
| |
Collapse
|
9
|
Guadarrama-López AL, Valdés-Ramos R, Martínez-Carrillo BE. Type 2 diabetes, PUFAs, and vitamin D: their relation to inflammation. J Immunol Res 2014; 2014:860703. [PMID: 24741627 PMCID: PMC3987931 DOI: 10.1155/2014/860703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic diseases have become one of the most important public health problems, due to their high costs for treatment and prevention. Until now, researchers have considered that the etiology of Type 2 diabetes mellitus (T2DM) is multifactorial. Recently, the study of the innate immune system has offered an explanation model of the pathogenesis of T2DM. On the other hand, there is evidence about the beneficial effect of polyunsaturated fatty acids (PUFA) n-3 and n-6 in patients with chronic inflammatory diseases including diabetes. Furthermore, high vitamin D plasmatic concentrations have been associated with the best performance of pancreatic β cells and the improving of this disease. In conclusion, certain fatty acids in the adequate proportion as well as 25-hydroxivitamin D can modulate the inflammatory response in diabetic people, modifying the evolution of this disease.
Collapse
Affiliation(s)
- Ana L. Guadarrama-López
- Center for Research and Graduate Studies in Health Sciences, Faculty of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan Esquina, Jesús Carranza, Col. Moderna de la Cruz Toluca, 50180 México, MEX, Mexico
| | - Roxana Valdés-Ramos
- Center for Research and Graduate Studies in Health Sciences, Faculty of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan Esquina, Jesús Carranza, Col. Moderna de la Cruz Toluca, 50180 México, MEX, Mexico
| | - Beatríz E. Martínez-Carrillo
- Center for Research and Graduate Studies in Health Sciences, Faculty of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan Esquina, Jesús Carranza, Col. Moderna de la Cruz Toluca, 50180 México, MEX, Mexico
| |
Collapse
|
10
|
Abstract
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.
Collapse
|
11
|
Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab 2013; 24:351-60. [PMID: 23484621 PMCID: PMC3686848 DOI: 10.1016/j.tem.2013.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
In the past decade, islet inflammation has emerged as a contributor to the loss of functional β cell mass in both type 1 (T1D) and type 2 diabetes (T2D). Evidence supports the idea that overnutrition and insulin resistance result in the production of proinflammatory mediators by β cells. In addition to compromising β cell function and survival, cytokines may recruit macrophages into islets, thus augmenting inflammation. Limited but intriguing data imply a role of adaptive immune response in islet dysfunction in T2D. Clinical trials have validated anti-inflammatory therapies in T2D, whereas immune therapy for T1D remains challenging. Further research is required to improve our understanding of islet inflammatory pathways and to identify more effective therapeutic targets for T1D and T2D.
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Zsombok A. Vanilloid receptors--do they have a role in whole body metabolism? Evidence from TRPV1. J Diabetes Complications 2013; 27:287-92. [PMID: 23332888 PMCID: PMC3633635 DOI: 10.1016/j.jdiacomp.2012.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 12/16/2022]
Abstract
With increasing lifespan, therapeutic interventions for the treatment of disorders such as type 2 diabetes mellitus are in great demand. Despite billions of dollars invested to reduce the symptoms and complications due to diabetes mellitus, current treatments (e.g., insulin replacements, sensitization) remain inadequate, justifying the search for novel therapeutic approaches or alternative solutions, including dietary supplementation, for the treatment of diabetes mellitus in every age group. The involvement of the vanilloid system in the regulation of metabolism has been identified, and the emerging role of its receptors, the transient receptor potential vanilloid type 1 (TRPV1), in diabetes was recently demonstrated. Indeed, beneficial effects of dietary capsaicin, an agonist of TRPV1 receptors, were identified for improving glucose, insulin and glucagon-like peptide-1 levels. Recent findings regarding TRPV1 receptors in association with whole body metabolism including glucose homeostasis will be reviewed in this article.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, Endocrinology Section, Tulane University, School of Medicine, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA.
| |
Collapse
|