1
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
2
|
Li X, He G, Jin H, Xiang X, Li D, Peng R, Tao J, Li X, Wang K, Luo Y, Liu X. Ultrasound-Activated Precise Sono-Immunotherapy for Breast Cancer with Reduced Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407609. [PMID: 39680747 PMCID: PMC11791983 DOI: 10.1002/advs.202407609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/01/2024] [Indexed: 12/18/2024]
Abstract
Immune checkpoint inhibitors have demonstrated remarkable efficacy across various cancer types. However, immune-related adverse events (irAEs) pose a significant challenge in immunotherapy, particularly the associated pneumonia as the primary adverse reaction, which can lead to irreversible pulmonary fibrosis. Additionally, monotherapy with programmed death ligand (PD-L1) inhibitors has shown limited effectiveness. Therefore, to improve the response rate of immunotherapy and reduce pulmonary fibrosis, this study designed and prepared an intelligent nanodrug based on dendritic mesoporous silica nanoparticles (DMSNs) loaded with a sono-sensitive agent protoporphyrin IX (PpIX). Additionally, a reactive oxygen species (ROS) sensitive linker is used to attach the immunotherapeutic drug PD-L1 inhibitor (aPD-L1) to DMSNs via covalent bonds. The external ultrasound (US) activates PpIX to generate ROS, which breaks the linker to release aPD-L1 to induce sonodynamic therapy (SDT) and immunotherapy. This sono-immnotherapy approach demonstrated excellent outcomes in tumor inhibition, eliciting immune responses, and reducing pulmonary fibrosis. Overall, this study offers a new, efficient, and safe method for breast cancer treatment, and expands the application of immunotherapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Gao He
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjingJiangsu210029P. R. China
- The Afffliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University366 Taihu RoadTaizhouJiangsu225300P. R. China
| | - Hui Jin
- Department of Breast surgeryThe Affiliated Tumor Hospital of Nantong University30 Tongyang north roadNantongJiangsu226361P. R. China
| | - Xinyu Xiang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Dong Li
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Renmiao Peng
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Jing Tao
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Xinping Li
- Department of Thyroid‐Breast SurgeryThe Fourth Affiliated Hospital of Nanjing Medical University298 Nanpu RoadNanjingJiangsu210032P. R. China
| | - Kaiyang Wang
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent EquipmentShanghai Frontiers Science Research Center for Druggability of Cardiovascular Non‐coding RNAInstitute for Frontier Medical Technology School of Chemistry and Chemical Engineering Shanghai University of Engineering ScienceShanghai201620P. R. China
| | - Xiaoan Liu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical University300 Guangzhou RoadNanjingJiangsu210029P. R. China
| |
Collapse
|
3
|
Meng L, Wen W. Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential. J Inflamm Res 2025; 18:115-126. [PMID: 39810976 PMCID: PMC11730282 DOI: 10.2147/jir.s492041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis. We first explore the relationship between diabetes and mitochondrial dysfunction, then analyze the specific manifestations of mitochondrial dysfunction in diabetic periodontitis, including morphological changes, energy metabolism disorders, increased oxidative stress, and enhanced apoptosis. We further delve into the connections between mitochondrial dysfunction and the pathogenic mechanisms of diabetic periodontitis, such as exacerbated inflammatory responses, decreased tissue repair capacity, and autophagy dysregulation. Finally, we discuss potential therapeutic targets based on mitochondrial function, including antioxidant strategies, mitochondria-targeted drugs, and autophagy regulators. We also propose future research directions, emphasizing the need for in-depth exploration of molecular mechanisms, development of new diagnostic markers and therapeutic strategies, and personalized treatment approaches. This review provides new insights into understanding the pathogenic mechanisms of diabetic periodontitis and offers a theoretical basis for developing targeted prevention and treatment strategies to improve oral health in diabetic patients.
Collapse
Affiliation(s)
- Leilei Meng
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Department of Pathophysiology, Anhui Medical University, Hefei, 230000, People’s Republic of China
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| |
Collapse
|
4
|
Mangano K, Diamantopoulos A, Vallianou NG, Stratigou T, Panagopoulos F, Kounatidis D, Dalamaga M, Fagone P, Nicoletti F. Serum and urinary levels of MIF, CD74, DDT and CXCR4 among patients with type 1 diabetes mellitus, type 2 diabetes and healthy individuals: Implications for further research. Metabol Open 2024; 24:100320. [PMID: 39323959 PMCID: PMC11422569 DOI: 10.1016/j.metop.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a highly conserved cytokine with pleiotropic properties, mainly pro-inflammatory. MIF seems to exert its pro-inflammatory features by binding to its transmembrane cellular receptor CD74. MIF also has CXCR4, which acts as a co-receptor in this inflammatory process. Apart from MIF, D-dopachrome tautomerase (DDT) or MIF2, which belongs to the MIF superfamily, also binds to receptor CD74. Therefore, these molecules, MIF, CD74, DDT and CXCR4 are suggested to work together orchestrating an inflammatory process. Diabetes mellitus is characterised by chronic low-grade inflammation. Therefore, the aim of the present study was to evaluate serum and urinary levels of the aforementioned molecules among patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and among healthy controls. Methods We enrolled 13 patients with T1DM, 74 patients with T2DM and 25 healthy individuals as controls. Levels of CD74, CXCR4, DDT, and MIF were measured using ELISA Kits according to the manufacturer's instructions. Results We documented increased serum MIF levels together with higher urinary CD74 levels among patients with T1DM, when compared to patients with T2DM and healthy adults. In particular, patients with T1DM showed significantly increased levels of MIF compared to T2DM (p = 0.011) and healthy controls (p = 0.0093). CD74 in urine were significantly higher in patients with T1DM compared to those affected with T2DM (p = 0.0302) and healthy group (p = 0.0099). On the contrary, serum CD74 were similar among the three groups. No statistical differences were identified in CXCR4 levels both in serum and in urine of all groups. Patients with T2DM and overweight/obesity had increased urinary levels of CD74, when compared to lean patients with T2DM. Conclusion The increased serum MIF levels and urinary CD74 levels among patients with T1DM may be attributed to the autoimmune milieu, which characterises patients with T1DM, when compared to patients with T2DM. These two findings merit further attention as they could pave the way for further research regarding the potential beneficial effects of inhibitors of MIF among patients with T1DM, especially in the early stages of T1DM. Finally, the role of inhibitors of MIF could be further explored in the context of obesity among patients with T2DM.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Aristidis Diamantopoulos
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Natalia G Vallianou
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Fotis Panagopoulos
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
6
|
Zhao F, Guo L, Huang T, Liu C, Wu D, Fang L, Min W. Interaction between the Neuroprotective and Hyperglycemia Mitigation Effects of Walnut-Derived Peptide LVRL via the Wnt3a/β-Catenin/GSK-3β Pathway in a Type 2 Diabetes Mellitus Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16204-16220. [PMID: 38984968 DOI: 10.1021/acs.jafc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/β-Catenin/GSK-3β pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/β-Catenin/GSK-3β pathway.
Collapse
Affiliation(s)
- Fanrui Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Linxin Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ting Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Weihong Min
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| |
Collapse
|
7
|
Guo P, Yu J. Association of multiple serum minerals and vitamins with metabolic dysfunction-associated fatty liver disease in US adults: National Health and Nutrition Examination Survey 2017-2018. Front Nutr 2024; 11:1335831. [PMID: 38562487 PMCID: PMC10982334 DOI: 10.3389/fnut.2024.1335831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Despite the rapid increase in the global prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), there are no approved therapeutic drugs for MAFLD yet. Nutrient supplementation might mitigate the risk of MAFLD. It is more typical for individuals to consume multiple nutrients simultaneously. However, the studies exploring the combined effects of multiple nutrients on MAFLD are limited. This study aimed to investigate the relationship between both individual nutrients and their combined influence on the risk of MAFLD. Methods Data were obtained from National Health and Nutrition Examination Survey (NHANES), and 18 types of nutrients were considered in this study. Logistic regression analysis was performed to evaluate the correlation between single nutrients and the risk of MAFLD. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to pinpoint the most relevant nutrient associated with the risk of MAFLD. Subsequently, both Weighted Quantile Sum (WQS) regression and Quantile g-computation (Qgcomp) were used to assess the combined effects of multiple nutrients on the risk of MAFLD. Results A total of 3,069 participants were included in this study. LASSO regression analysis showed that Se, α-tocopherol, and γ-tocopherol exhibited a positive association with the risk of MAFLD. In contrast, the serum levels of Co, P, α-cryptoxanthin, LZ, and trans-β-carotene were inversely associated with the prevalence of MAFLD. When Se and two types of vitamin E were excluded, the WQS index showed a significant inverse relationship between the remaining 15 nutrients and the risk of MAFLD; α-cryptoxanthin showed the most substantial contribution. Similarly, Qgcomp suggested that the combined effects of these 15 nutrients were associated with a lower risk of MAFLD, with α-cryptoxanthin possessing the most significant negative weights. Conclusion This study suggested that the complex nutrients with either a low proportion of Se, α-tocopherol, and γ-tocopherol or without them should be recommended for patients with MAFLD to reduce its risk.
Collapse
Affiliation(s)
| | - Jiahui Yu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|