1
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
2
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner K, Kwai NCG, Krishnan AV. Diagnostic accuracy of nerve ultrasonography for the detection of peripheral neuropathy in type 2 diabetes. Eur J Neurol 2022; 29:3571-3579. [PMID: 36039540 PMCID: PMC9826521 DOI: 10.1111/ene.15534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Nerve conduction studies (NCS) are the current objective measure for diagnosis of peripheral neuropathy in type 2 diabetes but do not assess nerve structure. This study investigated the utility of peripheral nerve ultrasound as a marker of the presence and severity of peripheral neuropathy in type 2 diabetes. METHODS A total of 156 patients were recruited, and nerve ultrasound was undertaken on distal tibial and distal median nerves. Neuropathy severity was graded using the modified Toronto Clinical Neuropathy Scale (mTCNS) and Total Neuropathy Score (TNS). Studies were undertaken by a single ultrasonographer blinded to nerve conduction results. RESULTS A stepwise increase in tibial nerve cross-sectional area (CSA) was noted with increasing TNS grade (p < 0.001) and each mTCNS quartile (p < 0.001). Regression analysis demonstrated a correlation between tibial nerve CSA and neuropathy severity (p < 0.001). Using receiver operator curve analysis, tibial nerve CSA of >12.88 mm yielded a sensitivity of 70.5% and specificity of 85.7% for neuropathy detection. Binary logistic regression revealed that tibial nerve CSA was a predictor of abnormal sural sensory nerve action potential amplitude (odds ratio = 1.239, 95% confidence interval [CI] = 1.142-1.345) and abnormal neuropathy score (odds ratio = 1.537, 95% confidence interval [CI] = 1.286-1.838). CONCLUSIONS Tibial nerve ultrasound has good specificity and sensitivity for neuropathy diagnosis in type 2 diabetes. The study demonstrates that tibial nerve CSA correlates with neuropathy severity. Future serial studies using both ultrasound and NCS may be useful in determining whether changes in ultrasound occur prior to development of nerve conduction abnormalities and neuropathic symptoms.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Institute of Neurological Sciences, Prince of Wales HospitalSydneyNew South WalesAustralia
| | - Tushar Issar
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
| | - Ann M. Poynten
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Department of EndocrinologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Kerry‐Lee Milner
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Department of EndocrinologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Natalie C. G. Kwai
- School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Arun V. Krishnan
- Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Institute of Neurological Sciences, Prince of Wales HospitalSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Tummanapalli SS, Issar T, Kwai N, Pisarcikova J, Poynten AM, Krishnan AV, Willcox MDP, Markoulli M. A Comparative Study on the Diagnostic Utility of Corneal Confocal Microscopy and Tear Neuromediator Levels in Diabetic Peripheral Neuropathy. Curr Eye Res 2019; 45:921-930. [DOI: 10.1080/02713683.2019.1705984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Tushar Issar
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Natalie Kwai
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Pisarcikova
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Ann M. Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Arun V. Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Mark D. P. Willcox
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Makino E, Nakamura N, Miyabe M, Ito M, Kanada S, Hata M, Saiki T, Sango K, Kamiya H, Nakamura J, Miyazawa K, Goto S, Matsubara T, Naruse K. Conditioned media from dental pulp stem cells improved diabetic polyneuropathy through anti-inflammatory, neuroprotective and angiogenic actions: Cell-free regenerative medicine for diabetic polyneuropathy. J Diabetes Investig 2019; 10:1199-1208. [PMID: 30892819 PMCID: PMC6717901 DOI: 10.1111/jdi.13045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/19/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS/INTRODUCTION Dental pulp stem cells (DPSCs) can be easily obtained from teeth for general orthodontic reasons. We have previously reported the therapeutic effects of DPSC transplantation for diabetic polyneuropathy. As abundant secretomes from DPSCs are considered to play a central role in the improvement of diabetic polyneuropathy, we investigated whether direct injection of DPSC-conditioned media (DPSC-CM) into hindlimb skeletal muscles ameliorates diabetic polyneuropathy in diabetic rats. MATERIALS AND METHODS DPSCs were isolated from the dental pulp of Sprague-Dawley rats. Eight weeks after the induction of diabetes, DPSC-CM was injected into the unilateral hindlimb skeletal muscles in both normal and diabetic rats. The effects of DPSC-CM on diabetic polyneuropathy were assessed 4 weeks after DPSC-CM injection. To confirm the angiogenic effect of DPSC-CM, the effect of DPSC-CM on cultured human umbilical vascular endothelial cell proliferation was investigated. RESULTS The administration of DPSC-CM into the hindlimb skeletal muscles significantly ameliorated sciatic motor/sensory nerve conduction velocity, sciatic nerve blood flow and intraepidermal nerve fiber density in the footpads of diabetic rats. We also showed that DPSC-CM injection significantly increased the capillary density of the skeletal muscles, and suppressed pro-inflammatory reactions in the sciatic nerves of diabetic rats. Furthermore, an in vitro study showed that DPSC-CM significantly increased the proliferation of umbilical vascular endothelial cells. CONCLUSIONS We showed that DPSC-CM injection into hindlimb skeletal muscles has a therapeutic effect on diabetic polyneuropathy through neuroprotective, angiogenic and anti-inflammatory actions. DPSC-CM could be a novel cell-free regenerative medicine treatment for diabetic polyneuropathy.
Collapse
Affiliation(s)
- Eriko Makino
- Department of OrthodonticsSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Nobuhisa Nakamura
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Megumi Miyabe
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Mizuho Ito
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Saki Kanada
- Department of OrthodonticsSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Masaki Hata
- Department of Removable ProsthodonticsSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Tomokazu Saiki
- Department of PharmacyDental HospitalAichi Gakuin UniversityNagoyaJapan
| | - Kazunori Sango
- Laboratory of Peripheral Nerve PathophysiologyTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hideki Kamiya
- Division of DiabetesDepartment of Internal MedicineAichi Medical UniversityNagakuteJapan
| | - Jiro Nakamura
- Division of DiabetesDepartment of Internal MedicineAichi Medical UniversityNagakuteJapan
| | - Ken Miyazawa
- Department of OrthodonticsSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Shigemi Goto
- Department of OrthodonticsSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Tatsuaki Matsubara
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| | - Keiko Naruse
- Department of Internal MedicineSchool of DentistryAichi Gakuin UniversityNagoyaJapan
| |
Collapse
|
6
|
Gu Y, Qiu ZL, Liu DZ, Sun GL, Guan YC, Hei ZQ, Li X. Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice. Biomed Rep 2018; 9:291-304. [PMID: 30233781 PMCID: PMC6142038 DOI: 10.3892/br.2018.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). The pathogenic mechanisms of DPN and the therapeutic interventions required may be distinct between type 1 (T1) and type 2 (T2) DM. However, the molecular mechanisms underlying the pathogenesis of DPN in both types of diabetes remain unclear. The aim of the current study was to identify the changes in genes and pathways associated with DPN in sciatic nerves of T1- and T2DM mice using bioinformatics analysis. The microarray profiles of sciatic nerves of T1DM (GSE11343) and T2DM (GSE27382) mouse models were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) in each. DEGs in the two types of DM (with fold change ≥2 and P<0.05) were identified with BRB-ArrayTools. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins and visualized using Cytoscape. Compared with control samples, 623 and 1,890 DEGs were identified in sciatic nerves of T1- and T2DM mice, respectively. Of these, 75 genes were coordinately dysregulated in the sciatic nerves of both models. Many DEGs unique to T1DM mice were localized to the nucleoplasm and were associated with regulation of transcription processes, while many unique to T2DM mice were localized at cell junctions and were associated with ion transport. In addition, certain DEGs may be associated with the different treatment strategies used for the two types of DM. This analysis provides insight into the functional gene sets and pathways operating in sciatic nerves in T1- and T2DM. The results should improve understanding of the molecular mechanisms underlying the pathophysiology of DPN, and provide information for the development of therapeutic strategies for DPN specific to each type of DM.
Collapse
Affiliation(s)
- Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhuo-Lin Qiu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - De-Zhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guo-Liang Sun
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying-Chao Guan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zi-Qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
7
|
TRPV1 alterations in urinary bladder dysfunction in a rat model of STZ-induced diabetes. Life Sci 2018; 193:207-213. [DOI: 10.1016/j.lfs.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
|
8
|
Srinivasan S, Dehghani C, Pritchard N, Edwards K, Russell AW, Malik RA, Efron N. Optical coherence tomography predicts 4-year incident diabetic neuropathy. Ophthalmic Physiol Opt 2017; 37:451-459. [DOI: 10.1111/opo.12391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Cirous Dehghani
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Nicola Pritchard
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Katie Edwards
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| | - Anthony W. Russell
- Princess Alexandra Hospital; Woolloongabba, Brisbane Australia
- School of Medicine; University of Queensland; Woolloongabba, Brisbane Australia
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar; Doha Qatar
- Central Manchester University Hospitals Foundation Trust; Manchester UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation; Queensland University of Technology; Brisbane Australia
| |
Collapse
|
9
|
Jerić M, Vukojević K, Vuica A, Filipović N. Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion. Neuropeptides 2017; 62:57-64. [PMID: 27836326 DOI: 10.1016/j.npep.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) influences the trigeminal nerve function by changing the pain response and transduction of the orofacial sensory pathways. It affects the inflammatory response via neuropeptide Y (NPY) and vascular endothelial growth factor (VEGF), which could potentially have a relevant role in the pathophysiology of diabetic neuropathy. The aim was to investigate expression of VEGF and NPY in subpopulations of trigeminal ganglion (TG) neurons in rat models of early DM1 and DM2. METHODS DM1 model was induced by an intraperitoneal (i.p.) injection of streptozotocin (STZ) (55mg/kg). DM2 rats were fed with a high fat diet (HFD) for two weeks and then received 35mg/kg of STZ i.p. Two weeks and 2months after the STZ-diabetes induction, rats were sacrificed and TG was immunohistochemically analyzed for detection of VEGF and NPY expression, and also double immunofluorescence labeling with isolectin (IB4) was completed. RESULTS An increased percentage of NPY+ neurons was observed 2weeks after DM1 and 2months post DM2 induction. NPY immunoreactivity was restricted to IB4-negative small-diameter and IB4+ neurons. Two weeks post induction, DM1 rats showed an increased percentage of VEGF/IB4- large neurons and DM2 rats showed an increased percentage of VEGF/IB4+ neurons. Two months after DM induction, the DM1 group showed a reduced percentage of VEGF/IB4- small neurons. CONCLUSION The observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The results contribute to the understanding of the basic pathophysiology of trigeminal diabetic neuropathy.
Collapse
Affiliation(s)
- Milka Jerić
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia
| | - Katarina Vukojević
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia; University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, Croatia
| | - Ana Vuica
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia
| | - Natalija Filipović
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia.
| |
Collapse
|
10
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
11
|
Abstract
Painful neuropathy, like the other complications of diabetes, is a growing healthcare concern. Unfortunately, current treatments are of variable efficacy and do not target underlying pathogenic mechanisms, in part because these mechanisms are not well defined. Rat and mouse models of type 1 diabetes are frequently used to study diabetic neuropathy, with rats in particular being consistently reported to show allodynia and hyperalgesia. Models of type 2 diabetes are being used with increasing frequency, but the current literature on the progression of indices of neuropathic pain is variable and relatively few therapeutics have yet been developed in these models. While evidence for spontaneous pain in rodent models is sparse, measures of evoked mechanical, thermal and chemical pain can provide insight into the pathogenesis of the condition. The stocking and glove distribution of pain tantalizingly suggests that the generator site of neuropathic pain is found within the peripheral nervous system. However, emerging evidence demonstrates that amplification in the spinal cord, via spinal disinhibition and neuroinflammation, and also in the brain, via enhanced thalamic activity or decreased cortical inhibition, likely contribute to the pathogenesis of painful diabetic neuropathy. Several potential therapeutic strategies have emerged from preclinical studies, including prophylactic treatments that intervene against underlying mechanisms of disease, treatments that prevent gains of nociceptive function, treatments that suppress enhancements of nociceptive function, and treatments that impede normal nociceptive mechanisms. Ongoing challenges include unraveling the complexity of underlying pathogenic mechanisms, addressing the potential disconnect between the perceived location of pain and the actual pain generator and amplifier sites, and finding ways to identify which mechanisms operate in specific patients to allow rational and individualized choice of targeted therapies.
Collapse
Affiliation(s)
- Corinne A Lee-Kubli
- Graduate School of Biomedical Sciences, Sanford-Burnham Institute for Molecular Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Abstract
The study of diabetic neuropathy has relied primarily on the use of streptozotocin-treated rat and mouse models of type 1 diabetes. This chapter will review the creation and use of other rodent models that have been developed in order to investigate the contribution of factors besides insulin deficiency to the development and progression of diabetic neuropathy as it occurs in obesity, type 1 or type 2 diabetes. Diabetic peripheral neuropathy is a complex disorder with multiple mechanisms contributing to its development and progression. Even though many animal models have been developed and investigated, no single model can mimic diabetic peripheral neuropathy as it occurs in humans. Nonetheless, animal models can play an important role in improving our understanding of the etiology of diabetic peripheral neuropathy and in performing preclinical screening of potential new treatments. To date treatments found to be effective for diabetic peripheral neuropathy in rodent models have failed in clinical trials. However, with the identification of new endpoints for the early detection of diabetic peripheral neuropathy and the understanding that a successful treatment may require a combination therapeutic approach there is hope that an effective treatment will be found.
Collapse
Affiliation(s)
- M A Yorek
- Iowa City Health Care System, Iowa City, IA, United States; University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
13
|
Griggs RB, Donahue RR, Adkins BG, Anderson KL, Thibault O, Taylor BK. Pioglitazone Inhibits the Development of Hyperalgesia and Sensitization of Spinal Nociresponsive Neurons in Type 2 Diabetes. THE JOURNAL OF PAIN 2016; 17:359-73. [PMID: 26687453 PMCID: PMC4791042 DOI: 10.1016/j.jpain.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Thiazolidinedione drugs (TZDs) such as pioglitazone are approved by the U.S. Food and Drug Administration for the treatment of insulin resistance in type 2 diabetes. However, whether TZDs reduce painful diabetic neuropathy (PDN) remains unknown. Therefore, we tested the hypothesis that chronic administration of pioglitazone would reduce PDN in Zucker Diabetic Fatty (ZDF(fa/fa) [ZDF]) rats. Compared with Zucker Lean (ZL(fa/+)) controls, ZDF rats developed: (1) increased blood glucose, hemoglobin A1c, methylglyoxal, and insulin levels; (2) mechanical and thermal hyperalgesia in the hind paw; (3) increased avoidance of noxious mechanical probes in a mechanical conflict avoidance behavioral assay, to our knowledge, the first report of a measure of affective-motivational pain-like behavior in ZDF rats; and (4) exaggerated lumbar dorsal horn immunohistochemical expression of pressure-evoked phosphorylated extracellular signal-regulated kinase. Seven weeks of pioglitazone (30 mg/kg/d in food) reduced blood glucose, hemoglobin A1c, hyperalgesia, and phosphorylated extracellular signal-regulated kinase expression in ZDF. To our knowledge, this is the first report to reveal hyperalgesia and spinal sensitization in the same ZDF animals, both evoked by a noxious mechanical stimulus that reflects pressure pain frequently associated with clinical PDN. Because pioglitazone provides the combined benefit of reducing hyperglycemia, hyperalgesia, and central sensitization, we suggest that TZDs represent an attractive pharmacotherapy in patients with type 2 diabetes-associated pain. PERSPECTIVE To our knowledge, this is the first preclinical report to show that: (1) ZDF rats exhibit hyperalgesia and affective-motivational pain concurrent with central sensitization; and (2) pioglitazone reduces hyperalgesia and spinal sensitization to noxious mechanical stimulation within the same subjects. Further studies are needed to determine the anti-PDN effect of TZDs in humans.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Renee R Donahue
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Braxton G Adkins
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Science, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Bradley K Taylor
- Department of Physiology, College of Medicine, University of Kentucky Medical Center, Lexington, Kentucky.
| |
Collapse
|
14
|
Abstract
Chronic widespread pain is a serious medical problem, yet the mechanisms of nociception and pain are poorly understood. Using a reserpine-induced pain model originally reported as a putative animal model for fibromyalgia, this study was undertaken to examine the following: (1) expression of several ion channels responsible for pain, mechanotransduction, and generation/propagation of action potentials in the dorsal root ganglion (DRG), (2) activities of peripheral nociceptive afferents, and (3) alterations in spinal microglial cells. A significant increase in mRNA expression of the acid-sensing ion channel (ASIC)-3 was detected in the DRG, and the behavioral mechanical hyperalgesia was significantly reversed by subcutaneous injection of APETx2, a selective blocker of ASIC3. Single-fiber recordings in vitro revealed facilitated mechanical responses of mechanoresponsive C-fibers both in the skin and muscle although the proportion of mechanoresponsive C-nociceptors was paradoxically decreased. In the spinal dorsal horn, microglial cells labeled with Iba1 immunoreactivity was activated, especially in laminae I-II where the nociceptive input is mainly processed compared with the other laminae. The activated microglia and behavioral hyperalgesia were significantly tranquilized by intraperitoneal injection of minocycline. These results suggest that the increase in ASIC3 in the DRG facilitated mechanical response of the remaining C-nociceptors and that activated spinal microglia may direct to intensify pain in this model. Pain may be further amplified by reserpine-induced dysfunction of the descending pain inhibitory system and by the decrease in peripheral drive to this system resulting from a reduced proportion of mechanoresponsive C-nociceptors.
Collapse
|
15
|
Vascular endothelial growth factor-A165b prevents diabetic neuropathic pain and sensory neuronal degeneration. Clin Sci (Lond) 2015. [PMID: 26201024 DOI: 10.1042/cs20150124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic peripheral neuropathy affects up to half of diabetic patients. This neuronal damage leads to sensory disturbances, including allodynia and hyperalgesia. Many growth factors have been suggested as useful treatments for prevention of neurodegeneration, including the vascular endothelial growth factor (VEGF) family. VEGF-A is generated as two alternative splice variant families. The most widely studied isoform, VEGF-A165a is both pro-angiogenic and neuroprotective, but pro-nociceptive and increases vascular permeability in animal models. Streptozotocin (STZ)-induced diabetic rats develop both hyperglycaemia and many of the resulting diabetic complications seen in patients, including peripheral neuropathy. In the present study, we show that the anti-angiogenic VEGF-A splice variant, VEGF-A165b, is also a potential therapeutic for diabetic neuropathy. Seven weeks of VEGF-A165b treatment in diabetic rats reversed enhanced pain behaviour in multiple behavioural paradigms and was neuroprotective, reducing hyperglycaemia-induced activated caspase 3 (AC3) levels in sensory neuronal subsets, epidermal sensory nerve fibre loss and aberrant sciatic nerve morphology. Furthermore, VEGF-A165b inhibited a STZ-induced increase in Evans Blue extravasation in dorsal root ganglia (DRG), saphenous nerve and plantar skin of the hind paw. Increased transient receptor potential ankyrin 1 (TRPA1) channel activity is associated with the onset of diabetic neuropathy. VEGF-A165b also prevented hyperglycaemia-enhanced TRPA1 activity in an in vitro sensory neuronal cell line indicating a novel direct neuronal mechanism that could underlie the anti-nociceptive effect observed in vivo. These results demonstrate that in a model of Type I diabetes VEGF-A165b attenuates altered pain behaviour and prevents neuronal stress, possibly through an effect on TRPA1 activity.
Collapse
|
16
|
Zochodne DW. Diabetes and the plasticity of sensory neurons. Neurosci Lett 2015; 596:60-5. [DOI: 10.1016/j.neulet.2014.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
|
17
|
Anderson NJ, King MR, Delbruck L, Jolivalt CG. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice. Dis Model Mech 2014; 7:625-33. [PMID: 24764191 PMCID: PMC4036470 DOI: 10.1242/dmm.015750] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.
Collapse
Affiliation(s)
- Nicholas J Anderson
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew R King
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lina Delbruck
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Corinne G Jolivalt
- School of Medicine, Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Ariza L, Pagès G, García-Lareu B, Cobianchi S, Otaegui PJ, Ruberte J, Chillón M, Navarro X, Bosch A. Experimental diabetes in neonatal mice induces early peripheral sensorimotor neuropathy. Neuroscience 2014; 274:250-9. [PMID: 24846610 DOI: 10.1016/j.neuroscience.2014.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Animal models of diabetes do not reach the severity of human diabetic neuropathy but relatively mild neurophysiological deficits and minor morphometric changes. The lack of degenerative neuropathy in diabetic rodent models seems to be a consequence of the shorter length of the axons or the shorter animal life span. Diabetes-induced demyelination needs many weeks or even months before it can be evident by morphometrical analysis. In mice myelination of the peripheral nervous system starts at the prenatal period and it is complete several days after birth. Here we induced experimental diabetes to neonatal mice and we evaluated its effect on the peripheral nerve 4 and 8 weeks after diabetes induction. Neurophysiological values showed a decline in sensory nerve conduction velocity at both time-points. Morphometrical analysis of the tibial nerve demonstrated a decrease in the number of myelinated fibers, fiber size and myelin thickness at both time-points studied. Moreover, aldose reductase and poly(ADP-ribose) polymerase activities were increased even if the amount of the enzyme was not affected. Thus, type 1 diabetes in newborn mice induces early peripheral neuropathy and may be a good model to assay pharmacological or gene therapy strategies to treat diabetic neuropathy.
Collapse
Affiliation(s)
- L Ariza
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - G Pagès
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - B García-Lareu
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - S Cobianchi
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| | - P J Otaegui
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - J Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Department of Animal Health and Anatomy, Veterinary School, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - M Chillón
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - X Navarro
- Department of Cell Biology, Physiology and Immunology and Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| | - A Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
19
|
Xu X, Chen H, Ling BY, Xu L, Cao H, Zhang YQ. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes. Neurosci Bull 2014; 30:53-66. [PMID: 24194231 PMCID: PMC5562573 DOI: 10.1007/s12264-013-1387-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/03/2013] [Indexed: 12/28/2022] Open
Abstract
Painful peripheral neuropathy is a common complication of diabetes mellitus. The symptom of pain can become a major factor that decreases the quality of life of patients with diabetes, while effective treatment is lacking. In the present study, we aimed to investigate the changes of pain threshold in the early stage of diabetes in db/db mice, an animal model of type 2 diabetes mellitus, and the underlying molecular mechanisms. We found that (1) db/db mice (with a leptin receptor-null mutation and characterized by obesity and hyperglycemia) showed hypersensitivity to mechanical and thermal stimuli at the early stage of diabetes; (2) phosphorylated extracellular signal-regulated kinase (pERK), but not total ERK in the spinal cord and dorsal root ganglia in db/db mice significantly increased compared with wild-type mice. The increased pERK immunoreactivity occurred in both NeuN-expressing neurons and GFAP-expressing astrocytes, but not in Iba-1-expressing microglia; (3) both single and consecutive (for 5 days) intrathecal injections of U0126 (2 nmol per day), a selective MEK (an ERK kinase) inhibitor beginning at 8 weeks of age, attenuated the bilateral mechanical allodynia in the von-Frey test and heat hyperalgesia in Hargreave's test; and (4) db/db mice also displayed increased nocifensive behavior during the formalin test, and this was blocked by intrathecal injection of U0126. Also, the expression of pERK1 and pERK2 was upregulated following the formalin injection. Our results suggested that the activation of ERK in spinal neurons and astrocytes is correlated with pain hypersensitivity of the type 2 diabetes animal model. Inhibiting the ERK pathway may provide a new therapy for pain control in type 2 diabetes.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Hui Chen
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Bing-Yu Ling
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Lan Xu
- Department of Endocrinology, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| | - Hong Cao
- Institute of Neurobiology, Institutes of Brain Science, and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science, and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| |
Collapse
|
20
|
|
21
|
Lee-Kubli CA, Mixcoatl-Zecuatl T, Jolivalt CG, Calcutt NA. Animal models of diabetes-induced neuropathic pain. Curr Top Behav Neurosci 2014; 20:147-70. [PMID: 24510303 DOI: 10.1007/7854_2014_280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropathy will afflict over half of the approximately 350 million people worldwide who currently suffer from diabetes and around one-third of diabetic patients with neuropathy will suffer from painful symptoms that may be spontaneous or stimulus evoked. Diabetes can be induced in rats or mice by genetic, dietary, or chemical means, and there are a variety of well-characterized models of diabetic neuropathy that replicate either type 1 or type 2 diabetes. Diabetic rodents display aspects of sensorimotor dysfunction such as stimulus-evoked allodynia and hyperalgesia that are widely used to model painful neuropathy. This allows investigation of pathogenic mechanisms and development of potential therapeutic interventions that may alleviate established pain or prevent onset of pain.
Collapse
|
22
|
Dahlin E, Ekholm E, Gottsäter A, Speidel T, Dahlin LB. Impaired vibrotactile sense at low frequencies in fingers in autoantibody positive and negative diabetes. Diabetes Res Clin Pract 2013; 100:e46-50. [PMID: 23465366 DOI: 10.1016/j.diabres.2013.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
Vibration thresholds in index and little finger pulps in subjects with autoantibody [GADA, IA-2A and/or ICA] positive and negative diabetes 20 years after diagnosis were higher than in age-matched controls at low frequencies (8 and 16 Hz), irrespective of HbA1c values, indicating selective impairment of Meissner's corpuscles and/or their innervating axons.
Collapse
Affiliation(s)
- E Dahlin
- Department of Hand Surgery Malmö - Lund, Skåne University Hospital, Lund University, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Xie F, Fu H, Hou JF, Jiao K, Costigan M, Chen J. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats. PLoS One 2013; 8:e57427. [PMID: 23451227 PMCID: PMC3581455 DOI: 10.1371/journal.pone.0057427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/22/2013] [Indexed: 12/16/2022] Open
Abstract
To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, P. R. China
| | | | | | | | | | | |
Collapse
|
24
|
Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A 2012; 110:690-5. [PMID: 23267110 DOI: 10.1073/pnas.1220794110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication in both type 1 and type 2 diabetes. Here we studied some phenotypic features of a well-established animal model of type 2 diabetes, the leptin receptor-deficient db(-)/db(-) mouse, and also the effect of long-term (6 mo) treatment with coenzyme Q10 (CoQ10), an endogenous antioxidant. Diabetic mice at 8 mo of age exhibited loss of sensation, hypoalgesia (an increase in mechanical threshold), and decreases in mechanical hyperalgesia, cold allodynia, and sciatic nerve conduction velocity. All these changes were virtually completely absent after the 6-mo, daily CoQ10 treatment in db(-)/db(-) mice when started at 7 wk of age. There was a 33% neuronal loss in the lumbar 5 dorsal root ganglia (DRGs) of the db(-)/db(-) mouse versus controls at 8 mo of age, which was significantly attenuated by CoQ10. There was no difference in neuron number in 5/6-wk-old mice between diabetic and control mice. We observed a strong down-regulation of phospholipase C (PLC) β3 in the DRGs of diabetic mice at 8 mo of age, a key molecule in pain signaling, and this effect was also blocked by the 6-mo CoQ10 treatment. Many of the phenotypic, neurochemical regulations encountered in lumbar DRGs in standard models of peripheral nerve injury were not observed in diabetic mice at 8 mo of age. These results suggest that reactive oxygen species and reduced PLCβ3 expression may contribute to the sensory deficits in the late-stage diabetic db(-)/db(-) mouse, and that early long-term administration of the antioxidant CoQ10 may represent a promising therapeutic strategy for type 2 diabetes neuropathy.
Collapse
|
25
|
Louraki M, Karayianni C, Kanaka-Gantenbein C, Katsalouli M, Karavanaki K. Peripheral neuropathy in children with type 1 diabetes. DIABETES & METABOLISM 2012; 38:281-9. [DOI: 10.1016/j.diabet.2012.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/17/2022]
|
26
|
Hypertension-induced peripheral neuropathy and the combined effects of hypertension and diabetes on nerve structure and function in rats. Acta Neuropathol 2012; 124:561-73. [PMID: 22791295 DOI: 10.1007/s00401-012-1012-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 01/02/2023]
Abstract
Diabetic neuropathy includes damage to neurons, Schwann cells and blood vessels. Rodent models of diabetes do not adequately replicate all pathological features of diabetic neuropathy, particularly Schwann cell damage. We, therefore, tested the hypothesis that combining hypertension, a risk factor for neuropathy in diabetic patients, with insulin-deficient diabetes produces a more pertinent model of peripheral neuropathy. Behavioral, physiological and structural indices of neuropathy were measured for up to 6 months in spontaneously hypertensive and age-matched normotensive rats with or without concurrent streptozotocin-induced diabetes. Hypertensive rats developed nerve ischemia, thermal hyperalgesia, nerve conduction slowing and axonal atrophy. Thinly myelinated fibers with supernumerary Schwann cells indicative of cycles of demyelination and remyelination were also identified along with reduced nerve levels of myelin basic protein. Similar disorders were noted in streptozotocin-diabetic rats, except that thinly myelinated fibers were not observed and expression of myelin basic protein was normal. Superimposing diabetes on hypertension compounded disorders of nerve blood flow, conduction slowing and axonal atrophy and increased the incidence of thinly myelinated fibers. Rats with combined insulinopenia, hyperglycemia and hypertension provide a model for diabetic neuropathy that offers an opportunity to study mechanisms of Schwann cell pathology and suggests that hypertension may contribute to the etiology of diabetic neuropathy.
Collapse
|
27
|
Abstract
Peripheral neuropathies are common neurological diseases, and various animal models have been developed to study disease pathogenesis and test potential therapeutic drugs. Three commonly studied disease models with huge public health impact are diabetic peripheral neuropathy, chemotherapy-induced peripheral neuropathy, and human immunodeficiency virus-associated sensory neuropathies. A common theme in these animal models is the comprehensive use of pathological, electrophysiological, and behavioral outcome measures that mimic the human disease. In recent years, the focus has shifted to the use of outcome measures that are also available in clinical use and can be done in a blinded and quantitative manner. One such evaluation tool is the evaluation of epidermal innervation with a simple skin biopsy. Future clinical trials will be needed to validate the translational usefulness of this outcome measure and validation against accepted outcome measures that rely on clinical symptoms or examination findings in patients.
Collapse
Affiliation(s)
- Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Hyperinsulinemia induces hypertension associated with neurogenic vascular dysfunction resulting from abnormal perivascular innervations in rat mesenteric resistance arteries. Hypertens Res 2011; 34:1190-6. [DOI: 10.1038/hr.2011.97] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Gong YH, Yu XR, Liu HL, Yang N, Zuo PP, Huang YG. Antinociceptive effects of combination of tramadol and acetaminophen on painful diabetic neuropathy in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2011; 49:16-20. [PMID: 21453898 DOI: 10.1016/j.aat.2011.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The purpose of this study was to establish the streptozotocin (STZ)-induced diabetic model with rats and investigate the antinociceptive effect of combination of Tramadol (TR) and Acetaminophen (NAPA) on the animal model for the first time. METHODS Diabetic model was induced by a single injection of STZ (60 mg/kg, intraperitoneal). Nociceptive thresholds were measured by means of electronic von Frey test, hot-plate test, and tail-flick test. On the 28th day of diabetes induction, diabetic rats with significant hyperalgesia were randomly divided into three groups: TR, NAPA, and TR-NAPA combination group. Each group was randomly divided into four subgroups. Three geometric series of drugs were given to each group respectively. Antinociceptive effects of the drugs were assessed at 15, 30, 60, 120, and 180 minutes after drug administration. 50% Maximum antinociceptive effect of each drug was determined by probit analysis, whereas interaction between TR and NAPA was evaluated by isobolographic analysis. RESULTS Hyperalgesia, along with hyperglycemia, developed 4 days after STZ injection and persisted at all tested time points until 28 days. TR, NAPA, and TR-NAPA combination administration all produced dose-dependent antinociceptive effects. Isobolographic analysis showed a significant deviation of TR/NAPA 50% maximum antinociceptive effect (in tail-flick test, but not in von Frey test) from the additive line. CONCLUSIONS Combination of the two drugs produces an additive antinociceptive effect in tail-flick test, whereas probable additive antinociceptive effect in von Frey test in painful diabetic neuropathy rats.
Collapse
Affiliation(s)
- Ya-Hong Gong
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Rondón LJ, Privat AM, Daulhac L, Davin N, Mazur A, Fialip J, Eschalier A, Courteix C. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J Physiol 2011; 588:4205-15. [PMID: 20837644 DOI: 10.1113/jphysiol.2010.197004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain is a common diabetic complication affecting 8-16% of diabetic patients. It is characterized by aberrant symptoms of spontaneous and stimulus-evoked pain including hyperalgesia and allodynia. Magnesium (Mg) deficiency has been proposed as a factor in the pathogenesis of diabetes-related complications, including neuropathy. In the central nervous system, Mg is also a voltage-dependent blocker of the N-methyl-d-aspartate receptor channels involved in abnormal processing of sensory information. We hypothesized that Mg deficiency might contribute to the development of neuropathic pain and the worsening of clinical and biological signs of diabetes and consequently, that Mg administration could prevent or improve its complications. We examined the effects of oral Mg supplementation (296 mg l(-1) in drinking water for 3 weeks) on the development of neuropathic pain and on biological and clinical parameters of diabetes in streptozocin (STZ)-induced diabetic rats. STZ administration induced typical symptoms of type 1 diabetes. The diabetic rats also displayed mechanical hypersensitivity and tactile and thermal allodynia. The level of phosphorylated NMDA receptor NR1 subunit (pNR1) was higher in the spinal dorsal horn of diabetic hyperalgesic/allodynic rats. Magnesium supplementation failed to reduce hyperglycaemia, polyphagia and hypermagnesiuria, or to restore intracellular Mg levels and body growth, but increased insulinaemia and reduced polydipsia. Moreover, it abolished thermal and tactile allodynia, delayed the development of mechanical hypersensitivity, and prevented the increase in spinal cord dorsal horn pNR1. Thus, neuropathic pain symptoms can be attenuated by targeting the Mg-mediated blockade of NMDA receptors, offering new therapeutic opportunities for the management of chronic neuropathic pain.
Collapse
Affiliation(s)
- L J Rondón
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Otto KJ, Wyse BD, Cabot PJ, Smith MT. Longitudinal Study of Painful Diabetic Neuropathy in the Zucker Diabetic Fatty Rat Model of Type 2 Diabetes: Impaired Basal G-Protein Activity Appears to Underpin Marked Morphine Hyposensitivity at 6 Months. PAIN MEDICINE 2011; 12:437-50. [DOI: 10.1111/j.1526-4637.2011.01067.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
|
33
|
Dobretsov M, Backonja MM, Romanovsky D, Stimers JR. Animal Models of Diabetic Neuropathic Pain. ANIMAL MODELS OF PAIN 2011. [DOI: 10.1007/978-1-60761-880-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Wen XY, Hu QJ, Wang F. [Amelioration effect of Zhenqing Capsule on peripheral neuropathy in type 1 diabetic rats]. ACTA ACUST UNITED AC 2010; 6:289-93. [PMID: 18334151 DOI: 10.3736/jcim20080314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effects of Zhenqing Capsule (ZQC), a compound traditional Chinese herbal medicine, in treating type 1 diabetic rats with peripheral neuropathy. METHODS Type 1 diabetes was induced by caudal vein injection of high-dose streptozotocin in 30 male Wistar rats. The thirty diabetic rats were randomly divided into three groups: ZQC-treated group, untreated group and aminoguanidine-treated group. Another group of 10 rats was taken as normal control. After 10-week treatment, the changes of body weight and fasting plasma glucose level were measured, and the serum MDA level and the changes of neurological electrophysiology were analyzed. The samples of sciatic nerve in diabetic rats were taken for morphological observation. RESULTS The MDA level in type 1 diabetic rats was notably reduced in ZQC-treated group as compared with the untreated group (P<0.01). Compared with the untreated group, ZQC could improve the electrophysiology of sciatic nerve including conduction velocity (P<0.05), latency (P<0.01) and wave amplitude (P<0.05). The nerve myelin staining results showed that segmental demyelination of the nerve fibers in ZQC-treated group was not as serious as that in the untreated group. CONCLUSION ZQC can obviously ameliorate the neurological electrophysiological function and the pathological changes of peripheral nerve in type 1 diabetic rats through the removal of free radical and resistance of lipid peroxidation.
Collapse
Affiliation(s)
- Xiu-ying Wen
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province 430077, China.
| | | | | |
Collapse
|
35
|
Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 2009; 68:1229-43. [PMID: 19816194 DOI: 10.1097/nen.0b013e3181bef710] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
C57BLKS db/db (db/db) mice develop a neuropathy with features of human type 2 diabetic neuropathy. Here, we demonstrate that these mice develop transient mechanical allodynia at the early stage of diabetes. We hypothesized that nerve growth factor (NGF), which enhances the expression of key mediators of nociception (i.e. substance P [SP] and calcitonin gene-related peptide), contributes to the development of mechanical allodynia in these mice. We found that NGF, SP, and calcitonin gene-related peptide gene expression is upregulated in the dorsal root ganglion (DRG) of db/db mice before or during the period that they develop mechanical allodynia. There were more small- to medium-sized NGF-immunopositive DRG neurons in db/db mice than in control db+ mice; these neurons also expressed SP, consistent with its role in nociception. Nerve growth factor expression in the hind paw skin was also increased in a variety of dermal cell types and nerve fibers, suggesting the contribution of a peripheral source of NGF to mechanical allodynia. The upregulation of NGF coincided with enhanced tropomyosin-related kinase A receptor phosphorylation in the DRG. Finally, an antibody against NGF inhibited mechanical allodynia and decreased the numbers of SP-positive DRG neurons in db/db mice. These results suggest that inhibition of NGF action is a potential strategy for treating painful diabetic neuropathy.
Collapse
|
36
|
Kamiya H, Zhang W, Sima AAF. The beneficial effects of C-Peptide on diabetic polyneuropathy. Rev Diabet Stud 2009; 6:187-202. [PMID: 20039008 DOI: 10.1900/rds.2009.6.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is a common complication in diabetes. At present, there is no adequate treatment, and DPN is often debilitating for patients. It is a heterogeneous disorder and differs in type 1 and type 2 diabetes. An important underlying factor in type 1 DPN is insulin deficiency. Proinsulin C-peptide is a critical element in the cascade of events. In this review, we describe the physiological role of C-peptide and how it provides an insulin-like signaling function. Such effects translate into beneficial outcomes in early metabolic perturbations of neural Na+/K+-ATPase and nitric oxide (NO) with subsequent preventive effects on early nerve dysfunction. Further corrective consequences resulting from this signaling cascade have beneficial effects on gene regulation of early gene responses, neurotrophic factors, their receptors, and the insulin receptor itself. This may lead to preventive and corrective results to nerve fiber degeneration and loss, as well as, promotion of nerve fiber regeneration with respect to sensory somatic fibers and small nociceptive nerve fibers. A characteristic abnormality of type 1 DPN is nodal and paranodal degeneration with severe consequences for myelinated fiber function. This review deals in detail with the underlying insulin-deficiency-related molecular changes and their correction by C-peptide. Based on these observations, it is evident that continuous maintenance of insulin-like actions by C-peptide is needed in peripheral nerve to minimize the sequences of metabolic and molecular abnormalities, thereby ameliorating neuropathic complications. There is now ample evidence demonstrating that C-peptide replacement in type 1 diabetes promotes insulin action and signaling activities in a more enhanced, prolonged, and continuous fashion than does insulin alone. It is therefore necessary to replace C-peptide to physiological levels in diabetic patients. This will have substantial beneficial effects on type 1 DPN.
Collapse
Affiliation(s)
- Hideki Kamiya
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | | | | |
Collapse
|
37
|
Dynamic changes of neuroskeletal proteins in DRGs underlie impaired axonal maturation and progressive axonal degeneration in type 1 diabetes. EXPERIMENTAL DIABETES RESEARCH 2009; 2009:793281. [PMID: 19834568 PMCID: PMC2761046 DOI: 10.1155/2009/793281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022]
Abstract
We investigated mechanisms underlying progressive axonal dysfunction and structural deficits in type 1 BB/Wor-rats from 1 week to 10 month diabetes duration. Motor and sensory conduction velocities were decreased after 4 and 6 weeks of diabetes and declined further over the remaining 9 months. Myelinated sural nerve fibers showed progressive deficits in fiber numbers and sizes. Structural deficits in unmyelinated axonal size were evident at 2 month and deficits in number were present at 4 mo. These changes were preceded by decreased availability of insulin, C-peptide and IGF-1 and decreased expression of neurofilaments and β-III-tubulin. Upregulation of phosphorylating stress kinases like Cdk5, p-GSK-3β, and p42/44 resulted in increased phosphorylation of neurofilaments. Increasing activity of p-GSK-3β correlated with increasing phosphorylation of NFH, whereas decreasing Cdk5 correlated with diminishing phosphorylation of NFM. The data suggest that impaired neurotrophic support results in sequentially impaired synthesis and postranslational modifications of neuroskeletal proteins, resulting in progressive deficits in axonal function, maturation and size.
Collapse
|
38
|
Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 2009; 6:638-47. [PMID: 19789069 PMCID: PMC5084286 DOI: 10.1016/j.nurt.2009.07.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 07/09/2009] [Indexed: 12/31/2022] Open
Abstract
Advanced peripheral diabetic neuropathy (PDN) is associated with elevated vibration and thermal perception thresholds that progress to sensory loss and degeneration of all fiber types in peripheral nerve. A considerable proportion of diabetic patients also describe abnormal sensations such as paresthesias, allodynia, hyperalgesia, and spontaneous pain. One or several manifestations of abnormal sensation and pain are described in all the diabetic rat and mouse models studied so far (i.e., streptozotocin-diabetic rats and mice, type 1 insulinopenic BB/Wor and type 2 hyperinsulinemic diabetic BBZDR/Wor rats, Zucker diabetic fatty rats, and nonobese diabetic, Akita, leptin- and leptin-receptor-deficient, and high-fat diet-fed mice). Such manifestations are 1) thermal hyperalgesia, an equivalent of a clinical phenomenon described in early PDN; 2) thermal hypoalgesia, typically present in advanced PDN; 3) mechanical hyperalgesia, an equivalent of pain on pressure in early PDN; 4) mechanical hypoalgesia, an equivalent to the loss of sensitivity to mechanical noxious stimuli in advanced PDN; 5) tactile allodynia, a painful perception of a light touch; and 5) formalin-induced hyperalgesia. Rats with short-term diabetes develop painful neuropathy, whereas those with longer-term diabetes and diabetic mice typically display manifestations of both painful and insensate neuropathy, or insensate neuropathy only. Animal studies using pharmacological and genetic approaches revealed important roles of increased aldose reductase, protein kinase C, and poly(ADP-ribose) polymerase activities, advanced glycation end-products and their receptors, oxidative-nitrosative stress, growth factor imbalances, and C-peptide deficiency in both painful and insensate neuropathy. This review describes recent achievements in studying the pathogenesis of diabetic neuropathic pain and sensory disorders in diabetic animal models and developing potential pathogenetic treatments.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA.
| |
Collapse
|
39
|
Okada SI, Saito M, Kinoshita Y, Satoh I, Kazuyama E, Hayashi A, Satoh K, Kanzaki S. Characterization of the ileal muscarinic receptor system in 70-week-old type II Goto–Kakizaki diabetic rats; effects of cyclohexenonic long-chain fatty alcohol. Eur J Pharmacol 2009; 611:72-6. [DOI: 10.1016/j.ejphar.2009.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/04/2009] [Accepted: 03/15/2009] [Indexed: 11/25/2022]
|
40
|
Time course of pain sensation in rat models of insulin resistance, type 2 diabetes, and exogenous hyperinsulinaemia. Diabetes Metab Res Rev 2009; 24:642-50. [PMID: 18973207 DOI: 10.1002/dmrr.903] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Small sensory fibre dysfunction has been recently recognized as a component of impaired glucose tolerance and insulin resistance (IR) syndrome. However, few studies have investigated whether small sensory fibre dysfunction develops in normoglycaemic or pre-diabetic animal models of IR and/or hyperinsulinaemia. In addition, scant information is available on the metabolic features of IR in relation to small sensory fibre dysfunction due to the progressive failure of beta cells to compensate for IR during the development of frank diabetes. METHODS Longitudinal trends for thermal and mechanical nociceptive responses were assessed in 8-36-week-old male obese Zucker rats, 8-36-week-old male Zucker diabetic fatty (ZDF) rats, and 10-39-week-old male Wistar rats that continued to receive exogenous insulin (2-4 U/day) from subcutaneously implanted insulin pellets. Data were compared with the metabolic disorders in these rats. RESULTS Both obese Zucker and ZDF rats at 8 weeks of age showed compensatory hyperinsulinaemia and developed thermal hyperalgesia prior to the onset of overt hyperglycaemia. These animals also exhibited progression from thermal hyperalgesia to hypoalgesia, which occurred more rapidly and coincided with a more rapid decline in pancreatic insulin secretion in ZDF rats than in obese Zucker rats. Non-diabetic rats treated with insulin tended to show thermal and mechanical hypoalgesia that was detectable 12-20 weeks after treatment. CONCLUSION In addition to insulin treatment, IR with or without compensatory hyperinsulinaemia is associated with nociceptive dysfunction of different phenotypes, independent of glycaemic levels.
Collapse
|
41
|
Qin C, Ghorbani MLM, Wu M, Farber JP, Ma J, Foreman RD. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats. Auton Neurosci 2009; 145:27-34. [PMID: 19027368 PMCID: PMC2658770 DOI: 10.1016/j.autneu.2008.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 10/10/2008] [Indexed: 01/11/2023]
Abstract
The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats as control. Four to eleven weeks after injections, extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated rats. Esophageal distensions (ED, 0.2, 0.4 ml, 20 s) were produced by water inflation of a latex balloon in the thoracic esophagus. Noxious ED (0.4 ml, 20 s) altered activity of 44% (55/126) and 38% (50/132) of spinal neurons in diabetic and control rats, respectively. The short-lasting excitatory responses to ED were encountered more frequently in diabetic rats (27/42 vs 15/41, P<0.05). Spinal neurons with low threshold for excitatory responses to ED were more frequently encountered in diabetic rats (33/42 vs 23/41, P<0.05). However, mean excitatory responses and duration of responses to noxious ED were significantly reduced for high-threshold neurons in diabetic rats (7.4+/-1.1 vs 13.9+/-3.3 imp/s; 19.0+/-2.3 vs 31.2+/-5.5 s; P<0.05). In addition, more large size somatic receptive fields were found for spinal neurons with esophageal input in diabetic rats than in control rats (28/42 vs 19/45, P<0.05). These results suggested that diabetes influenced response characteristics of thoracic spinal neurons receiving mechanical esophageal input, which might indicate an altered spinal visceroceptive processing underlying diabetic esophageal neuropathy.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Edwards JL, Vincent A, Cheng T, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacol Ther 2008; 120:1-34. [PMID: 18616962 PMCID: PMC4007052 DOI: 10.1016/j.pharmthera.2008.05.005] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 02/07/2023]
Abstract
Neuropathy is the most common and debilitating complication of diabetes and results in pain, decreased motility, and amputation. Diabetic neuropathy encompasses a variety of forms whose impact ranges from discomfort to death. Hyperglycemia induces oxidative stress in diabetic neurons and results in activation of multiple biochemical pathways. These activated pathways are a major source of damage and are potential therapeutic targets in diabetic neuropathy. Though therapies are available to alleviate the symptoms of diabetic neuropathy, few options are available to eliminate the root causes. The immense physical, psychological, and economic cost of diabetic neuropathy underscore the need for causally targeted therapies. This review covers the pathology, epidemiology, biochemical pathways, and prevention of diabetic neuropathy, as well as discusses current symptomatic and causal therapies and novel approaches to identify therapeutic targets.
Collapse
Affiliation(s)
- James L. Edwards
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| | - Andrea Vincent
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| | - Thomas Cheng
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| | - Eva L. Feldman
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| |
Collapse
|
43
|
Fricker B, Muller A, René F. Evaluation Tools and Animal Models of Peripheral Neuropathies. NEURODEGENER DIS 2008; 5:72-108. [DOI: 10.1159/000112835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022] Open
|
44
|
Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Lund DD, Adebara ET, Yorek MA. Vascular and neural dysfunction in Zucker diabetic fatty rats: a difficult condition to reverse. Diabetes Obes Metab 2008; 10:64-74. [PMID: 17970755 DOI: 10.1111/j.1463-1326.2007.00814.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM We had previously demonstrated that vascular and neural dysfunction in Zucker diabetic fatty (ZDF) rats is progressive. In this study, we sought to determine whether monotherapy of ZDF rats can reverse the vascular and nerve defects. METHODS ZDF rats at 16 weeks of age were treated for 12 weeks with the angiotensin-converting enzyme inhibitor enalapril, the antioxidant alpha-lipoic acid, the HMG-CoA reductase inhibitor rosuvastatin or the PPARgamma agonist rosiglitazone. Vasodilation of epineurial arterioles was measured by videomicroscopy. Endoneurial blood flow (EBF) was measured by hydrogen clearance, and nerve conduction velocity was measured following electrical stimulation of motor or sensory nerves. RESULTS Motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV) (70 and 77% of control, respectively), EBF (64% of control), and vascular relaxation in response to acetylcholine (50% of control) and calcitonin gene-related peptide (CGRP; 73% of control) are impaired in ZDF rats at 28 weeks of age compared with lean littermate controls. Treatment with enalapril and alpha-lipoic acid attenuated the decrease in MNCV and SNCV. Enalapril, alpha-lipoic acid and rosiglitazone treatment of ZDF rats were partially effective in improving endothelium-dependent vascular dysfunction as measured by vascular relaxation in response to acetylcholine. The same drugs also attenuated the decrease in EBF. However, impairment in vascular relaxation in response to CGRP was improved with only alpha-lipoic acid or rosuvastatin treatment. The increase in superoxide and nitrotyrosine levels in vascular tissue was attenuated by all treatments. CONCLUSIONS The efficacy of monotherapy treatment of ZDF rats using different classes of drugs for vascular and neural dysfunction once complications have developed did not achieve expected levels. This could be because of the complex aetiology of vascular and neural disease in type 2 diabetes.
Collapse
Affiliation(s)
- C L Oltman
- Veteran Affairs Medical Center, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sima AAF, Zhang W, Li ZG, Kamiya H. The effects of C-peptide on type 1 diabetic polyneuropathies and encephalopathy in the BB/Wor-rat. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:230458. [PMID: 18437223 PMCID: PMC2323445 DOI: 10.1155/2008/230458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 01/07/2008] [Indexed: 12/29/2022]
Abstract
Diabetic polyneuropathy (DPN) occurs more frequently in type 1 diabetes resulting in a more severe DPN. The differences in DPN between the two types of diabetes are due to differences in the availability of insulin and C-peptide. Insulin and C-peptide provide gene regulatory effects on neurotrophic factors with effects on axonal cytoskeletal proteins and nerve fiber integrity. A significant abnormality in type 1 DPN is nodal degeneration. In the type 1 BB/Wor-rat, C-peptide replacement corrects metabolic abnormalities ameliorating the acute nerve conduction defect. It corrects abnormalities of neurotrophic factors and the expression of neuroskeletal proteins with improvements of axonal size and function. C-peptide corrects the expression of nodal adhesive molecules with prevention and repair of the functionally significant nodal degeneration. Cognitive dysfunction is a recognized complication of type 1 diabetes, and is associated with impaired neurotrophic support and apoptotic neuronal loss. C-peptide prevents hippocampal apoptosis and cognitive deficits. It is therefore clear that substitution of C-peptide in type 1 diabetes has a multitude of effects on DPN and cognitive dysfunction. Here the effects of C-peptide replenishment will be extensively described as they pertain to DPN and diabetic encephalopathy, underpinning its beneficial effects on neurological complications in type 1 diabetes.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
46
|
Sugimoto K, Rashid IB, Shoji M, Suda T, Yasujima M. Early changes in insulin receptor signaling and pain sensation in streptozotocin-induced diabetic neuropathy in rats. THE JOURNAL OF PAIN 2007; 9:237-45. [PMID: 18331706 DOI: 10.1016/j.jpain.2007.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED The objective of the present study was to evaluate the time course of changes in peripheral nerve insulin receptor (IR) signaling and compare observed findings with behavioral responses to noxious mechanical and thermal stimuli in streptozotocin (STZ)-diabetic rats over 12 weeks of diabetes. Diabetic rats developed mechanical hyperalgesia, as indicated by decreased paw withdrawal thresholds to mechanical stimuli that were detectable after 2 weeks of diabetes; they also developed thermal hypoalgesia, as indicated by increased tail flick latencies to thermal stimuli that were detectable at 1 week of diabetes. Western blot analysis revealed decreased phosphorylated: total IR protein ratio that was detectable as early as 2 weeks of diabetes, whereas phosphorylated:total Akt protein ratio was decreased at 2 weeks and increased at 12 weeks of diabetes with unchanged PI-3K protein levels. To our knowledge, the present study is the first to demonstrate that impaired peripheral nerve IR signaling, as indicated by decreased phosphorylated:total IR protein ratio, coincides with early mechanical hyperalgesia and thermal hypoalgesia in STZ-diabetic rats. This finding may improve understanding of how altered pain sensation develops rapidly in this model. PERSPECTIVE This study examined peripheral nerve IR signaling during the early course of altered nociception in STZ-diabetic rats. In diabetic rats, impaired peripheral nerve IR signaling is observed shortly after STZ injection, as is altered nociception. This finding suggests a possible role of impaired IR signaling in diabetic sensory neuropathy.
Collapse
Affiliation(s)
- Kazuhiro Sugimoto
- Department of Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Recent advances in understanding the pain associated with diabetic neuropathy are likely to provide significant mechanistic insights and offer better therapies. In clinical research, new tools for measuring neuropathic pain and validation of histologic and other biomarkers will provide the foundation for research advances, and new clinical trial designs will allow better discrimination of beneficial treatments and may reveal underlying pathogenic mechanisms. Ongoing refinement of relevant animal models and assays to more accurately reflect the clinical condition will improve evaluation of novel pharmacologic approaches while dissecting peripheral versus central effects of diabetes on pain pathways will provide a more complete picture of the pathophysiologic mechanisms. Such multidisciplinary work may soon allow physicians to offer improved therapeutic options to patients suffering this distressing condition.
Collapse
Affiliation(s)
- Nigel A Calcutt
- Department of Neurology, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | | |
Collapse
|
48
|
Abstract
Diabetic polyneuropathy (DPN) is the most common late complication of diabetes mellitus. The underlying pathogenesis is multifaceted, with partly interrelated mechanisms that display a dynamic course. The mechanisms underlying DPN in type 1 and type 2 diabetes mellitus show overlaps or may differ. The differences are mainly due to insulin deficiency in type 1 diabetes which exacerbates the abnormalities caused by hyperglycaemia. Experimental DPN in rat models have identified early metabolic abnormalities with consequences for nerve conduction velocities and endoneurial blood flow. When corrected, the early functional deficits are usually normalised. On the other hand, if not corrected, they lead to abnormalities in lipid peroxidation and expression of neurotrophic factors which in turn result in axonal, nodal and paranodal degenerative changes with worsening of nerve function. As the structural changes progress, they become increasingly less amendable to metabolic interventions. In the past several years, experimental drugs--such as aldose reductase inhibitors, antioxidants and protein kinase C inhibitors--have undergone clinical trials, with disappointing outcomes. These drugs, targeting a single underlying pathogenetic factor, have in most cases been initiated at the advanced stage of DPN. In contrast, substitution of acetyl-L-carnitine (ALC) or C-peptide in type 1 DPN target a multitude of underlying mechanisms and are therefore more likely to be effective on a broader spectrum of the underlying pathogenesis. Clinical trials utilising ALC have shown beneficial effects on nerve conduction slowing, neuropathic pain, axonal degenerative changes and nerve fibre regeneration, despite relatively late initiation in the natural history of DPN. Owing to the good safety profile of ALC, early initiation of ALC therapy would be justified, with potentially greater benefits.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University and Detroit Medical Center, Detroit, Michigan 48201, USA.
| |
Collapse
|
49
|
Vareniuk I, Pavlov IA, Drel VR, Lyzogubov VV, Ilnytska O, Bell SR, Tibrewala J, Groves JT, Obrosova IG. Nitrosative stress and peripheral diabetic neuropathy in leptin-deficient (ob/ob) mice. Exp Neurol 2007; 205:425-36. [PMID: 17475250 DOI: 10.1016/j.expneurol.2007.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 12/13/2022]
Abstract
Nitrosative stress contributes to nerve conduction slowing, thermal hypoalgesia, and impaired nitrergic innervation in animal models of Type 1 diabetes. The role for reactive nitrogen species in Type 2 diabetes-associated neuropathy remains unexplored. This study evaluated the role for nitrosative stress in functional and structural neuropathic changes in ob/ob mice, a model of Type 2 diabetes with mild hyperglycemia and obesity. Two structurally diverse peroxynitrite decomposition catalysts, Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether)-pyridyl porphyrin (FP15) and Fe(III) tetra-mesitylporphyrin octasulfonate (FeTMPS), were administered to control and 8-week-old ob/ob mice for 3 weeks at the doses of 5 mg kg(-1) day(-1) (FP15) and 5 and 10 mg kg(-1) day(-1) (FeTMPS). The 11-week-old ob/ob mice developed motor nerve conduction velocity (MNCV) and hind-limb digital sensory nerve conduction velocity (SNCV) deficits, thermal hypoalgesia, tactile allodynia, and a remarkable ( approximately 78%) loss of intraepidermal nerve fibers. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve, spinal cord, and dorsal root ganglion neurons. Treatment with two structurally diverse peroxynitrite decomposition catalysts was associated with restoration of normal MNCV and SNCV, and alleviation of thermal hypoalgesia. Tactile response thresholds increased in response to peroxynitrite decomposition catalyst treatment, but still remained approximately 2.7- to 3.2-fold lower compared with non-diabetic controls. Intraepidermal nerve fiber loss was not alleviated by either FP15 or FeTMPS. Nitrotyrosine and poly(ADP-ribose) immunofluorescence in sciatic nerve, spinal cord, and dorsal root ganglia of peroxynitrite decomposition catalyst-treated ob/ob mice were essentially normal. In conclusion, nitrosative stress plays an important role in functional abnormalities associated with large motor, large sensory, and small sensory fiber neuropathy, but not in small sensory nerve fiber degeneration, in this animal model. Peroxynitrite decomposition catalysts alleviate Type 2 diabetes-associated sensory nerve dysfunction, likely by mechanism(s) not involving arrest of degenerative changes or enhanced regeneration of small sensory nerve fibers.
Collapse
Affiliation(s)
- Igor Vareniuk
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
In this article we describe differences in early metabolic abnormalities between type 1 and type 2 diabetic polyneuropathy (DPN), and how these differences lead to milder initial functional defects in type 2 diabetes, despite the same hyperglycemic exposures. This early reversible metabolic phase is progressively overshadowed by structural degenerative changes eventually resulting in nerve fiber loss. In comparison, the late structural phase of DPN affects type 1 diabetes more severely. Progressive axonal atrophy and loss is hence expressed to a larger extent in type 1 diabetes. In addition, type 1 DPN is characterized by paranodal degenerative changes not seen in type 2 DPN. These differences can be related to the differences in insulin action and signal transduction affecting the expression of neurotrophic factors and their receptors in type 1 diabetes. Downstream effects on neuroskeletal and adhesive proteins, their posttranslational modifications, and nociceptive peptides underlie the more severe resultant pathology in type 1 DPN. These differences in underlying mechanisms should be seriously considered in the future design of interventional paradigms to combat these common conditions.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University, 540 E. Canfield Ave. Detroit, MI 48201, USA.
| | | |
Collapse
|