1
|
Yang TT, Shao YT, Cheng Q, He YT, Qiu Z, Pan DD, Zhang HM, Jiang ZZ, Yan M, Ying CJ, Li BJ, Liu JJ, Qian ST, Wang T, Yin XX, Lu Q. YY1/HIF-1α/mROS positive-feedback loop exacerbates glomerular mesangial cell proliferation in mouse early diabetic kidney disease. Acta Pharmacol Sin 2025:10.1038/s41401-025-01498-7. [PMID: 40038466 DOI: 10.1038/s41401-025-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/25/2025] [Indexed: 03/06/2025]
Abstract
Mesangial cells (MCs) are the most active intrinsic cells in the glomerulus. MCs excessively proliferate at the early stage of diabetic kidney disease (DKD), eventually causing glomerular sclerosis and even renal failure; inhibiting glomerular MC proliferation in early DKD is a promising prevention and treatment strategy for early DKD. Our previous study shows that Yin Yang 1 (YY1), a zinc finger protein, is a novel regulator of DKD-induced renal fibrosis. In this study we investigated the role of YY1 in glomerular MC proliferation in DKD in vivo and in vitro. We first showed that YY1 expression levels were significantly increased in the glomerular MCs of DKD patients and db/db mice and in high glucose (HG)-treated SV40-MES13 cells. By using YY1 expression/knockdown plasmids, we confirmed that YY1 contributed to glomerular MC proliferation in vitro. We demonstrated that YY1 upregulated hypoxia-inducible factor-1 alpha (HIF-1α) expression and activity in HG-treated SV40-MES13 cells, leading to overproduction of mROS. Moreover, mROS contributed to positive feedback regulation of YY1/HIF-1α signaling, and the YY1/HIF-1α/mROS positive feedback loop exacerbated glomerular MC proliferation in HG-treated SV40-MES13 cells. In addition, renal-specific YY1 overexpression promoted glomerular MC proliferation in normal mice, whereas renal-specific YY1 knockdown mitigated MC proliferation in early diabetic mice by inactivating HIF-1α/ROS signaling. In conclusion, the YY1/HIF-1α/mROS positive feedback loop might be an attractive therapeutic target for overcoming glomerulosclerosis in early DKD.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Tian He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhen Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Dan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Huan-Ming Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhen-Zhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chang-Jiang Ying
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Bao-Jing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jun-Jie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Si-Tong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Ayoub SE, Ahmed AM, Abdelwahed MY, Khalefa AA, Awaji AA, Zekry SS, Ibrahim EG, Eid HM, Elasmer SM, Fares R. Biochemical analysis of miR-217 and miR-532 in patients with fibromyalgia. Eur J Med Res 2025; 30:85. [PMID: 39920875 PMCID: PMC11803959 DOI: 10.1186/s40001-025-02330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
About 5% of the population suffers from fibromyalgia (FM), a chronic multi-symptom pain illness whose pathophysiology is still unknown. We aimed to be the first to investigate the possible association of sera levels of miR-217 and miR-532 in patients with fibromyalgia and correlate their expression levels to different clinical and biochemical disease criteria. This study included 80 participants who splitted into two groups: 40 fibromyalgia sufferers (12 male and 28 female), and 40 healthy volunteers (10 male and 30 female) who served as the control group. Venous blood samples were collected from all subjects. The miR-217 and miR-532 serum expressions were detected using quantitative real-time PCR (qRT-PCR). According to our data, the fold changes of miR-217 and miR-532 in fibromyalgia patients were significantly lower than in controls, for miR-217 (median = 0.1359, IQR: 0.038-0.287, P < 0.001) and miR-532 [median = 0.2199, IQR: (0.114-0.421), P < 0.001]. In addition, there was a significant negative relationship between Aspartate transaminase (AST) and both miR-217 and miR-532 (r = - 0.480, P = P < 0.001 r = - 0.462, P = P < 0.001), respectively. Serum miR-217 and miR-532 could serve as potential diagnostic biomarkers for fibromyalgia.
Collapse
Affiliation(s)
- Shymaa E Ayoub
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt.
| | - Azza M Ahmed
- Rheumatology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | | | - Abeer A Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Samer S Zekry
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas G Ibrahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hana M Eid
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Shimaa M Elasmer
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Reham Fares
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| |
Collapse
|
3
|
Stanigut AM, Tuta L, Pana C, Alexandrescu L, Suceveanu A, Blebea NM, Vacaroiu IA. Autophagy and Mitophagy in Diabetic Kidney Disease-A Literature Review. Int J Mol Sci 2025; 26:806. [PMID: 39859520 PMCID: PMC11766107 DOI: 10.3390/ijms26020806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations. Diabetic nephropathy (DN) is traditionally defined as a specific form of kidney disease caused by long-standing diabetes, characterized by the classic histological lesions in the kidney, including mesangial expansion, glomerular basement membrane thickening, nodular glomerulosclerosis (Kimmelstiel-Wilson nodules), and podocyte injury. Clinical markers for DN are albuminuria and the gradual decline in glomerular filtration rate (GFR). Diabetic kidney disease (DKD) is a broader and more inclusive term, for all forms of chronic kidney disease (CKD) in individuals with diabetes, regardless of the underlying pathology. This includes patients who may have diabetes-associated kidney damage without the typical histological findings of diabetic nephropathy. It also accounts for patients with other coexisting kidney diseases (e.g., hypertensive nephrosclerosis, ischemic nephropathy, tubulointerstitial nephropathies), even in the absence of albuminuria, such as a reduction in GFR.
Collapse
Affiliation(s)
- Alina Mihaela Stanigut
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Liliana Tuta
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Camelia Pana
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Nephrology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Luana Alexandrescu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Adrian Suceveanu
- Clinical Medical Disciplines Department, Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; (A.M.S.); (L.T.); (L.A.); (A.S.)
- Gastroenterology Department, County Emergency Clinical Hospital of Constanta, 145 Tomis Street, 900591 Constanta, Romania
| | - Nicoleta-Mirela Blebea
- Department of Pharmacotherapy, Faculty of Pharmacy, Ovidius University of Constanta, Aleea Universitatii Nr. 1, 900470 Constanta, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, Sf. Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania
| |
Collapse
|
4
|
Zhang Z, Luo Y, Zhuang X, Gao H, Yang Q, Chen H. Emodin alleviates lung injury via the miR-217-5p/Sirt1 axis in rats with severe acute pancreatitis. J Pharmacol Sci 2024; 156:188-197. [PMID: 39313277 DOI: 10.1016/j.jphs.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway in vitro. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3'-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 in vitro. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition in vitro and in vivo. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI in vitro and in vivo by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.
Collapse
Affiliation(s)
- Zhihang Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Anorectal Surgery, Central Hospital of Dalian University of Technology, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xijing Zhuang
- Department of Cardiovascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Haifeng Gao
- Department of Urology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Zhang YY, Jin PP, Guo DZ, Bian D. Modified Zhenwu Tang delays chronic renal failure progression by modulating oxidative stress and hypoxic responses in renal proximal tubular epithelial cells. Heliyon 2024; 10:e31265. [PMID: 38803876 PMCID: PMC11128522 DOI: 10.1016/j.heliyon.2024.e31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tubulointerstitial fibrosis (TIF) is a critical pathological feature of chronic renal failure (CRF), with oxidative stress (OS) and hypoxic responses in renal proximal tubular epithelial cells playing pivotal roles in disease progression. This study explores the effects of Modified Zhenwu Tang (MZWT) on these processes, aiming to uncover its potential mechanisms in slowing CRF progression. Methods We used adenine (Ade) to induce CRF in rats, which were then treated with benazepril hydrochloride (Lotensin) and MZWT for 8 weeks. Assessments included liver and renal function, electrolytes, blood lipids, renal tissue pathology, OS levels, the hypoxia-inducible factor (HIF) pathway, inflammatory markers, and other relevant indicators. In vitro, human renal cortical proximal tubular epithelial cells were subjected to hypoxia and lipopolysaccharide for 72 h, with concurrent treatment using MZWT, FM19G11, and N-acetyl-l-cysteine. Measurements taken included reactive oxygen species (ROS), HIF pathway activity, inflammatory markers, and other relevant indicators. Results Ade treatment induced significant disruptions in renal function, blood lipids, electrolytes, and tubulointerstitial architecture, alongside heightened OS, HIF pathway activation, and inflammatory responses in rats. In vivo, MZWT effectively ameliorated proteinuria, renal dysfunction, lipid and electrolyte imbalances, and renal tissue damage; it also suppressed OS, HIF pathway activation, epithelial-mesenchymal transition (EMT) in proximal tubular epithelial cells, and reduced the production of inflammatory cytokines and collagen fibers. In vitro findings demonstrated that MZWT decreased apoptosis, reduced ROS production, curbed OS, HIF pathway activation, and EMT in proximal tubular epithelial cells, and diminished the output of inflammatory cytokines and collagen. Conclusion OS and hypoxic responses significantly contribute to TIF development. MZWT mitigates these responses in renal proximal tubular epithelial cells, thereby delaying the progression of CRF.
Collapse
Affiliation(s)
- Yuan-yuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, 050000, China
| | - Pei-pei Jin
- Hebei Yiling Hospital, Hebei, Shijiazhuang, 050000, China
| | - Deng-zhou Guo
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| | - Dong Bian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Chang'an District, Zhongshan East Road 389, 050011, China
| |
Collapse
|
6
|
Zhang M, Xue X, Lou Z, Lin Y, Li Q, Huang C. Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis. J Transl Med 2024; 22:310. [PMID: 38532482 PMCID: PMC10964553 DOI: 10.1186/s12967-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS Cellular senescence was determined by immunohistochemistry and SA-β-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of β-catenin and Wnt signaling activation. CONCLUSION These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/β-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Zhenshuai Lou
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Yanhong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Jiang S, Su H. Cellular crosstalk of mesangial cells and tubular epithelial cells in diabetic kidney disease. Cell Commun Signal 2023; 21:288. [PMID: 37845726 PMCID: PMC10577991 DOI: 10.1186/s12964-023-01323-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease and imposes a heavy global economic burden; however, little is known about its complicated pathophysiology. Investigating the cellular crosstalk involved in DKD is a promising avenue for gaining a better understanding of its pathogenesis. Nonetheless, the cellular crosstalk of podocytes and endothelial cells in DKD is better understood than that of mesangial cells (MCs) and renal tubular epithelial cells (TECs). As the significance of MCs and TECs in DKD pathophysiology has recently become more apparent, we reviewed the existing literature on the cellular crosstalk of MCs and TECs in the context of DKD to acquire a comprehensive understanding of their cellular communication. Insights into the complicated mechanisms underlying the pathophysiology of DKD would improve its early detection, care, and prognosis. Video Abstract.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
11
|
Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, Qian LB. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444. [PMID: 37020591 PMCID: PMC10067862 DOI: 10.3389/fendo.2023.1139444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the most significant microvascular complication of diabetes and poses a severe public health concern due to a lack of effective clinical treatments. Autophagy is a lysosomal process that degrades damaged proteins and organelles to preserve cellular homeostasis. Emerging studies have shown that disorder in autophagy results in the accumulation of damaged proteins and organelles in diabetic renal cells and promotes the development of DN. Autophagy is regulated by nutrient-sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular stress signaling pathways such as oxidative stress and endoplasmic reticulum stress. An abnormal nutritional status and excess cellular stresses caused by diabetes-related metabolic disorders disturb the autophagic flux, leading to cellular dysfunction and DN. Here, we summarized the role of autophagy in DN focusing on signaling pathways to modulate autophagy and therapeutic interferences of autophagy in DN.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Urinary microRNA in Diabetic Kidney Disease: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020354. [PMID: 36837555 PMCID: PMC9962090 DOI: 10.3390/medicina59020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Diabetic kidney disease is the most common primary disease of end-stage kidney disease globally; however, a sensitive and accurate biomarker to predict this disease remains awaited. microRNAs are endogenous single-stranded noncoding RNAs that have intervened in different post-transcriptional regulations of various cellular biological functions. Previous literatures have reported its potential role in the pathophysiology of diabetic kidney disease, including regulation of Transforming Growth Factor-β1-mediated fibrosis, extracellular matrix and cell adhesion proteins, cellular hypertrophy, growth factor, cytokine production, and redox system activation. Urinary microRNAs have emerged as a novel, non-invasive liquid biopsy for disease diagnosis. In this review, we describe the available experimental and clinical evidence of urinary microRNA in the context of diabetic kidney disease and discuss the future application of microRNA in routine practice.
Collapse
|
13
|
Li J, Zheng S, Ma C, Chen X, Li X, Li S, Wang P, Chen P, Wang Z, Li W, Liu Y. Research progress on exosomes in podocyte injury associated with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1129884. [PMID: 37020588 PMCID: PMC10067864 DOI: 10.3389/fendo.2023.1129884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetic kidney disease (DKD), a common cause of end-stage renal disease, is a serious complication that develops with the progression of chronic diabetes. Its main clinical manifestations are persistent proteinuria and/or a progressive decline in the estimated glomerular filtration rate. Podocytes, terminally differentiated glomerular visceral epithelial cells, constitute the glomerular filtration barrier together with the basement membrane and endothelial cells, and the structural and functional barrier integrity is closely related to proteinuria. In recent years, an increasing number of studies have confirmed that podocyte injury is the central target of the occurrence and development of DKD, and research on exosomes in podocyte injury associated with DKD has also made great progress. The aim of this review is to comprehensively describe the potential diagnostic value of exosomes in podocyte injury associated with DKD, analyze the mechanism by which exosomes realize the communication between podocytes and other types of cells and discuss the possibility of exosomes as targeted therapy drug carriers to provide new targets for and insights into delaying the progression of and treating DKD.
Collapse
Affiliation(s)
- Jiao Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shanshan Zheng
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chaoqun Ma
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shengjie Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ping Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Ping Chen
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Wenbin Li
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| | - Yipeng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- *Correspondence: Yipeng Liu, ; Wenbin Li,
| |
Collapse
|
14
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
15
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
16
|
Liu C, Yang M, Li L, Luo S, Yang J, Li C, Liu H, Sun L. A Glimpse of Inflammation and Anti-Inflammation Therapy in Diabetic Kidney Disease. Front Physiol 2022; 13:909569. [PMID: 35874522 PMCID: PMC9298824 DOI: 10.3389/fphys.2022.909569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and not completely understood. Recently, accumulated evidence from in vitro and in vivo studies has demonstrated that inflammation plays an important role in the pathogenesis and the development of DKD. It has been well known that a variety of pro-inflammatory cytokines and related signaling pathways are involved in the procession of DKD. Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-inflammatory properties, which might have beneficial effects on delaying the progression of DKD. However, there is currently a lack of systematic overviews. In this review, we focus on the novel pro-inflammatory signaling pathways in the development of DKD, including the nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors, Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor agonist and traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China.,Hunan Key Laboratory of kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
17
|
Li X, Li Y, Li F, Chen Q, Zhao Z, Liu X, Zhang N, Li H. NAD + Anabolism Disturbance Causes Glomerular Mesangial Cell Injury in Diabetic Nephropathy. Int J Mol Sci 2022; 23:ijms23073458. [PMID: 35408818 PMCID: PMC8998683 DOI: 10.3390/ijms23073458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/04/2022] Open
Abstract
The homeostasis of NAD+ anabolism is indispensable for maintaining the NAD+ pool. In mammals, the mainly synthetic pathway of NAD+ is the salvage synthesis, a reaction catalyzed by nicotinamide mononucleotide adenylyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNATs) successively, converting nicotinamide (NAM) to nicotinamide mononucleotide (NMN) and NMN to NAD+, respectively. However, the relationship between NAD+ anabolism disturbance and diabetic nephropathy (DN) remains elusive. Here our study found that the disruption of NAD+ anabolism homeostasis caused an elevation in both oxidative stress and fibronectin expression, along with a decrease in Sirt1 and an increase in both NF-κB P65 expression and acetylation, culminating in extracellular matrix deposition and globular fibrosis in DN. More importantly, through constitutively overexpressing NMNAT1 or NAMPT in human mesangial cells, we revealed NAD+ levels altered inversely with NMN levels in the context of DN and, further, their changes affect Sirt1/NF-κB P65, thus playing a crucial role in the pathogenesis of DN. Accordingly, FK866, a NAMPT inhibitor, and quercetin, a Sirt1 agonist, have favorable effects on the maintenance of NAD+ homeostasis and renal function in db/db mice. Collectively, our findings suggest that NMN accumulation may provide a causal link between NAD+ anabolism disturbance and diabetic nephropathy (DN) as well as a promising therapeutic target for DN treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Correspondence: ; Tel.: +86-021-54237528
| |
Collapse
|
18
|
Zeng Y, Li YM, Cheng Y, Zeng XS, Wang T, Zhang F, Zhang YL. Hypoxia-inducible factor-1α activation can attenuate renal podocyte injury and alleviate proteinuria in rats in a simulated high-altitude environment. Biochem Biophys Res Commun 2022; 602:35-40. [PMID: 35247702 DOI: 10.1016/j.bbrc.2022.02.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aims of this study were to understand whether podocyte injury is involved in proteinuria after rapid ascent to high altitude and to explore whether hypoxia-inducible factor (HIF)-1α is involved in the adaptive regulation of this proteinuria. METHODS Rats in the experimental group were housed in a low-pressure oxygen chamber to simulate a high-altitude environment (5,000 m). The intervention group was placed under the same conditions as the experimental group and prolyl-hydroxylase inhibitor (PHI) was intraperitoneally injected. The control group was housed in a low altitude environment (500 m). On days 0, 7, 14, and 28, urinary albumin quantification and electrophoresis were performed. The expression levels of CD2-associated protein (CD2AP), nephrin and HIF-1α were detected by immunofluorescence. RESULTS The medium and large molecule proteins with molecular weights ranging from 63 to 75 kD were present in the urine of rats in the experimental group and that the urinary albumin levels first increased and then decreased with time and the increase on day 14 was most significant (24.58 ± 4.30 mg on day 14 VS 5.13 ± 1.58 mg on day 0). Electron microscopy revealed podocyte lesions in rats in the experimental group. Immunofluorescence results showed that the protein expression levels of CD2AP and nephrin in the glomeruli of rats in the experimental group were lower than those in the control group (P < 0.001) and that the expression levels of which in the intervention group were higher than those in the experimental group (P < 0.001). The expression of HIF-1α protein in the renal tissues of rats in the experimental group was higher than that in the control group (P < 0.001) and lower than that in the intervention group (P < 0.001). CONCLUSION The podocyte injury may be involved in the occurrence of proteinuria after rapid ascent to high altitude. PHI may have a potential role in reducing proteinuria by upregulating local HIF-1α expression in the kidney to alleviate podocyte injury.
Collapse
Affiliation(s)
- Yan Zeng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China; Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| | - Yun-Ming Li
- Statistical Office, Department of Information, General Hospital of Western Theater Command, Chengdu, 610083, PR China; Department of Statistics, College of Mathematics, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yue Cheng
- Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China.
| | - Xiao-Shan Zeng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tao Wang
- Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| | - Fan Zhang
- Department of Nephrology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| | - Yao-Lei Zhang
- Department of Basic Medical Laboratory, General Hospital of Western Theater Command of PLA, Chengdu, 610083, PR China
| |
Collapse
|
19
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
20
|
Qi W, Hu C, Zhao D, Li X. SIRT1-SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Front Endocrinol (Lausanne) 2022; 13:801303. [PMID: 35634495 PMCID: PMC9136398 DOI: 10.3389/fendo.2022.801303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication in patients with diabetes and is one of the main causes of renal failure. The current clinical treatment methods for DKD are not completely effective, and further exploration of the molecular mechanisms underlying the pathology of DKD is necessary to improve and promote the treatment strategy. Sirtuins are class III histone deacetylases, which play an important role in many biological functions, including DNA repair, apoptosis, cell cycle, oxidative stress, mitochondrial function, energy metabolism, lifespan, and aging. In the last decade, research on sirtuins and DKD has gained increasing attention, and it is important to summarize the relationship between DKD and sirtuins to increase the awareness of DKD and improve the cure rates. We have found that miRNAs, lncRNAs, compounds, or drugs that up-regulate the activity and expression of sirtuins play protective roles in renal function. Therefore, in this review, we summarize the biological functions, molecular targets, mechanisms, and signaling pathways of SIRT1-SIRT7 in DKD models. Existing research has shown that sirtuins have the potential as effective targets for the clinical treatment of DKD. This review aims to lay a solid foundation for clinical research and provide a theoretical basis to slow the development of DKD in patients.
Collapse
Affiliation(s)
- Wenxiu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenxiu Qi,
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
21
|
Abstract
Diabetes mellitus (DM) is gradually attacking the health and life of people all over the world. Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of DM, whose mechanism is complex and still lacks research. Sirtuin family is a class III histone deacetylase with highly conserved NAD+ binding domain and catalytic functional domain, while different N-terminal and C-terminal structures enable them to bind different deacetylated substrates to participate in the cellular NAD+ metabolism. The kidney is an organ rich in NAD+ and database exploration of literature shows that the Sirtuin family has different expression localization in renal, cellular, and subcellular structures. With the progress of modern technology, a variety of animal models and reagents for the Sirtuin family and DKD emerged. Machine learning in the literature shows that the Sirtuin family can regulate pathophysiological injury mainly in the glomerular filtration membrane, renal tubular absorption, and immune inflammation through various mechanisms such as epigenetics, multiple signaling pathways, and mitochondrial function. These mechanisms are the key nodes participating in DKD. Thus, it is of great significance for target therapy to study biological functions of the Sirtuin family and DKD regulation mechanism in-depth.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Huiwen Ren,
| |
Collapse
|
22
|
Abstract
Diabetic nephropathy (DN), which is a common microvascular complication with a high incidence in diabetic patients, greatly increases the mortality of patients. With further study on DN, it is found that epigenetics plays a crucial role in the pathophysiological process of DN. Epigenetics has an important impact on the development of DN through a variety of mechanisms, and promotes the generation and maintenance of metabolic memory, thus ultimately leading to a poor prognosis. In this review we discuss the methylation of DNA, modification of histone, and regulation of non-coding RNA involved in the progress of cell dysfunction, inflammation and fibrosis in the kidney, which ultimately lead to the deterioration of DN.
Collapse
|
23
|
Owczarek A, Gieczewska KB, Jarzyna R, Frydzinska Z, Winiarska K. Transcription Factor ChREBP Mediates High Glucose-Evoked Increase in HIF-1α Content in Epithelial Cells of Renal Proximal Tubules. Int J Mol Sci 2021; 22:ijms222413299. [PMID: 34948094 PMCID: PMC8705933 DOI: 10.3390/ijms222413299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia/diabetes appears to be accompanied by the state of hypoxia, which especially affects kidneys. The aim of the study was to elucidate the mechanism of high glucose action on HIF-1α expression in renal proximal tubule epithelial cells. The research hypotheses included: (1) the participation of transcription factor ChREBP; and (2) the involvement of the effects resulting from pseudohypoxia, i.e., lowered intracellular NAD+/NADH ratio. The experiments were performed on HK-2 cells and primary cells: D-RPTEC (Diseased Human Renal Proximal Tubule Epithelial Cells—Diabetes Type II) and RPTEC (Renal Proximal Tubule Epithelial Cells). Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. ChREBP binding to DNA was detected applying chromatin immunoprecipitation, followed by RT-qPCR. Gene knockdown was performed using siRNA. Sirtuin activity and NAD+/NADH ratio were measured with commercially available kits. It was found that high glucose in HK-2 cells incubated under normoxic conditions: (1) activated transcription of HIF-1 target genes, elevated HIF-1α and ChREBP content, and increased the efficacy of ChREBP binding to promoter region of HIF1A gene; and (2), although it lowered NAD+/NADH ratio, it affected neither sirtuin activity nor HIF-1α acetylation level. The stimulatory effect of high glucose on HIF-1α expression was not observed upon the knockdown of ChREBP encoding gene. Experiments on RPTEC and D-RPTEC cells demonstrated that HIF-1α content in diabetic proximal tubular cells was lower than that in normal ones but remained high glucose-sensitive, and the latter phenomenon was mediated by ChREBP. Thus, it is concluded that the mechanism of high glucose-evoked increase in HIF-1α content in renal proximal tubule endothelial cells involves activation of ChREBP, indirectly capable of HIF1A gene up-regulation.
Collapse
Affiliation(s)
- Aleksandra Owczarek
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, 02-096 Warsaw, Poland; (A.O.); (R.J.); (Z.F.)
| | - Katarzyna B. Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Robert Jarzyna
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, 02-096 Warsaw, Poland; (A.O.); (R.J.); (Z.F.)
| | - Zuzanna Frydzinska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, 02-096 Warsaw, Poland; (A.O.); (R.J.); (Z.F.)
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, 02-096 Warsaw, Poland; (A.O.); (R.J.); (Z.F.)
- Correspondence:
| |
Collapse
|
24
|
Chen L, Guo X, Wang L, Geng J, Wu J, Hu B, Wang T, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS. Drug Deliv 2021; 28:1637-1648. [PMID: 34338123 PMCID: PMC8330795 DOI: 10.1080/10717544.2021.1960922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes efficiently and deliver a broad range of cargoes. Our bioinformatic prediction and wet-lab validation data suggested that peptide P1 derived from MARCKS protein phosphorylation site domain is a new potential CPP candidate. We found that peptide P1 can efficiently internalize into various cell lines in a concentration-dependent manner. Receptor-mediated endocytosis pathway is the major mechanism of P1 penetration, although P1 also directly penetrates the plasma membrane. We also found that peptide P1 has low cytotoxicity in cultured cell lines as well as mouse red blood cells. Furthermore, peptide P1 not only can enter into cultured cells itself, but it also can interact with plasmid DNA and mediate the functional delivery of plasmid DNA into cultured cells, even in hard-to-transfect cells. Combined, these findings indicate that P1 may be a promising vector for efficient intracellular delivery of bioactive cargos.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Bin Hu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Changbai Liu
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
25
|
Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6114132. [PMID: 34712385 PMCID: PMC8548138 DOI: 10.1155/2021/6114132] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 12/01/2022]
Abstract
Hypoxia and oxidative stress are the common causes of various types of kidney injury. During recent years, the studies on hypoxia inducible factor- (HIF-) 1 attract more and more attention, which can not only mediate hypoxia adaptation but also contribute to profibrotic changes. Through analyzing related literatures, we found that oxidative stress can regulate the expression and activity of HIF-1α through some signaling molecules, such as prolyl hydroxylase domain-containing protein (PHD), PI-3K, and microRNA. And oxidative stress can take part in inflammation, epithelial-mesenchymal transition, and extracellular matrix deposition mediated by HIF-1 via interacting with classical NF-κB and TGF-β signaling pathways. Therefore, based on previous literatures, this review summarizes the contribution of oxidative stress to HIF-1-mediated profibrotic changes during the kidney damage, in order to further understand the role of oxidative stress in renal fibrosis.
Collapse
|
26
|
Han MM, Yuan XR, Shi X, Zhu XY, Su Y, Xiong DK, Zhang XM, Zhou H, Wang JN. The Pathological Mechanism and Potential Application of IL-38 in Autoimmune Diseases. Front Pharmacol 2021; 12:732790. [PMID: 34539413 PMCID: PMC8443783 DOI: 10.3389/fphar.2021.732790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-38 (IL-38), a new cytokine of interleukin-1 family (IL-1F), is expressed in the human heart, kidney, skin, etc. Recently, new evidence indicated that IL-38 is involved in the process of different autoimmune diseases. Autoimmune diseases are a cluster of diseases accompanied with tissue damage caused by autoimmune reactions, including rheumatoid arthritis (RA), psoriasis, etc. This review summarized the links between IL-38 and autoimmune diseases, as well as the latest knowledge about the function and regulatory mechanism of IL-38 in autoimmune diseases. Especially, this review focused on the differentiation of immune cells and explore future prospects, such as the application of IL-38 in new technologies. Understanding the function of IL-38 is helpful to shed light on the progress of autoimmune diseases.
Collapse
Affiliation(s)
- Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xin-Rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Yu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yue Su
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Public Basic College, Bengbu Medical College, Bengbu, China
| | - De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Huan Zhou
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ji-Nian Wang
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Niu B, Xie X, Xiong X, Jiang J. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation. Comput Biol Med 2021; 141:104636. [PMID: 34809966 DOI: 10.1016/j.compbiomed.2021.104636] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is one of the top four leading causes of death among noncommunicable diseases worldwide, according to the World Hibiscus sabdariffa 2019. Roselle (Hibiscus sabdariffa L.), a traditional herbal medicine, has shown significant clinical anti-hyperglycemic efficacy. However, the mechanism of the treatment is not yet clear. We found that Roselle has a certain protective effect on vascular endothelial cells through this study. This study was based on network pharmacology and experimental validation. The present study made a comprehensive analysis by combining active ingredient screening, target prediction and signaling pathway analysis to elucidate the active ingredients and possible molecular mechanism of roselle for the first time, which provided theoretical and experimental basis for the development and application of roselle as an antidiabetic drug.
Collapse
Affiliation(s)
- Bingxuan Niu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Collage of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, 453002, China.
| | - Xu Xie
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Xiaoming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
28
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
29
|
He ZY, Huang MT, Cui X, Zhou ST, Wu Y, Zhang PH, Zhou J. Long noncoding RNA GAS5 accelerates diabetic wound healing and promotes lymphangiogenesis via miR-217/Prox1 axis. Mol Cell Endocrinol 2021; 532:111283. [PMID: 33865922 DOI: 10.1016/j.mce.2021.111283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/12/2021] [Accepted: 04/11/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetes is usually the leading cause of chronic non-healing wounds. LncRNA-GAS5 has been verified to be involved in the regulation of diabetes or high glucose (HG)-stimulated cells. However, its regulatory roles in diabetic wound healing need further investigation. METHOD GAS5, miR-217 and Prox1 were identified by qRT-PCR. MTT, flow cytometry assay, wound-healing assay and tube formation were used to analyze cell viability, apoptosis, migration and tube formation capacity. Western blotting was carried out to detect the protein expression of c-Myc, CyclinD1, CDK4, Bcl-2, Prox1, VEGFR-3 and LYVE-1. Bioinformatics and luciferase assay were performed to predict and validate the binding sites of miR-217 on GAS5 and Prox1. Immunofluorescence staining detected the expression and distribution of Prox1. The wound healing rate was also assessed by setting up the diabetic mouse model. H&E staining assessed the distribution of inflammatory cells and fibroblasts in the wound tissues. RESULTS GAS5 was significantly down-regulated whereas miR-217 was obviously up-regulated in diabetic skin, HG-induced lymphatic endothelial cells (LECs) and diabetic mouse model. GAS5 sponged miR-217 to up-regulate Prox1. GAS5 overexpression or miR-217 inhibition rescued the impairments of cell viability, migration and lymphatic vessel formation and the facilitation of apoptosis of LECs caused by HG. Similar impacts were observed on the protein level of VEGFR-3, LYVE-1, and Prox1. GAS5 promoted wound healing and lymphangiogenesis in the diabetic mouse model. CONCLUSION GAS5 sponged miR-217 to up-regulate Prox1 and promote lymphangiogenesis and diabetic wound healing. This might provide novel therapeutic strategy to improve the efficacy of diabetic wound healing.
Collapse
Affiliation(s)
- Zhi-You He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Mi-Tao Huang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Xu Cui
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Si-Tuo Zhou
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Ying Wu
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Pi-Hong Zhang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Jie Zhou
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, PR China.
| |
Collapse
|
30
|
Li S, Sun W, Zhang K, Zhu J, Jia X, Guo X, Zhao Q, Tang C, Yin J, Zhang J. Selenium deficiency induces spleen pathological changes in pigs by decreasing selenoprotein expression, evoking oxidative stress, and activating inflammation and apoptosis. J Anim Sci Biotechnol 2021; 12:65. [PMID: 33993883 PMCID: PMC8127211 DOI: 10.1186/s40104-021-00587-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background The immune system is one aspect of health that is affected by dietary selenium (Se) levels and selenoprotein expression. Spleen is an important immune organ of the body, which is directly involved in cellular immunity. However, there are limited reports on Se levels and spleen health. Therefore, this study established a Se-deficient pig model to investigate the mechanism of Se deficiency-induced splenic pathogenesis. Methods Twenty-four pure line castrated male Yorkshire pigs (45 days old, 12.50 ± 1.32 kg, 12 full-sibling pairs) were divided into two equal groups and fed Se-deficient diet (0.007 mg Se/kg) or Se-adequate diet (0.3 mg Se/kg) for 16 weeks. At the end of the trial, blood and spleen were collected to assay for erythroid parameters, the osmotic fragility of erythrocytes, the spleen index, histology, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining, Se concentrations, the selenogenome, redox status, and signaling related inflammation and apoptosis. Results Dietary Se deficiency decreased the erythroid parameters and increased the number of osmotically fragile erythrocytes (P < 0.05). The spleen index did not change, but hematoxylin and eosin and TUNEL staining indicated that the white pulp decreased, the red pulp increased, and splenocyte apoptosis occurred in the Se deficient group. Se deficiency decreased the Se concentration and selenoprotein expression in the spleen (P < 0.05), blocked the glutathione and thioredoxin antioxidant systems, and led to redox imbalance. Se deficiency activated the NF-κB and HIF-1α transcription factors, thus increasing pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, and TNF-α), decreasing anti-inflammatory cytokines (IL-10, IL-13, and TGF-β) and increasing expression of the downstream genes COX-2 and iNOS (P < 0.05), which in turn induced inflammation. In addition, Se-deficiency induced apoptosis through the mitochondrial pathway, upregulated apoptotic genes (Caspase3, Caspase8, and Bak), and downregulated antiapoptotic genes (Bcl-2) (P < 0.05) at the mRNA level, thus verifying the results of TUNEL staining. Conclusions These results indicated that Se deficiency induces spleen injury through the regulation of selenoproteins, oxidative stress, inflammation and apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00587-x.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueting Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
31
|
Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021; 12:649587. [PMID: 34025445 PMCID: PMC8131683 DOI: 10.3389/fphys.2021.649587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays a critical role in the pathogenesis of DN, which involves renal cells and immune cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia, chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate gene expression via DNA methylation, histone modification, and non-coding RNAs without altering the DNA sequence. During the past years, numerous studies have been published to reveal the mechanisms of epigenetic modifications that regulate inflammation in DN. This review aimed to summarize the latest evidence on the interplay of epigenetics and inflammation in DN, and highlight the potential targets for treatment and diagnosis of DN.
Collapse
Affiliation(s)
- Bao-Yi Shao
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shao-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Yong Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
32
|
Ma M, Qin F, Wu C, Xiong W, Yu B, Wei S, Huang C, Xu J, Yang X, Yuan J. Optimal vacuum erectile device therapy regimen for penile rehabilitation in a bilateral cavernous nerve crush rat model. Andrology 2021; 9:894-905. [PMID: 33420755 DOI: 10.1111/andr.12968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Vacuum erectile device (VED) therapy has been widely used in penile rehabilitation after radical prostatectomy; however, there is no consensus on the best regimen. OBJECTIVES To explore an optimal VED therapy regimen in bilateral cavernous nerve crush (BCNC) rat model. MATERIALS AND METHODS Adult male rats were used to measure the effects of different durations (1-30 min) of VED treatment on penile length, penile blood gas analysis, and adverse effects. Forty-eight adult male rats were randomly divided into Sham, BCNC, and VED treatment groups (2-3-2-3 min, 4-3-3 min, 5-5 min, and 10 min). Penile length, erectile function, and side effects were detected after VED treatment. Histopathological staining and Western blotting were performed to explore the cellular and molecular changes. RESULTS Prolongation of the duration of VED treatment significantly decreased the penile oxygen saturation, partial oxygen pressure, and arterial blood ratio (P < 0.05). Compared with the BCNC group, all VED treatment regimens partially reversed BCNC-induced penile shortening and erectile dysfunction (P < 0.0001), with the 4-3-3-min and 5-5-min treatment groups exhibiting more significant improvement than the 10-min and 2-3-2-3-min treatment groups (P < 0.0001). The mechanism may be related to the up-regulation of the smooth muscle cell/collagen ratio, endothelial nitric oxide synthase, and α-smooth muscle actin (all P < 0.0001); and the down-regulation of hypoxia-inducible factor-1α, transforming growth factor-β1, and apoptosis (all P < 0.0001). The incidence of adverse effects in the 2-3-2-3-min treatment group was the highest. DISCUSSION The commonly used VED therapy regimens maintained erectile function and penile length of BCNC rat by relieving hypoxia and fibrosis, and no further benefits were observed with increased treatment frequency or prolonged treatment duration. CONCLUSION Two consecutive 5-min treatments with a short interval is the optimal VED therapy regimen for penile rehabilitation in BCNC rat model.
Collapse
Affiliation(s)
- Ming Ma
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfeng Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Botao Yu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shanzun Wei
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunxu Huang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jianrong Xu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xinzong Yang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Dong W, Zhang H, Zhao C, Luo Y, Chen Y. Silencing of miR-150-5p Ameliorates Diabetic Nephropathy by Targeting SIRT1/p53/AMPK Pathway. Front Physiol 2021; 12:624989. [PMID: 33897448 PMCID: PMC8064124 DOI: 10.3389/fphys.2021.624989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and an important cause of end-stage renal disease. Increasing evidence suggests that microRNAs (miRNAs) regulate the development of DN. In a preliminary study, high levels of miR-150-5p were detected in the serum and urine of patients with DN. Consequently, we investigated the effect and mechanism of action of miR-150-5p in DN in vitro and in vivo. Our results showed that inhibition of miR-150-5p reversed high glucose-induced podocyte injury and Streptozocin (STZ)-induced diabetic nephropathy in mice. Further analysis revealed that miR-150-5p targeted the 3′ untranslated region (UTR) of sirtuin 1 (SIRT1), consequently decreasing SIRT1 levels in podocytes. Importantly, we found that the silencing of miR-150-5p promoted the interaction between SIRT1 and p53, causing the suppression of p53 acetylation in podocytes and kidney tissue. This resulted in the stimulation of AMP-activated protein kinase (AMPK)-dependent autophagy. In conclusion, our study demonstrated that the silencing of miR-150-5p played a reno-protective role in DN mice through targeting SIRT1.
Collapse
Affiliation(s)
- Wenmin Dong
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiqian Zhang
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of TCM Literature, Shanghai, China
| | - Cheng Zhao
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Luo
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Chen
- Shanghai TCM-Integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
Lou T, Huang Q, Su H, Zhao D, Li X. Targeting Sirtuin 1 signaling pathway by ginsenosides. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113657. [PMID: 33276056 DOI: 10.1016/j.jep.2020.113657] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is a kind of traditional Chinese herbal medicine, known as "king of herbs" and widely used in China, South Korea, and other Asian countries. Ginsenosides are one of active components of Panax ginseng Meyer, which have many pharmacological effects, such as enhancing memory, improving immunity and cardiovascular system, delaying aging, and preventing cancer. AIMS OF THE REVIEW This review aims to summarize the recent findings for ginsenosides targeting Sirtuin 1 (SIRT1) signaling pathway for the prevention and treatment of a series of diseases. MATERIALS AND METHODS An up-to-August 2020 search was carried out in databases such as PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure, and classic books of traditional Chinese medicine using the keywords: "SIRT1", and/or paired with "ginseng", and "ginsenosides". RESULTS SIRT1 is a class-III histone deacetylase (HDAC), a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme, which is deeply involved in a series of pathological processes. Based on specific intracellular localization, SIRT1 has various cytoplasmic and nuclear targets and plays a potential role in energy metabolism, oxidative stress, inflammation, tumorigenesis, and aging. Ginsenosides are generally classified into three groups and microbially transformed to final metabolites. Among of them, most ginsenosides have been reported as SIRT1 activators, especially those ginsenosides with two glucopyranosyl groups on the C-3 position. Importantly, many ginsenosides can be used to prevent and treat oxidative stress, inflammation, aging, tumorigenesis, depression, and others by targeting SIRT1 signaling pathway. CONCLUSIONS This paper reviews recent evidences of ginsenosides targeting SIRT1 for the first time, which could provide new insights on the preclinical and clinical researches for ginsenosides against multiple disorders.
Collapse
Affiliation(s)
- Tingting Lou
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China; Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
35
|
Abstract
Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes. In addition to the characteristic clinical manifestations of proteinuria, it also has a complex pathological process that results from the combined effects of multiple factors involving the whole renal structure such as glomeruli, renal tubules, and blood vessels. Non-coding RNAs (ncRNA) are transcripts with no or low coding potential, among which micro RNA (miRNA) has been widely studied as a functional miRNA involved in regulation and a potential biomarker for disease prediction. The abundance of long coding RNA (lncRNA) in vivo is highly expressed with a certain degree of research progress, but the structural similarity makes the research still challenging. The research of circular RNA (circRNA) is still in its early stages. It is more relevant to the study to provide a more relevant link between diseases in the kidney and other tissues or organs. This classification review mainly summarized the biogenesis characteristics, the pathological mechanism of ncRNA-regulating diseases, the ways of ncRNA in the clinical prediction as a potential biomarker, and the interaction networks of ncRNA.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene 2021; 780:145532. [PMID: 33631244 DOI: 10.1016/j.gene.2021.145532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
As one of the most common complications of diabetes, nephropathy develops in approximately 40% of diabetic individuals. Although end stage kidney disease is known as one of the most consequences of diabetic nephropathy, the majority of diabetic individuals might die from cardiovascular diseases and infections before renal replacement treatment. Moreover, the routine medical treatments for diabetes hold undesirable side effects. The explosive prevalence of diabetes urges clinicians and scientists to investigate the complementary or alternative therapies. Phytochemicals are emerging as alternatives with a wide range of therapeutic effects on various pathologies, including diabetic kidney disease. Of those phytochemicals, resveratrol, a natural polyphenolic stilbene, has been found to exert a broad spectrum of health benefits via various signaling molecules. In particular, resveratrol has gained a great deal of attention because of its anti-oxidative, anti-inflammatory, anti-diabetic, anti-obesity, cardiovascular-protective, and anti-tumor properties. In the renal system, emerging evidence shows that resveratrol has already been used to ameliorate chronic or acute kidney injury. This review critically summarizes the current findings and molecular mechanisms of resveratrol in diabetic renal damage. In addition, we will discuss the adverse and inconsistent effects of resveratrol in diabetic nephropathy. Although there is increasing evidence that resveratrol affords great potential in diabetic nephropathy therapy, these results should be treated with caution before its clinical translation. In addition, the unfavorable pharmacokinetics and/or pharmacodynamics profiles, such as poor bioavailability, may limit its extensive clinical applications. It is clear that further research is needed to unravel these limitations and improve its efficacy against diabetic nephropathy. Increasing investigation of resveratrol in diabetic kidney disease will not only help us better understand its pharmacological actions, but also provide novel potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
37
|
Gu YY, Lu FH, Huang XR, Zhang L, Mao W, Yu XQ, Liu XS, Lan HY. Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol 2021; 11:583528. [PMID: 33574750 PMCID: PMC7870688 DOI: 10.3389/fphar.2020.583528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common diabetic complication and is a leading cause of end-stage kidney disease. Increasing evidence shows that DKD is regulated not only by many classical signaling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation, and non-coding RNA (ncRNAs). In this review, we focus on our current understanding of the role and mechanisms of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the pathogenesis of DKD. Of them, the regulatory role of TGF-β/Smad3-dependent miRNAs and lncRNAs in DKD is highlighted. Importantly, miRNAs and lncRNAs as biomarkers and therapeutic targets for DKD are also described, and the perspective of ncRNAs as a novel therapeutic approach for combating diabetic nephropathy is also discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fu-Hua Lu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhang
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology and State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Bao L, Chau CS, Lei Z, Hu H, Chan AG, Amber KT, Maienschein-Cline M, Tsoukas MM. Dysregulated microRNA expression in IL-4 transgenic mice, an animal model of atopic dermatitis. Arch Dermatol Res 2021; 313:837-846. [PMID: 33433718 DOI: 10.1007/s00403-020-02176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD). Previously we showed that the expression of genes in chemotaxis, angiogenesis, inflammation and barrier functions is dysregulated in IL-4 transgenic (Tg) mice, a well-characterized AD mouse model. In this study, we aim to study differential expression of microRNAs in IL-4 Tg mice. As compared with wild-type mice, we found that 10 and 79 microRNAs are dysregulated in the skin of IL-4 mice before and after the onset of skin lesions, respectively. Bioinformatic analysis and previous reports show that these dysregulated microRNAs may be involved in the NF-κB, TLRs, IL-4/IL-13, MAPK and other pathways. We also found that miR-139-5p and miR-196b-3p are significantly up-regulated in the peripheral blood of IL-4 Tg mice. Taken together, our data have identified many dysregulated microRNAs in IL-4 Tg mice, which may play important roles in AD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA.
| | - Cecilia S Chau
- Sequencing Core, Genome Research Division, Research Resources Center, Chicago, USA
| | - Zhengdeng Lei
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Hong Hu
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Angelina G Chan
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Kyle T Amber
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Maria M Tsoukas
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| |
Collapse
|
39
|
Zeng Y, Feng Z, Liao Y, Yang M, Bai Y, He Z. Diminution of microRNA-98 alleviates renal fibrosis in diabetic nephropathy by elevating Nedd4L and inactivating TGF-β/Smad2/3 pathway. Cell Cycle 2020; 19:3406-3418. [PMID: 33315506 DOI: 10.1080/15384101.2020.1838780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have already been documented to function in diabetic nephropathy (DN), yet little research has focused on the role of miR-98 in this disease. Here, we discuss the mechanism of miR-98 on the renal fibrosis in DN. Recombinant adeno-associated virus carrying miR-98 inhibitor or Nedd4L overexpression plasmid was injected into DN modeled rats to explore their roles in DN. Renal tubular epithelial cell injury models (NRK-52E cells) were induced by high glucose (HG). HG-treated NRK-52E cells were transfected with miR-98 inhibitor or Nedd4L overexpression plasmid for further verification. MiR-98 was upregulated, Nedd4L was downregulated and TGF-β/Smad2/3 signaling was activated in kidney tissues of DN rats and HG-treated NRK-52E cells. miR-98 targeted Nedd4L mRNA 3'UTR. MiR-98 depletion and Nedd4L overexpression inactivated TGF-β/Smad2/3 signaling pathway, alleviated pathological damage and fibrosis, ameliorated inflammation, and depressed cell apoptosis of kidney tissues of DN rats. MiR-98 depletion and Nedd4L overexpression inactivated TGF-β/Smad2/3 signaling pathway, strengthened viability, and limited apoptosis of HG-treated renal tubular epithelial cells. Nedd4L overexpression reversed the effect of up-regulating miR-98 on DN rats and HG-treated renal tubular epithelial cells. Altogether, we find that miR-98 is upregulated in kidney tissues of DN rats, and miR-98 diminution and Nedd4L elevation attenuate renal fibrosis through inactivation of the TGF-β/Smad2/3 pathway, which provides a novel therapy for DN.
Collapse
Affiliation(s)
- Yi Zeng
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Zhijian Feng
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Yunjuan Liao
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Ming Yang
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Yihua Bai
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| | - Zhenkun He
- Nephrology Department, The Second Affiliated Hospital of Kunming Medical University , Kunming, Yunnan, China
| |
Collapse
|
40
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Piao C, Zhang Q, Jin D, Wang L, Tang C, Zhang N, Lian F, Tong X. A Study on the Mechanism of Milkvetch Root in the Treatment of Diabetic Nephropathy Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6754761. [PMID: 33178322 PMCID: PMC7648691 DOI: 10.1155/2020/6754761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated pathogenesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine (TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elucidated. The aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently, major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway enrichment analysis. The binding activity and targets of the active components of Milkvetch Root were verified by using the molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great significance in regulating these biological processes and pathways. This study provides an important scientific basis for further elucidating the mechanism of Milkvetch Root in treating DN.
Collapse
Affiliation(s)
- Chunli Piao
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Qi Zhang
- Changchun University of Chinese Medicine, Changchun 130000, Jilin, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100000, China
| | - Li Wang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Cheng Tang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Naiwen Zhang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, Guangdong, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100000, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 100000, China
| |
Collapse
|
42
|
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. ACTA ACUST UNITED AC 2020; 5:961-968. [PMID: 33015417 PMCID: PMC7524787 DOI: 10.1016/j.jacbts.2020.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α promote cellular adaptation to acute hypoxia, but during prolonged activation, these isoforms exert mutually antagonistic effects on the redox state and on proinflammatory pathways. Sustained HIF-1α signaling can increase oxidative stress, inflammation, and fibrosis, actions that are opposed by HIF-2α. Imbalances in the interplay between HIF-1α and HIF-2α may contribute to the progression of chronic heart failure, atherosclerotic and hypertensive vascular disorders, and chronic kidney disease. These disorders are characterized by activation of HIF-1α and suppression of HIF-2α, which are potentially related to mitochondrial and peroxisomal dysfunction and suppression of the redox sensor, sirtuin-1. Hypoxia mimetics can potentiate HIF-1α and/or HIF-2α; ideally, such agents should act preferentially to promote HIF-2α while exerting little effect on or acting to suppress HIF-1α. Selective activation of HIF-2α can be achieved with drugs that: 1) inhibit isoform-selective prolyl hydroxylases (e.g., cobalt chloride and roxadustat); or 2) promote the actions of the redox sensor, sirtuin-1 (e.g., sodium-glucose cotransporter 2 inhibitors). Selective HIF-2α signaling through sirtuin-1 activation may explain the effect of sodium-glucose cotransporter 2 inhibitors to simultaneously promote erythrocytosis and ameliorate the development of cardiomyopathy and nephropathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Imperial College, London, United Kingdom
| |
Collapse
|
43
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
44
|
Hong YA, Kim JE, Jo M, Ko GJ. The Role of Sirtuins in Kidney Diseases. Int J Mol Sci 2020; 21:ijms21186686. [PMID: 32932720 PMCID: PMC7555196 DOI: 10.3390/ijms21186686] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Daejeon St. Mary Mary’s Hospital, Daejeon 34943, Korea;
| | - Ji Eun Kim
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.E.K.); (M.J.)
| | - Minjee Jo
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.E.K.); (M.J.)
| | - Gang-Jee Ko
- Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.E.K.); (M.J.)
- Correspondence: ; Tel.: +82-2-2626-3039
| |
Collapse
|
45
|
Li X, Xu R, Liu X, Xu L, Xue M, Cheng Y, Li T, Yu X, Wang Y, Li C, Sun B, Chen L. Urinary miR-3137 and miR-4270 as potential biomarkers for diabetic kidney disease. J Clin Lab Anal 2020; 34:e23549. [PMID: 32869917 PMCID: PMC7755759 DOI: 10.1002/jcla.23549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/28/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background As one of the most prevalent diagnostic indicators of diabetic kidney disease (DKD), albumin‐to‐creatinine ratio (ACR) shows considerably limited predictive power in clinical application. We analyzed microarray expression profiling of urine to seek for differentially expressed miRNAs for potential biomarkers of DKD. Methods Urine samples from type 2 diabetes mellitus (T2DM) patients with (30 mg/g < ACR < 300 mg/g, DKD group) or without DKD (ACR < 30 mg/g, DM group) were collected for miRNA microarray analysis. The differentially expressed miRNAs were screened by bioinformatics analysis and validated by quantitative real‐time PCR. Target genes of differentially expressed miRNAs were predicted in miRDB, Targetscan, and microRNA.org databases. We also conducted the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways analysis to explore for potential mechanisms in DKD. Results Nine miRNAs were down‐regulated and seventeen miRNAs were up‐regulated in DKD group, compared to DM group. The levels of miR‐3137 and miR‐4270 in DKD group were 0.670 ± 0.505 and 2.116 ± 1.762 times than those in DM group, respectively, showing great significance. A total of 1076 target genes were simultaneously predicted by miRDB, Targetscan, and microRNA.org databases. According to the GO analysis results, disorders of endomembrane system may be one of the major pathological changes in DKD. In addition, Rap 1 signaling pathway is also altered obviously in DKD, discovered by the KEGG analysis. Conclusion MiR‐3137 and miR‐4270 show the potential for urinary biomarkers of DKD. The pathological changes of DKD may be related to disorders of endomembrane system and alternation of Rap1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoyu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Rong Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiangyang Liu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Linxin Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaochen Yu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yue Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunjun Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
46
|
Ren H, Shao Y, Wu C, Lv C, Zhou Y, Wang Q. VASH-1 Regulates Oxidative Stress and Fibrosis in Diabetic Kidney Disease via SIRT1/HIF1α and TGFβ1/Smad3 Signaling Pathways. Front Mol Biosci 2020; 7:137. [PMID: 32754616 PMCID: PMC7365843 DOI: 10.3389/fmolb.2020.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Aims: To investigate the role of Vasohibin-1 (VASH-1), silence information adjustment factor 2-related enzyme 1 (SIRT1)/hypoxic-inducible factor 1α (HIF1α) and transforming growth factor-β1 (TGFβ1) /Smad3 signaling pathways in oxidative stress and fibrosis of diabetic kidney disease (DKD). Materials and Methods: A diabetic rat model was established in vivo and rat mesangial cells (RMCs) were cultured in vitro with high glucose via transfection with Vash1 small interfering RNA (siRNA), Hif1a siRNA, Sirt1 siRNA and TGFβ1/Smad3 pathway inhibitor (SB431542). Renal histology was used to detect renal changes. Real-time PCR and western blot were used to analyze the expression of VASH-1, SIRT1, HIF1α, TGFβ1, Smad3, vascular endothelial growth factor (VEGF), connective tissue growth factor (CTGF) and fibronectin (FN). Expression levels of tumor necrosis factor-α (TNFα), TGFβ1, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in rat tissues and cell culture supernatant were detected by ELISA and chemiluminescence assay, while cell proliferation was detected by CCK-8. Results: The level of VASH-1 in renal tissues of diabetic rats was decreased, while both high glucose and Vash1 siRNA inhibited the expression of VASH-1 and SIRT1, increased the levels of HIF1α, TGFβ1, and Smad3 in RMCs, thus up-regulating oxidative stress and fibrosis factors, and abnormally increasing cell proliferation activity (P < 0.05). However, inhibition of SIRT1/HIF1α signaling pathway only reduced TGFβ1 and Smad3 (P < 0.05), while VASH-1 remained unchanged (P > 0.05). Conclusion: VASH-1 was under-expressed in renal tissues of diabetic rats and regulated the pathological process of oxidative stress and fibrosis in DKD via downstream SIRT1/HIF1α and TGFβ1/Smad3 signaling pathways.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Shao
- Department of Endocrinology, The Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Can Wu
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chuan Lv
- Department of Endocrinology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Yang Zhou
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Mensà E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, Ferracin M, Fulgenzi G, Graciotti L, Prattichizzo F, Sorci L, Battistelli M, Monsurrò V, Bonfigli AR, Cardelli M, Recchioni R, Marcheselli F, Latini S, Maggio S, Fanelli M, Amatori S, Storci G, Ceriello A, Stocchi V, De Luca M, Magnani L, Rippo MR, Procopio AD, Sala C, Budimir I, Bassi C, Negrini M, Garagnani P, Franceschi C, Sabbatinelli J, Bonafè M, Olivieri F. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles 2020; 9:1725285. [PMID: 32158519 PMCID: PMC7048230 DOI: 10.1080/20013078.2020.1725285] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
The role of epigenetics in endothelial cell senescence is a cutting-edge topic in ageing research. However, little is known of the relative contribution to pro-senescence signal propagation provided by microRNAs shuttled by extracellular vesicles (EVs) released from senescent cells. Analysis of microRNA and DNA methylation profiles in non-senescent (control) and senescent (SEN) human umbilical vein endothelial cells (HUVECs), and microRNA profiling of their cognate small EVs (sEVs) and large EVs demonstrated that SEN cells released a significantly greater sEV number than control cells. sEVs were enriched in miR-21-5p and miR-217, which target DNMT1 and SIRT1. Treatment of control cells with SEN sEVs induced a miR-21/miR-217-related impairment of DNMT1-SIRT1 expression, the reduction of proliferation markers, the acquisition of a senescent phenotype and a partial demethylation of the locus encoding for miR-21. MicroRNA profiling of sEVs from plasma of healthy subjects aged 40-100 years showed an inverse U-shaped age-related trend for miR-21-5p, consistent with senescence-associated biomarker profiles. Our findings suggest that miR-21-5p/miR-217 carried by SEN sEVs spread pro-senescence signals, affecting DNA methylation and cell replication.
Collapse
Affiliation(s)
- Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giacomo Corleone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Leonardo Sorci
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Ancona, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Ancona, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Silvia Latini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “Paola”, University of Urbino Carlo Bo, Fano, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “Paola”, University of Urbino Carlo Bo, Fano, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Iva Budimir
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery & Experimental Medicine, and Laboratory for the Technologies of Advanced Therapies, Tecnopolo, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery & Experimental Medicine, and Laboratory for the Technologies of Advanced Therapies, Tecnopolo, University of Ferrara, Ferrara, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Personal Genomics S.r.l., Verona, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
48
|
Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 2020; 500:110628. [PMID: 31647955 DOI: 10.1016/j.mce.2019.110628] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Metformin, as the basic pharmacological therapy and the first preventive drug in type 2 diabetes mellitus (T2DM), is proved to have potential protection in diabetic kidney disease (DKD). Here, we established a diabetic rat model induced by high-fat diet and low dose streptozotocin, and high glucose cultured rat mesangial cells (RMCs) pre-treated with metformin or transfected with AMPK, SIRT1 and FoxO1 small interfering RNA, and detected oxidative stress and autophagy related factors to explore the molecular mechanisms of metformin on DKD via adenosine monophosphate-activated protein kinase (AMPK)/silent mating type information regulation 2 homolog-1 (sirtuin-1, SIRT1)-Forkhead box protein O1 (FoxO1) pathway. We found that metformin effectively alleviated the disorders of glycolipid metabolism, renal function injury in diabetic rats, and relieved oxidative stress, enhanced autophagy and slowed down abnormal cell proliferation in high glucose cultured RMCs through AMPK/SIRT1-FoxO1 pathway, indicating the protective role of metformin against the pathological process of DKD.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Endocrinology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Shao
- Department of Endocrinology, the Second Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Can Wu
- Department of Gastroenterology and Endoscopy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Ma
- The Cadre Department, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuan Lv
- Department of Endocrinology, the People's Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
49
|
Paschou SA, Siasos G, Katsiki N, Tentolouris N, Tousoulis D. The Role of microRNAs in the Development of Type 2 Diabetes Complications. Curr Pharm Des 2020; 26:5969-5979. [PMID: 33138753 DOI: 10.2174/1381612826666201102102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs represent a class of small (19-25 nucleotides) single-strand pieces of RNA that are noncoding ones. They are synthesized by RNA polymerase II from transcripts that fold back on themselves. They mostly act as gene regulatory agents that pair with complementary sequences on mRNA and produce silencing complexes, which, in turn, suppress coding genes at a post-transcriptional level. There is now evidence that microRNAs may affect insulin secretion or insulin action, as they can alter pancreatic beta cells development, insulin production, as well as insulin signaling. Any molecular disorder that affects these pathways can deteriorate insulin resistance and lead to type 2 diabetes mellitus (T2DM) onset. Furthermore, the expression of several microRNAs is up- or down-regulated in the presence of diabetic microvascular complications (i.e., peripheral neuropathy, nephropathy, retinopathy, foot ulcers), as well as in patients with coronary heart disease, stroke, and peripheral artery disease. However, more evidence is needed, specifically regarding T2DM patients, to establish the use of such microRNAs as diagnostical biomarkers or therapeutic targets in daily practice.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Diabetes Centre, Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
50
|
Huang B, Sun X, Xu A. MiR-217 inhibition relieves oxidative stress-induced melanocyte damage by targeting sirtuin 1. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1727773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Bo Huang
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou Institute of Dermatology and Venereology, PR China
| | - Xuecheng Sun
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou Institute of Dermatology and Venereology, PR China
| | - Aie Xu
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou Institute of Dermatology and Venereology, PR China
| |
Collapse
|