1
|
Choudhury SR, Byrum SD, Blossom SJ. Trichloroethylene metabolite modulates DNA methylation-dependent gene expression in Th1-polarized CD4+ T cells from autoimmune-prone mice. Toxicol Sci 2024; 199:289-300. [PMID: 38518092 PMCID: PMC11131021 DOI: 10.1093/toxsci/kfae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Division of Hematology/Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
- Arkansas Children’s Research Institute, Department of Pediatrics, Little Rock, Arkansas 72202, USA
| | - Stephanie D Byrum
- Arkansas Children’s Research Institute, Department of Pediatrics, Little Rock, Arkansas 72202, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Sarah J Blossom
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
2
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Blossom SJ, Cabanlong CV, Vyas KK. Developmental trichloroethylene exposure enhances predictive markers of autoimmunity in a sex-specific manner in disease-resistant female mice. Toxicol Appl Pharmacol 2022; 454:116233. [PMID: 36096280 DOI: 10.1016/j.taap.2022.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Trichloroethylene (TCE) is a widely used industrial chemical and common environmental pollutant. Exposure to TCE promotes CD4+ T cell-driven autoimmunity including autoimmune hepatitis (AIH) in both humans and female autoimmune-prone mice. Because the developing immune system is more sensitive during development, we predicted that non- autoimmune-prone, C57/Bl6 (B6) mice would exhibit some autoimmune-related changes using the Developmental Origins of Health and Disease (DOHaD) model of exposure. Both male and female mice were exposed to vehicle or an environmentally relevant dose of 5 μg/ml TCE (0.9 mg/kg/day) beginning at 2 weeks pre-conception and ending at weaning. CD4+ T cells were assessed for phenotypic markers by flow cytometry. An assessment of cytokines elicited ex vivo after 4d polarization from naïve to CD4+ T helper subsets (i.e., Th1, Th17, and T reg) was conducted. mRNA expression of liver genes associated with inflammation, regeneration/repair associated with AIH disease progression in autoimmune-prone mice were evaluated by qRT-PCR. The results demonstrated TCE's ability to induce autoimmune- related biomarkers in B6 mice to an even greater degree in females compared to males when exposed during development.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - Christian V Cabanlong
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, USA
| |
Collapse
|
4
|
Blossom SJ, Gokulan K, Arnold M, Khare S. Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice. Front Pharmacol 2020; 11:569008. [PMID: 33250767 PMCID: PMC7673404 DOI: 10.3389/fphar.2020.569008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increasing in males, and occupational studies have shown that TCE-mediated hypersensitivity responses occur just as often in males. Previous experimental studies in autoimmune-prone MRL+/+ mice have focused on responses in females. However, it is important to include both males and females in order to better understand sex-disparity in autoimmune disease. In addition, because of an alarming increase in autoimmunity in adolescents, developmental and/or early life exposures to immune-enhancing environmental pollutants should also be considered. Using MRL+/+ mice, we hypothesized that TCE would alter markers related to autoimmunity to a greater degree in female mice relative to male mice, and that TCE would enhance these effects. Mice were continuously exposed to either TCE or vehicle beginning at gestation, continuing during lactation, and directly in the drinking water. Both male and female offspring were evaluated at 7 weeks of age. Sex-specific effects were evident. Female mice were more likely than males to show enhanced CD4+ T cell cytokine responses (e.g., IL-4 and IFN-γ). Although none of the animals developed pathological or serological signs of autoimmune hepatitis-like disease, TCE-exposed female mice were more likely than males in either group to express higher levels of biomarkers in the liver related to regeneration/repair and proliferation. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure and were more prominent in females as compared to males. Thus, our expectations were correct in that young adult female mice developmentally exposed to TCE were more likely to exhibit alterations in immunological and gut/liver endpoints compared to male mice.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Matthew Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
5
|
Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). PLoS One 2017; 12:e0174840. [PMID: 28380011 PMCID: PMC5381877 DOI: 10.1371/journal.pone.0174840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Type 1 diabetes (TID) is characterized by a loss of pancreatic islet beta cell function resulting in loss of insulin production. Genetic and environmental factors may trigger immune responses targeting beta cells thus generating islet antibodies (IA). Immune response pathways involve a cascade of events, initiated by cytokines and chemokines, producing inflammation which can result in tissue damage. Methods A nested case-control study was performed to identify temporal changes in cytokine levels in 75 DAISY subjects: 25 diagnosed T1D, 25 persistent IA, and 25 controls. Serum samples were selected at four time points: (T1) earliest, (T2) just prior to IA, (T3) just after IA, and (T4) prior to T1D diagnosis or most recent. Cytokines (IFN-α2a, IL-6, IL-17, IL-1β, IP-10, MCP-1, IFN-γ, IL-1α, and IL-1ra) were measured using the Meso Scale Discovery system Human Custom Cytokine 9-Plex assay. Results Multivariate mixed models adjusting for HLA risk, first-degree relative status, age, and gender, showed MCP-1 and IFN-үto be significantly higher at T3 in T1D compared to IA subjects. At T4, IP-10 was significantly higher in IA subjects than controls. Conclusions This repeated measures nested case-control study identified increased inflammatory markers in IA children who developed T1D compared to IA children who had not progressed to clinical disease. It also showed increased inflammation in both T1D and IA children when compared to controls. Results suggest inflammation may be related to both the development of IA and progression to T1D.
Collapse
|
6
|
Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes. PLoS One 2015; 10:e0142976. [PMID: 26636339 PMCID: PMC4670260 DOI: 10.1371/journal.pone.0142976] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.
Collapse
|
7
|
Stechova K, Kolar M, Blatny R, Halbhuber Z, Vcelakova J, Hubackova M, Petruzelkova L, Sumnik Z, Obermannova B, Pithova P, Stavikova V, Krivjanska M, Neuwirth A, Kolouskova S, Filipp D. Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scand J Immunol 2015; 75:210-9. [PMID: 21923738 DOI: 10.1111/j.1365-3083.2011.02637.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression features of genetic landscape which predispose an individual to the type 1 diabetes are poorly understood. We addressed this question by comparing gene expression profile of freshly isolated peripheral blood mononuclear cells isolated from either patients with type 1 diabetes (T1D), or their first-degree relatives or healthy controls. Our aim was to establish whether a distinct type of 'prodiabetogenic' gene expression pattern in the group of relatives of patients with T1D could be identified. Whole-genome expression profile of nine patients with T1D, their ten first-degree relatives and ten healthy controls was analysed using the human high-density expression microarray chip. Functional aspects of candidate genes were assessed using the MetaCore software. The highest number of differentially expressed genes (547) was found between the autoantibody-negative healthy relatives and the healthy controls. Some of them represent genes critically involved in the regulation of innate immune responses such as TLR signalling and CCR3 signalling in eosinophiles, humoral immune reactions such as BCR pathway, costimulation and cytokine responses mediated by CD137, CD40 and CD28 signalling and IL-1 proinflammatory pathway. Our data demonstrate that expression profile of healthy relatives of patients with T1D is clearly distinct from the pattern found in the healthy controls. That especially concerns differential activation status of genes and signalling pathways involved in proinflammatory processes and those of innate immunity and humoral reactivity. Thus, we posit that the study of the healthy relative's gene expression pattern is instrumental for the identification of novel markers associated with the development of diabetes.
Collapse
Affiliation(s)
- K Stechova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - M Kolar
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - R Blatny
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - Z Halbhuber
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - J Vcelakova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - M Hubackova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - L Petruzelkova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - Z Sumnik
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - B Obermannova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - P Pithova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - V Stavikova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - M Krivjanska
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - A Neuwirth
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - S Kolouskova
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| | - D Filipp
- Department of Paediatrics, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicLaboratory of Genomics and Bioinformatics, Institute of Molecular Genetics AS CR, Prague, Czech RepublicCentral European Biosystems, Prague, Czech RepublicDepartment of Internal Medicine, 2nd Medical Faculty of Charles University and University Hospital Motol, Prague, Czech RepublicDepartment of Immunobiology, Institute of Molecular Genetics, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
8
|
Rydén A, Ludvigsson J, Fredrikson M, Faresjö M. General immune dampening is associated with disturbed metabolism at diagnosis of type 1 diabetes. Pediatr Res 2014; 75:45-50. [PMID: 24105410 DOI: 10.1038/pr.2013.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/16/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a serious diagnosis with the prospect of grave short- and long-term complications and even death if poorly managed. An attempt has been made to describe how clinical and immunological deviations might influence each other close to the diagnosis of T1D. METHODS Sixty-nine newly diagnosed T1D children were studied together with a reference group of 30 healthy children. Cytokines (interleukin (IL)-6, IL-10, IL-13, IL-17, interferon-γ, and tumor necrosis factor-α) were detected in in vitro culture by multiplex fluorochrome technique. Information of clinical status of the patients such as BMI, weight loss, pubertal stage, duration of symptoms, previous and/or ongoing infections, insulin requirement, and ketoacidosis were gathered together with the analysis of C-peptide and glycosylated hemoglobin (HbA1c). RESULTS In general, low cytokine secretion was found at diagnosis of T1D. However, high C-peptide, short duration of symptoms, or an infection prior to diagnosis was associated with increased immune activity including proinflammatory, Th2-associated, and Tr1-associated cytokines. In contrast, ketoacidosis and later pubertal stage at onset of disease were more related to a Th1-prone response. CONCLUSION There is a general immune dampening at diagnosis of T1D, which appears to be related to the metabolic state close to diagnosis.
Collapse
Affiliation(s)
- Anna Rydén
- 1] Division of Paediatrics and Diabetes Research Centre, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden [2] Type 1 Diabetes R&D Center, Novo Nordisk, Seattle, Washington [3] Pacific Northwest Diabetes Research Institute, Seattle, Washington
| | - Johnny Ludvigsson
- Division of Paediatrics and Diabetes Research Centre, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Mats Fredrikson
- Linköping Academic Research Center, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Faresjö
- 1] Biomedical Platform, Department of Natural Science and Biomedicine, School of Health Sciences, Jönköping University, Jönköping, Sweden [2] Division of Medical Diagnostics, Laboratory Medicine, Ryhov County Hospital, Jönköping, Sweden
| |
Collapse
|
9
|
Abstract
The aim of this study was to explore whether IL-7 participates in the pathogenesis of Graves' ophthalmopathy (GO). This was a prospective study. 20 GO patients (40 eyes) and 20 healthy volunteers (40 eyes) were recruited. The tear concentration of IL-7 was measured using ELISA assay. IL-7 expression in orbital tissues was evaluated by immunohistochemistry. Patients with inactive GO had the highest IL-7 concentrations in the tears, followed by healthy controls and patients with active GO per ELISA. Immunohistochemistry analysis showed that IL-7 expression in orbital tissues of the inactive GO samples was higher than that of the volunteers. Changes of IL-7 expression in different phases of GO suggested that IL-7 may play an important role in the pathogenesis of GO.
Collapse
Affiliation(s)
- KeBo Cai
- Department of Ophthalmology, Changzheng Hospital Affiliated the Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | | |
Collapse
|
10
|
Rydén A, Faresjö M. Altered immune profile from pre-diabetes to manifestation of type 1 diabetes. Diabetes Res Clin Pract 2013; 100:74-84. [PMID: 23485080 DOI: 10.1016/j.diabres.2013.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 12/05/2012] [Accepted: 01/14/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND While the mechanisms leading to β-cell destruction and clinical onset of T1D are still unclear, the composition of the immune profile is probably important for the outcome of immune activity. The aim of this study was to investigate the composition and possible changes of the immunological profile, spontaneously and following stimulation with the autoantigens GAD65, and HSP60, at high-risk and T1D onset and further to 8 months post diagnosis. METHODS Fifteen first-degree relatives of T1D patients with a high risk of developing the disease within five years, 25 children approximately four days and 8 months after diagnosis of T1D and 16 healthy children were included in the study. Cytokines (IL-1β, -6, -7, -10, -13, -17, IFN-γ and TNF-α) and chemokines (CCL2, -3, -4, -5 and CXCL10) associated with Th1, Th2, Tr1 and inflammatory cells were detected in cell culture supernatants by Luminex-technique, and markers associated with regulatory T-cells (FOXP3, CTLA-4 and TGF-β) by real-time RT-PCR. RESULTS High-risk individuals differed in immunity from that seen in healthy and T1D children. High-risk individuals had a low TNF-α response and fewer responders from mitogen exposure as well as low spontaneous secretions of IL-13 compared to healthy children. High-risk individuals that later developed T1D, had a lower FOXP3 and CTLA-4 mRNA expression, following stimulation with GAD65, in combination with higher secretion of the pro-inflammatory chemokine CCL4. CONCLUSION Changes in immunity seen in individuals with high risk of developing T1D points to alterations/actions in the immune system already early in the pre-diabetic phase.
Collapse
Affiliation(s)
- Anna Rydén
- Division of Paediatrics & Diabetes Research Centre, Department of Clinical & Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
11
|
Vcelakova J, Blatny R, Halbhuber Z, Kolar M, Neuwirth A, Petruzelkova L, Ulmannova T, Kolouskova S, Sumnik Z, Pithova P, Krivjanska M, Filipp D, Stechova K. The effect of diabetes-associated autoantigens on cell processes in human PBMCs and their relevance to autoimmune diabetes development. J Diabetes Res 2013; 2013:589451. [PMID: 23841104 PMCID: PMC3694381 DOI: 10.1155/2013/589451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/20/2013] [Indexed: 12/18/2022] Open
Abstract
Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease; however, T1D pathogenesis likely involves many factors, and sufficient tools for autoreactive T cell detection for the study of this disease are currently lacking. In this study, using gene expression microarrays, we analysed the effect of diabetes-associated autoantigens on peripheral blood mononuclear cells (PBMCs) with the purpose of identifying (pre)diabetes-associated cell processes. Twelve patients with recent onset T1D, 18 first-degree relatives of the TD1 patients (DRL; 9/18 autoantibody positive), and 13 healthy controls (DV) were tested. PBMCs from these individuals were stimulated with a cocktail of diabetes-associated autoantigens (proinsulin, IA-2, and GAD65-derived peptides). After 72 hours, gene expression was evaluated by high-density gene microarray. The greatest number of functional differences was observed between relatives and controls (69 pathways), from which 15% of the pathways belonged to "immune response-related" processes. In the T1D versus controls comparison, more pathways (24%) were classified as "immune response-related." Important pathways that were identified using data from the T1D versus controls comparison were pathways involving antigen presentation by MHCII, the activation of Th17 and Th22 responses, and cytoskeleton rearrangement-related processes. Genes involved in Th17 and TGF-beta cascades may represent novel, promising (pre)diabetes biomarkers.
Collapse
Affiliation(s)
- Jana Vcelakova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, 15006 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Faresjö M. Enzyme linked immuno-spot; a useful tool in the search for elusive immune markers in common pediatric immunological diseases. Cells 2012; 1:141-52. [PMID: 24710420 PMCID: PMC3901087 DOI: 10.3390/cells1020141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 01/05/2023] Open
Abstract
In order to provide better therapy we strive to increase our knowledge of how the immune system behaves and communicates in common pediatric immunological diseases, such as type 1 diabetes, allergic and celiac diseases. However, when dealing with pediatric diseases, where study subjects are almost exclusively children, blood volumes available for immunological studies are limited and as such must be carefully handled and used to their full extent. Single immune markers can easily be detected by a traditional Enzyme Linked Immunosorbent Assay (ELISA), whereas multiple markers can be detected by a fluorochrome (Luminex) or electrochemiluminescence (MSD) technique. These techniques however are sometimes not sensitive enough to detect low levels of secreted immune markers in limited sample sizes. To detect immune markers at the single-cell level, an Enzyme Linked Immuno-spot (ELISPOT) can be used to pin-point elusive immune markers in common pediatric immunological diseases.
Collapse
Affiliation(s)
- Maria Faresjö
- The Biomedical Platform, Department of Natural Science and Biomedicine, School of Health Sciences, Jönköping University and County Hospital, Ryhov, Jönköping S-551 11, Sweden.
| |
Collapse
|
13
|
Gabbay MAL, Sato MN, Duarte AJS, Dib SA. Serum titres of anti-glutamic acid decarboxylase-65 and anti-IA-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients. Clin Exp Immunol 2012; 168:60-7. [PMID: 22385239 DOI: 10.1111/j.1365-2249.2011.04538.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Several studies correlated genetic background and pancreatic islet-cell autoantibody status (type and number) in type 1A diabetes mellitus (T1AD), but there are no data evaluating the relationship among these markers with serum cytokines, regulatory T cells and β cell function. This characterization has a potential importance with regard to T1AD patients' stratification and follow-up in therapeutic prevention. In this study we showed that peripheral sera cytokines [interleukin (IL)-12, IL-6, II-1β, tumour necrosis factor (TNF)-α, IL-10] and chemokines (CXCL10, CXCL8, CXCL9, CCL2) measured were significantly higher in newly diagnosed T1AD patients when compared to healthy controls (P < 0·001). Among T1AD, we found a positive correlation between CXCL10 and CCL-2 (r = 0·80; P = 0·000), IL-8 and TNF-α (r = 0·60; P = 0·000); IL-8 and IL-12 (r = 0·57; P = 0·001) and TNF-α and IL-12 (r = 0·93; P = 0·000). Glutamic acid decarboxylase-65 (GAD-65) autoantibodies (GADA) were associated negatively with CXCL10 (r = -0·45; P = 0·011) and CCL2 (r = -0·65; P = 0·000), while IA-2A showed a negative correlation with IL-10 (r = -0·38; P = 0·027). Human leucocyte antigen (HLA) DR3, DR4 or DR3/DR4 and PTPN22 polymorphism did not show any association with pancreatic islet cell antibodies or cytokines studied. In summary, our results revealed that T1AD have a proinflammatory cytokine profile compared to healthy controls and that IA-2A sera titres seem to be associated with a more inflammatory peripheral cytokine/chemokine profile than GADA. A confirmation of these data in the pre-T1AD phase could help to explain the mechanistic of the well-known role of IA-2A as a more specific marker of beta-cell damage than GADA during the natural history of T1AD.
Collapse
Affiliation(s)
- M Andrade Lima Gabbay
- Diabetes Center, Endocrinology Division, Department of Medicine, Federal University of São Paulo-Immunology Laboratory, Rua Pedro de Toledo 781/12, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
14
|
Gilbert KM, Nelson AR, Cooney CA, Reisfeld B, Blossom SJ. Epigenetic alterations may regulate temporary reversal of CD4(+) T cell activation caused by trichloroethylene exposure. Toxicol Sci 2012; 127:169-78. [PMID: 22407948 PMCID: PMC3327872 DOI: 10.1093/toxsci/kfs093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/15/2012] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that short-term (4 weeks) or chronic (32 weeks) exposure to trichloroethylene (TCE) in drinking water of female MRL+/+ mice generated CD4(+) T cells that secreted increased levels of interferon (IFN)-γ and expressed an activated (CD44(hi)CD62L(lo)) phenotype. In contrast, the current study of subchronic TCE exposure showed that midway in the disease process both of these parameters of CD4(+) T cell activation were reversed. This phase of the disease process may represent an attempt by the body to counteract the inflammatory effects of TCE. The decrease in CD4(+) T cell production of IFN-γ following subchronic TCE exposure could not be attributed to skewing toward a Th2 or Th17 phenotype or to an increase in Treg cells. Instead, the suppression corresponded to alterations in markers used to assess DNA methylation, namely increased expression of retrotransposons Iap (intracisternal A particle) and Muerv (murine endogenous retrovirus). Also observed was an increase in the expression of Dnmt1 (DNA methyltransferase-1) and decreased expression of several genes known to be downregulated by DNA methylation, namely Ifng, Il2, and Cdkn1a. CD4(+) T cells from a second study in which MRL+/+ mice were treated for 17 weeks with TCE showed a similar increase in Iap and decrease in Cdkn1a. In addition, DNA collected from the CD4(+) T cells in the second study showed TCE-decreased global DNA methylation. Thus, these results described the biphasic nature of TCE-induced alterations in CD4(+) T cell function and suggested that these changes represented potentially reversible alterations in epigenetic processes.
Collapse
Affiliation(s)
- Kathleen M Gilbert
- Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA.
| | | | | | | | | |
Collapse
|
15
|
Rydén A, Bolmeson C, Jonson CO, Cilio CM, Faresjö M. Low expression and secretion of circulating soluble CTLA-4 in peripheral blood mononuclear cells and sera from type 1 diabetic children. Diabetes Metab Res Rev 2012; 28:84-96. [PMID: 22218756 DOI: 10.1002/dmrr.1286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND High levels of soluble cytotoxic T-lymphocyte antigen 4 (soluble CTLA-4), an alternative splice form of the regulatory T-cell (Treg) associated CTLA-4 gene, have been associated with type 1 diabetes (T1D) and other autoimmune diseases, such as Grave's disease and myasthenia gravis. At the same time, studies have shown soluble CTLA-4 to inhibit T-cell activation through B7 binding. This study aimed to investigate the role of soluble CTLA-4 in relation to full-length CTLA-4 and other Treg-associated markers in T1D children and in individuals with high or low risk of developing the disease. METHODS T1D children were studied at 4 days, 1 and 2 years after diagnosis in comparison to individuals with high or low risk of developing the disease. Isolated peripheral blood mononuclear cells were stimulated with the T1D-associated glutamic acid decarboxylase 65 and phytohaemagglutinin. Subsequently, soluble CTLA-4, full-length CTLA-4, FOXP3 and TGF-β mRNA transcription were quantified and protein concentrations of soluble CTLA-4 were measured in culture supernatant and sera. RESULTS AND CONCLUSIONS Low protein concentrations of circulating soluble CTLA-4 and a positive correlation between soluble CTLA-4 mRNA and protein were seen in T1D, in parallel with a negative correlation in healthy subjects. Further, low levels of mitogen-induced soluble CTLA-4 were accompanied by low C-peptide levels. Interestingly, low mitogen-induced soluble CTLA-4 mRNA and low TGF-β mRNA expression were seen in high risk individuals, suggesting an alteration in activation and down-regulating immune mechanisms during the pre-diabetic phase.
Collapse
Affiliation(s)
- Anna Rydén
- Division of Paediatrics & Diabetes Research Centre, Department of Molecular & Clinical Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the lack of insulin due to an autoimmune destruction of pancreatic beta cells. Here, we report a unique case of a family with naturally conceived quadruplets in which T1D was diagnosed in two quadruplets simultaneously. At the same time, the third quadruplet was diagnosed with the pre-diabetic stage. Remarkably, all four quadruplets were positive for anti-islet cell antibodies, GAD65 and IA-A2. Monozygotic status of the quadruplets was confirmed by testing 14 different short tandem repeat polymorphisms. Serological examination confirmed that all quadruplets and their father suffered from a recent enteroviral infection of EV68-71 serotype. To assess the nature of the molecular pathological processes contributing to the development of diabetes, immunocompetent cells isolated from all family members were characterized by gene expression arrays, immune-cell enumerations and cytokine-production assays. The microarray data provided evidence that viral infection, and IL-27 and IL-9 cytokine signalling contributed to the onset of T1D in two of the quadruplets. The propensity of stimulated immunocompetent cells from non-diabetic members of the family to secrete high level of IFN-α further corroborates this conclusion. The number of T regulatory cells as well as plasmacytoid and/or myeloid dendritic cells was found diminished in all family members. Thus, this unique family is a prime example for the support of the so-called 'fertile-field' hypothesis proposing that genetic predisposition to anti-islet autoimmunity is 'fertilized' and precipitated by a viral infection leading to a fully blown T1D.
Collapse
|
17
|
Type I diabetes-associated tolerogenic properties of interleukin-2. Clin Dev Immunol 2011; 2011:289343. [PMID: 21647403 PMCID: PMC3102343 DOI: 10.1155/2011/289343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/08/2011] [Indexed: 11/27/2022]
Abstract
Type 1 Diabetes (T1D) results from insulin-producing beta cells destruction by diabetogenic T lymphocytes in humans and nonobese diabetic (NOD) mice. The breakdown of tolerance has been associated with a defect in the number and the function of naturally occurring regulatory T cells (nTreg) that are the master player in peripheral tolerance. Gene knockout experiments in mouse models have shown a nonredundant activity of IL-2 related to its critical role in inducing nTreg and controlling peripheral T cell tolerance. Whereas strong evidence has suggested that IL-2 is critically required for nTreg-mediated T1D control, several fundamental questions remain to be addressed. In this paper, we highlight the recent findings and controversies regarding the tolerogenic properties of IL-2 mediated through nTreg. We further discuss a potential link between the immunomodulatory role of interleukin-2 and the pathogenesis of type 1 diabetes.
Collapse
|
18
|
Han D, Leyva CA, Matheson D, Mineo D, Messinger S, Blomberg BB, Hernandez A, Meneghini LF, Allende G, Skyler JS, Alejandro R, Pugliese A, Kenyon NS. Immune profiling by multiple gene expression analysis in patients at-risk and with type 1 diabetes. Clin Immunol 2011; 139:290-301. [PMID: 21414848 PMCID: PMC3096683 DOI: 10.1016/j.clim.2011.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022]
Abstract
There is a need for biomarkers to monitor the development and progression of type 1 DM. We analyzed mRNA expression levels for granzyme B, perforin, fas ligand, TNF-α, IFN-γ, Foxp3, IL-10, TGF-β, IL-4, IL-6, IL-17, Activation-induced cytidine deaminase (AID) and Immunoglobulin G gamma chain (IgG<gamma>) genes in peripheral blood of at-risk, new-onset and long-term type 1 DM , and healthy controls. The majority of the genes were suppressed in long-term type 1 DM compared to controls and new-onset patients. IFN-γ, IL-4 and IL-10 mRNA levels were significantly higher in new-onset compared to at-risk and long-term groups. There was decreased mRNA expression for AID and IgG<gamma> and up-regulation of IFN-γ with age in controls. Data suggest an overall depressed immunity in long-term type 1 DM. Increased gene expression levels for IFN-γ, IL-4 and IL-10 in new-onset patients from at-risk patients might be used as potential markers for progression of the disease.
Collapse
Affiliation(s)
- Dongmei Han
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Carlos A. Leyva
- Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Della Matheson
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Davide Mineo
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shari Messinger
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Epidemiology & Public Health, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ana Hernandez
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luigi F. Meneghini
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gloria Allende
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jay S. Skyler
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Norma S. Kenyon
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Surgery, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
19
|
Carey C, Purohit S, She JX. Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using omic technologies. ACTA ACUST UNITED AC 2010; 4:397-410. [PMID: 20885991 DOI: 10.1517/17530059.2010.508492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD: Biomarkers are essential for the identification of high risk children as well as monitoring of prevention outcomes for type 1 diabetes (T1D). AREAS COVERED IN THIS REVIEW: This review discusses progress, opportunities and challenges in biomarker discovery and validation using high throughput genomic, transcriptomic and proteomic technologies. The authors also suggest potential solutions to deal with the current challenges. WHAT THE READER WILL GAIN: Readers will gain an overview of the current status on T1D biomarkers, an integrated review of three omic technologies, their applications and limitations for biomarker discovery and validation, and a critical discussion of the major issues encountered in biomarker development. TAKE HOME MESSAGE: Better biomarkers are still urgently needed for T1D prediction and prevention. The high throughput omic technologies offer great opportunities but also face significant challenges that have to be solved before their potential for biomarker development is fully realized.
Collapse
Affiliation(s)
- Colleen Carey
- Medical College of Georgia, Center for Biotechnology and Genomic Medicine, 1120 15th St., Augusta, 30912, USA
| | | | | |
Collapse
|
20
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:384-93. [PMID: 20588116 DOI: 10.1097/med.0b013e32833c4b2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Fusco A, Vigliano I, Palamaro L, Cirillo E, Aloj G, Piscopo G, Giardino G, Pignata C. Altered signaling through IL-12 receptor in children with very high serum IgE levels. Cell Immunol 2010; 265:74-9. [PMID: 20696422 DOI: 10.1016/j.cellimm.2010.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/16/2010] [Indexed: 01/16/2023]
Abstract
An alteration of Th1/Th2 homeostasis may lead to diseases in humans. In this study, we investigated whether an impaired IL-12R signaling occurred in children with elevated serum IgE levels divided on the basis of the IgE levels (group A: >2000kU/l; group B: <2000kU/l). We evaluated the integrity of the IL-12R signaling through the analysis of phosphorylation/activation of STAT4, and mRNA expression and membrane assembly of the receptor chains. At a functional level, a proliferative defect of lymphocytes from group A patients was observed. In these patients, an abnormal IL-12R signaling was documented, and this finding was associated with abnormal expression of the IL-12Rbeta2 chain. Our data indicate that in patients with very high IgE levels the generation of Th1 response is impaired, and that this abnormality associates with abnormal IL-12R signaling.
Collapse
Affiliation(s)
- Anna Fusco
- Department of Pediatrics, "Federico II" University, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity 2010; 32:468-78. [PMID: 20412757 DOI: 10.1016/j.immuni.2010.03.018] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 03/15/2010] [Accepted: 03/30/2010] [Indexed: 12/11/2022]
Abstract
A combination of genetic and immunological features is useful for prediction of autoimmune diabetes. Patterns of immune response correspond to the progression from a preclinical phase of disease to end-stage islet damage, with biomarkers indicating transition from susceptibility to active autoimmunity, and to a final loss of immune regulation. Here, we review the markers that provide evidence for immunological checkpoint failure and that also provide tools for assessment of individualized disease risk. When viewed in the context of genetic variation that influences immune response thresholds, progression from susceptibility to overt disease displays predictable modalities of clinical presentation resulting from a sequential series of failed homeostatic checkpoints for selection and activation of immunity.
Collapse
Affiliation(s)
- Anette-G Ziegler
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, 80804 München, Germany.
| | | |
Collapse
|
23
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:177-85. [PMID: 20190584 DOI: 10.1097/med.0b013e3283382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|