1
|
Oliveira-Valença VM, Roberts JM, Fernandes-Cerqueira VM, Colmerauer CH, de Toledo BC, Santos-França PL, Linden R, Martins RAP, Rocha-Martins M, Bosco A, Vetter ML, da Silveira MS. POU4F2 overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors. Development 2025; 152:DEV204297. [PMID: 39946314 DOI: 10.1242/dev.204297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development. These include Atoh7, a major orchestrator of the RGC program, and downstream targets of this transcription factor, including Pou4f factors, that in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and, ultimately, RGC death. This confirms the requirement of POU4F factors for RGC development and survival, with a crucial role in regulating RGC axon outgrowth and pathfinding. Here, we have investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long-range axon projections. We show that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs that are normally generated during early development and extend axonal projections up to the brain. In conclusion, these results show that POU4F2 alone is sufficient to promote the crucial properties of projection neurons that arise from retinal progenitors outside their developmental window.
Collapse
Affiliation(s)
- Viviane Medeiros Oliveira-Valença
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Jacqueline Marie Roberts
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Vitória Melo Fernandes-Cerqueira
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Carolina Herkenhoff Colmerauer
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Beatriz Cardoso de Toledo
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Pedro Lucas Santos-França
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Rafael Linden
- Neurogenesis Lab, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Rodrigo Alves Portela Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Maurício Rocha-Martins
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | - Monica Lynn Vetter
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | - Mariana Souza da Silveira
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Pöstyéni E, Kovács-Valasek A, Urbán P, Czuni L, Sétáló G, Fekete C, Gabriel R. Profile of miR-23 Expression and Possible Role in Regulation of Glutamic Acid Decarboxylase during Postnatal Retinal Development. Int J Mol Sci 2021; 22:ijms22137078. [PMID: 34209226 PMCID: PMC8268301 DOI: 10.3390/ijms22137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
As neurotransmitter, GABA is fundamental for physiological processes in the developing retina. Its synthesis enzymes are present during retinal development, although the molecular regulatory mechanisms behind the changes in expression are not entirely understood. In this study, we revealed the expression patterns of glutamic acid decarboxylase 67(GAD67) and its coding gene (GAD1) and its potential miRNA-dependent regulation during the first three postnatal weeks in rat retina. To gain insight into the molecular mechanisms, miRNA-sequencing supported by RT-qPCR and in situ hybridization were carried out. GAD1 expression shows an increasing tendency, peaking at P15. From the in silico-predicted GAD1 targeting miRNAs, only miR-23 showed similar expression patterns, which is a known regulator of GAD1 expression. For further investigation, we made an in situ hybridization investigation where both GAD67 and miR-23 also showed lower expression before P7, with the intensity of expression gradually increasing until P21. Horizontal cells at P7, amacrine cells at P15 and P21, and some cells in the ganglion cell layer at several time points were double labelled with miR-23 and GAD67. Our results highlight the complexity of these regulatory networks and the possible role of miR-23 in the regulation of GABA synthesizing enzyme expression during postnatal retina development.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary;
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary;
- Correspondence: (A.K.-V.); (R.G.)
| | - Péter Urbán
- János Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (L.C.); (C.F.)
| | - Lilla Czuni
- János Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (L.C.); (C.F.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Csaba Fekete
- János Szentágothai Research Centre, 7624 Pécs, Hungary; (P.U.); (L.C.); (C.F.)
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary;
- Correspondence: (A.K.-V.); (R.G.)
| |
Collapse
|
4
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
5
|
Pax6 modulates intra-retinal axon guidance and fasciculation of retinal ganglion cells during retinogenesis. Sci Rep 2020; 10:16075. [PMID: 32999322 PMCID: PMC7527980 DOI: 10.1038/s41598-020-72828-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Intra-retinal axon guidance involves a coordinated expression of transcription factors, axon guidance genes, and secretory molecules within the retina. Pax6, the master regulator gene, has a spatio-temporal expression typically restricted till neurogenesis and fate-specification. However, our observation of persistent expression of Pax6 in mature RGCs led us to hypothesize that Pax6 could play a major role in axon guidance after fate specification. Here, we found significant alteration in intra-retinal axon guidance and fasciculation upon knocking out of Pax6 in E15.5 retina. Through unbiased transcriptome profiling between Pax6fl/fl and Pax6−/− retinas, we revealed the mechanistic insight of its role in axon guidance. Our results showed a significant increase in the expression of extracellular matrix molecules and decreased expression of retinal fate specification and neuron projection guidance molecules. Additionally, we found that EphB1 and Sema5B are directly regulated by Pax6 owing to the guidance defects and improper fasciculation of axons. We conclude that Pax6 expression post fate specification of RGCs is necessary for regulating the expression of axon guidance genes and most importantly for maintaining a conducive ECM through which the nascent axons get guided and fasciculate to reach the optic disc.
Collapse
|
6
|
miR-17 regulates the proliferation and differentiation of retinal progenitor cells by targeting CHMP1A. Biochem Biophys Res Commun 2020; 523:493-499. [PMID: 31894018 DOI: 10.1016/j.bbrc.2019.11.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
Abstract
MicroRNAs have a vital effect on the differentiation of many types of progenitor cells. Recent studies have suggested that miR-17 plays an important role in the differentiation process of brain neural progenitor cells (NPC). Nevertheless, its detailed functions in regulating retinal progenitor cells (RPC) remain unclear. In our study, overexpression and knockdown of miR-17 were performed by transfecting RPC with mimics and inhibitors, respectively. Next, we investigated the role of miR-17 in RPC proliferation and differentiation by the following experiments: qPCR, CCK8, Edu staining, immunostaining and Western blot. The results revealed that miR-17 inhibited RPC proliferation but enhanced differentiation. Furthermore, according to a web-based database analysis, we identified charged multivesicular body protein 1A (CHMP1A) as a target gene. A dual luciferase reporter system showed that miR-17 specifically binds to the CHMP1A 3' untranslated region (UTR). Next, our data showed upregulation of miR-17 decreased CHMP1A protein level, causing reduced proliferation and enhanced differentiation of RPC. Downregulation of miR-17 led to enhanced CHMP1A protein expression, increased RPC proliferation and decreased differentiation. Taken together, our data provide a proven pathway by which miR-17 regulates RPC proliferation and differentiation by targeting CHMP1A.
Collapse
|
7
|
Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and Specification of Retinal Ganglion Cells. Int J Mol Sci 2020; 21:ijms21020451. [PMID: 31936811 PMCID: PMC7014133 DOI: 10.3390/ijms21020451] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
Across all species, retinal ganglion cells (RGCs) are the first retinal neurons generated during development, followed by the other retinal cell types. How are retinal progenitor cells (RPCs) able to produce these cell types in a specific and timely order? Here, we will review the different models of retinal neurogenesis proposed over the last decades as well as the extrinsic and intrinsic factors controlling it. We will then focus on the molecular mechanisms, especially the cascade of transcription factors that regulate, more specifically, RGC fate. We will also comment on the recent discovery that the ciliary marginal zone is a new stem cell niche in mice contributing to retinal neurogenesis, especially to the generation of ipsilateral RGCs. Furthermore, RGCs are composed of many different subtypes that are anatomically, physiologically, functionally, and molecularly defined. We will summarize the different classifications of RGC subtypes and will recapitulate the specification of some of them and describe how a genetic disease such as albinism affects neurogenesis, resulting in profound visual deficits.
Collapse
|
8
|
Effect of ocular hypertension on the pattern of retinal ganglion cell subtype loss in a mouse model of early-onset glaucoma. Exp Eye Res 2019; 185:107703. [PMID: 31211954 PMCID: PMC7430001 DOI: 10.1016/j.exer.2019.107703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/06/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
Abstract
Glaucoma is a neurodegenerative disease with elevated intraocular pressure as one of the major risk factors. Glaucoma leads to irreversible loss of vision and its progression involves optic nerve head cupping, axonal degeneration, retinal ganglion cell (RGC) loss, and visual field defects. Despite its high global prevalence, glaucoma still remains a major neurodegenerative disease. Introduction of mouse models of experimental glaucoma has become integral to glaucoma research due to well-studied genetics as well as ease of manipulations. Many established inherent and inducible mouse models of glaucoma are used to study the molecular and physiological progression of the disease. One such model of spontaneous mutation is the nee model, which is caused by mutation of the Sh3pxd2b gene. In both humans and mice, mutations disrupting function of the SH3PXD2B adaptor protein cause a developmental syndrome including secondary congenital glaucoma. The purpose of this study was to characterize the early onset nee glaucoma phenotype on the C57BL/6J background and to evaluate the pattern of RGC loss and axonal degeneration in specific RGC subtypes. We found that the B6.Sh3pxd2bnee mutant animals exhibit glaucoma phenotypes of elevated intraocular pressure, RGC loss and axonal degeneration. Moreover, the non-image forming RGCs survived longer than the On-Off direction selective RGCs (DSGC), and the axonal death in these RGCs was independent of their respective RGC subtype. In conclusion, through this study we characterized an experimental model of early onset glaucoma on a C57BL/6J background exhibiting key glaucoma phenotypes. In addition, we describe that RGC death has subtype-specific sensitivities and follows a specific pattern of cell death under glaucomatous conditions.
Collapse
|
9
|
Bian H, Zhou Y, Zhou D, Zhang Y, Shang D, Qi J. The latest progress on miR-374 and its functional implications in physiological and pathological processes. J Cell Mol Med 2019; 23:3063-3076. [PMID: 30772950 PMCID: PMC6484333 DOI: 10.1111/jcmm.14219] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non‐coding RNAs (ncRNAs) have been emerging players in cell development, differentiation, proliferation and apoptosis. Based on their differences in length and structure, they are subdivided into several categories including long non‐coding RNAs (lncRNAs >200nt), stable non‐coding RNAs (60‐300nt), microRNAs (miRs or miRNAs, 18‐24nt), circular RNAs, piwi‐interacting RNAs (26‐31nt) and small interfering RNAs (about 21nt). Therein, miRNAs not only directly regulate gene expression through pairing of nucleotide bases between the miRNA sequence and a specific mRNA that leads to the translational repression or degradation of the target mRNA, but also indirectly affect the function of downstream genes through interactions with lncRNAs and circRNAs. The latest studies have highlighted their importance in physiological and pathological processes. MiR‐374 family member are located at the X‐chromosome inactivation center. In recent years, numerous researches have uncovered that miR‐374 family members play an indispensable regulatory role, such as in reproductive disorders, cell growth and differentiation, calcium handling in the kidney, various cancers and epilepsy. In this review, we mainly focus on the role of miR‐374 family members in multiple physiological and pathological processes. More specifically, we also summarize their promising potential as novel prognostic biomarkers and therapeutic targets from bench to bedside.
Collapse
Affiliation(s)
- Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dawei Zhou
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yongsheng Zhang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Deya Shang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Kovács-Valasek A, Szalontai B, Sétáló G, Gábriel R. Sensitive fluorescent hybridisation protocol development for simultaneous detection of microRNA and cellular marker proteins (in the retina). Histochem Cell Biol 2018; 150:557-566. [PMID: 30088096 PMCID: PMC6182695 DOI: 10.1007/s00418-018-1705-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 01/20/2023]
Abstract
Nowadays, increasing number of microRNAs are found to have crucial roles in various physiological processes through gene expression regulation via RNA silencing as a result of base pairing with complementary mRNA sequences. To reveal the spatial distribution of microRNA expression in tissues, in situ hybridisation is the only method developed to date. This work aims to provide a novel approach to obtain information on the possible involvement of microRNA-s in regulatory processes under experimental conditions by enhancing fluorescent detection of microRNA labelling. Developing Wistar rats were used as a model system to analyse retinal microRNA expression in the first 3 postnatal weeks. Using cryosections, the crucial elements of optimal labels were (1) the concentration and duration of proteinase K treatment, (2) hybridisation temperature of microRNA probes and (3) temperature of stringency washes. Further improvements made possible to combine our in situ hybridisation protocol with double-label immunofluorescence allowing for the simultaneous detection of microRNA-s with high sensitivity and a neuronal cell marker and/or a synaptic marker protein. Thus, the regulatory microRNA-s can be localised in an identified cell type along with its potential target protein. We believe that our protocol can be easily adapted for a variety of tissues of different origins, developmental stages and experimental conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary
| | - Bálint Szalontai
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - György Sétáló
- Department of Medical Biology, University of Pécs, Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary.
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
11
|
Daniel S, Clark AF, McDowell CM. Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov 2018; 4:7. [PMID: 30062056 PMCID: PMC6054657 DOI: 10.1038/s41420-018-0069-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is a neurodegenerative disease with retinal ganglion cell (RGC) loss, optic nerve degeneration and subsequent vision loss. There are about 30 different subtypes of RGCs whose response to glaucomatous injury is not well characterized. The purpose of this study was to evaluate the response of 4 RGC subtypes in a mouse model of optic nerve crush (ONC). In this study, we also evaluated the pattern of axonal degeneration in RGC subtypes after nerve injury. We found that out of the 4 subtypes, transient-Off α RGCs are the most susceptible to injury followed by On-Off direction selective RGCs (DSGC). Non-image forming RGCs are more resilient with ipRGCs exhibiting the most resistance of them all. In contrast, axons degenerate irrespective of their retinal soma after ONC injury. In conclusion, we show that RGCs have subtype specific cell death response to ONC injury and that RGC axons disintegrate in an autonomous fashion undergoing Wallerian degeneration. These discoveries can further direct us towards effective diagnostic and therapeutic approaches to treat optic neuropathies, such as glaucoma.
Collapse
Affiliation(s)
- S. Daniel
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - AF Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - CM McDowell
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| |
Collapse
|
12
|
Barbato S, Marrocco E, Intartaglia D, Pizzo M, Asteriti S, Naso F, Falanga D, Bhat RS, Meola N, Carissimo A, Karali M, Prosser HM, Cangiano L, Surace EM, Banfi S, Conte I. MiR-211 is essential for adult cone photoreceptor maintenance and visual function. Sci Rep 2017; 7:17004. [PMID: 29209045 PMCID: PMC5717140 DOI: 10.1038/s41598-017-17331-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/16/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that play an important role in the control of fundamental biological processes in both physiological and pathological conditions. Their function in retinal cells is just beginning to be elucidated, and a few have been found to play a role in photoreceptor maintenance and function. MiR-211 is one of the most abundant miRNAs in the developing and adult eye. However, its role in controlling vertebrate visual system development, maintenance and function so far remain incompletely unexplored. Here, by targeted inactivation in a mouse model, we identify a critical role of miR-211 in cone photoreceptor function and survival. MiR-211 knockout (-/-) mice exhibited a progressive cone dystrophy accompanied by significant alterations in visual function. Transcriptome analysis of the retina from miR-211-/- mice during cone degeneration revealed significant alteration of pathways related to cell metabolism. Collectively, this study highlights for the first time the impact of miR-211 function in the retina and significantly contributes to unravelling the role of specific miRNAs in cone photoreceptor function and survival.
Collapse
Affiliation(s)
- Sara Barbato
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Sabrina Asteriti
- Department of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - Federica Naso
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Danila Falanga
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Rajeshwari S Bhat
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Nicola Meola
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Aarhus University, Department of Molecular Biology and Genetics, C.F. Møllers Allé 3 building 1130, 422-8000, Aarhus C, Denmark
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy.
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University "Luigi Vanvitelli", via Luigi De Crecchio 7, 80138, Naples, Italy.
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (Naples), 80078, Italy.
| |
Collapse
|
13
|
Sreekanth S, Rasheed VA, Soundararajan L, Antony J, Saikia M, Sivakumar KC, Das AV. miR Cluster 143/145 Directly Targets Nrl and Regulates Rod Photoreceptor Development. Mol Neurobiol 2017; 54:8033-8049. [PMID: 27878762 DOI: 10.1007/s12035-016-0237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Retinal histogenesis requires coordinated and temporal functioning of factors by which different cell types are generated from multipotent progenitors. Development of rod photoreceptors is regulated by multiple transcription factors, and Nrl is one of the major factors involved in their fate specification. Presence or absence of Nrl at the postnatal stages decides the generation of cone photoreceptors or other later retinal cells. This suggests the need for regulated expression of Nrl in order to accelerate the generation of other cell types during retinal development. We found that miR cluster 143/145, comprising miR-143 and miR-145, targets and imparts a posttranscriptional inhibition of Nrl. Expression of both miRNAs was differentially regulated during retinal development and showed least expression at PN1 stage in which most of the rod photoreceptors are generated. Downregulation of rod photoreceptor regulators and markers upon miR cluster 143/145 overexpression demonstrated that this cluster indeed negatively regulates rod photoreceptors. Further, we prove that Nrl positively regulates miR cluster 143/145, thus establishing a feedback loop regulatory mechanism. This may be one possible mechanism by which Nrl is posttranscriptionally regulated to facilitate the generation of other cell types in retina.
Collapse
Affiliation(s)
- Sreekumaran Sreekanth
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Vazhanthodi A Rasheed
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Lalitha Soundararajan
- Neuro Stem Cell Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Jayesh Antony
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Minakshi Saikia
- Cancer Research Program-2, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | | | - Ani V Das
- Molecular Neurobiology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
- Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
14
|
Quintero H, Lamas M. microRNA expression in the neural retina: Focus on Müller glia. J Neurosci Res 2017; 96:362-370. [DOI: 10.1002/jnr.24181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Heberto Quintero
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
- Department of Neuroscience; University of Montreal Hospital Research Centre (CRCHUM); Montreal Quebec Canada
| | - Mónica Lamas
- Departamento de Farmacobiología; Cinvestav Sede Sur; Mexico City Mexico
| |
Collapse
|
15
|
Dhanesh SB, Subashini C, Riya PA, Rasheed VA, James J. Pleiotropic Hes-1 Concomitant with its Differential Activation Mediates Neural Stem Cell Maintenance and Radial Glial Propensity in Developing Neocortex. Cereb Cortex 2017; 27:3943-3961. [PMID: 27405330 DOI: 10.1093/cercor/bhw207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
Notch signaling pathway and its downstream effector Hes-1 are well known for their role in cortical neurogenesis. Despite the canonical activation of Hes-1 in developing neocortex, recent advances have laid considerable emphasis on Notch/CBF1-independent Hes-1 (NIHes-1) expression with poor understanding of its existence and functional significance. Here, using reporter systems and in utero electroporation, we could qualitatively unravel the existence of NIHes-1 expressing neural stem cells from the cohort of dependent progenitors throughout the mouse neocortical development. Though Hes-1 expression is maintained in neural progenitor territory at all times, a simple shift from Notch-independent to -dependent state makes it pleiotropic as the former maintains the neural stem cells in a non-dividing/slow-dividing state, whereas the latter is very much required for maintenance and proliferation of radial glial cells. Therefore, our results provide an additional complexity in neural progenitor heterogeneity regarding differential Hes-1 expression in the germinal zone during neo-cortical development.
Collapse
Affiliation(s)
- Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Vazhanthodi Abdul Rasheed
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| |
Collapse
|
16
|
Subashini C, Dhanesh SB, Chen CM, Riya PA, Meera V, Divya TS, Kuruvilla R, Buttler K, James J. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep 2017; 7:42523. [PMID: 28205531 PMCID: PMC5311982 DOI: 10.1038/srep42523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a−/− and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.
Collapse
Affiliation(s)
- Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Chih-Ming Chen
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Kerstin Buttler
- Department of Anatomy and Cell Biology, University Medicine Göttingen, 37075-Göttingen, Germany
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| |
Collapse
|
17
|
Regulation of Tlx3 by Pax6 is required for the restricted expression of Chrnα3 in Cerebellar Granule Neuron progenitors during development. Sci Rep 2016; 6:30337. [PMID: 27452274 PMCID: PMC4959012 DOI: 10.1038/srep30337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022] Open
Abstract
Homeobox gene Tlx3 is known to promote glutamatergic differentiation and is expressed in post-mitotic neurons of CNS. Contrary to this here, we discovered that Tlx3 is expressed in the proliferating progenitors of the external granule layer in the cerebellum, and examined factors that regulate this expression. Using Pax6−/−Sey mouse model and molecular interaction studies we demonstrate Pax6 is a key activator of Tlx3 specifically in cerebellum, and induces its expression starting at embryonic day (E)15. By Postnatal day (PN)7, Tlx3 is expressed in a highly restricted manner in the cerebellar granule neurons of the posterior cerebellar lobes, where it is required for the restricted expression of nicotinic cholinergic receptor-α3 subunit (Chrnα3) and other genes involved in formation of synaptic connections and neuronal migration. These results demonstrate a novel role for Tlx3 and indicate that Pax6-Tlx3 expression and interaction is part of a region specific regulatory network in cerebellum and its deregulation during development could possibly lead to Autistic spectral disorders (ASD).
Collapse
|
18
|
Karali M, Persico M, Mutarelli M, Carissimo A, Pizzo M, Singh Marwah V, Ambrosio C, Pinelli M, Carrella D, Ferrari S, Ponzin D, Nigro V, di Bernardo D, Banfi S. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res 2016; 44:1525-40. [PMID: 26819412 PMCID: PMC4770244 DOI: 10.1093/nar/gkw039] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/13/2016] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs play a fundamental role in retinal development and function. To characterise the miRNome of the human retina, we carried out deep sequencing analysis on sixteen individuals. We established the catalogue of retina-expressed miRNAs, determined their relative abundance and found that a small number of miRNAs accounts for almost 90% of the retina miRNome. We discovered more than 3000 miRNA variants (isomiRs), encompassing a wide range of sequence variations, which include seed modifications that are predicted to have an impact on miRNA action. We demonstrated that a seed-modifying isomiR of the retina-enriched miR-124-3p was endowed with different targeting properties with respect to the corresponding canonical form. Moreover, we identified 51 putative novel, retina-specific miRNAs and experimentally validated the expression for nine of them. Finally, a parallel analysis of the human Retinal Pigment Epithelium (RPE)/choroid, two tissues that are known to be crucial for retina homeostasis, yielded notably distinct miRNA enrichment patterns compared to the retina. The generated data are accessible through an ad hoc database. This study is the first to reveal the complexity of the human retina miRNome at nucleotide resolution and constitutes a unique resource to assess the contribution of miRNAs to the pathophysiology of the human retina.
Collapse
Affiliation(s)
- Marianthi Karali
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via Luigi De Crecchio 7, 80138 Naples (NA), Italy
| | - Maria Persico
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Margherita Mutarelli
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Veer Singh Marwah
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Concetta Ambrosio
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Stefano Ferrari
- Eye Bank of Venice, Padiglione Rama, via Paccagnella 11, 30174 Zelarino (VE), Italy
| | - Diego Ponzin
- Eye Bank of Venice, Padiglione Rama, via Paccagnella 11, 30174 Zelarino (VE), Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via Luigi De Crecchio 7, 80138 Naples (NA), Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy Department of Chemical, Materials and Production Engineering, University of Naples 'Federico II', via Claudio 21, 80125 Naples (NA), Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via Luigi De Crecchio 7, 80138 Naples (NA), Italy
| |
Collapse
|