1
|
Imai T, de Morais AL, Qin T, Sasaki Y, Lim YP, Ayata C. Examination of Inter-α Inhibitor Proteins in Permanent and Transient Focal Ischemia. J Am Heart Assoc 2025; 14:e036034. [PMID: 39921503 DOI: 10.1161/jaha.124.036034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/21/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Ischemic stroke is among the most prevalent diseases, with high death and morbidity. Numerous preclinical studies have reported efficacious interventions in rodent stroke models. However, reperfusion therapies remain the only clinically efficacious intervention to date. Rigor and reproducibility are now recognized as critical to bridge the preclinical-clinical disconnect. Inter-α inhibitor proteins (IαIPs) are a family of structurally related glycoproteins with 2 major forms (inter-α inhibitor and pre-α inhibitor) in blood. Purified human plasma-derived IαIP has beneficial effects in sepsis and hypoxic-ischemic brain injury. More recently, IαIP improved focal ischemic stroke outcomes in mouse models. Here, we tested IαIP efficacy in both transient and permanent stroke mouse models, mimicking previously published study designs and protocols to seek reproducibility. METHODS AND RESULTS Using healthy young male and female C57BL/6 mice, we induced transient or permanent endovascular filament middle cerebral artery occlusion (MCAO). Mice were divided into transient MCAO+vehicle, transient MCAO+IαIP (30 mg/kg), permanent MCAO+vehicle, and permanent MCAO+IαIP groups. IαIP or vehicle was administered intravenously at 6 and 18 hours after MCAO. End points were assessed at 2 days. Efficacy readouts included death, infarct volume and swelling, and 3 neurological tests. Contrary to the previous work, we did not find IαIP efficacious on any outcome readout in either transient MCAO or permanent MCAO. CONCLUSIONS Our data highlight the contribution of interlaboratory heterogeneity to study outcomes and suggest that interventions considered for clinical development should undergo rigorous testing in multiple single-laboratory studies before entering a multicenter preclinical trial.
Collapse
Affiliation(s)
- Takahiko Imai
- Neurovascular Research Unit, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Andreia Lopes de Morais
- Neurovascular Research Unit, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Tao Qin
- Neurovascular Research Unit, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Yuichi Sasaki
- Neurovascular Research Unit, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Yow-Pin Lim
- ProThera Biologics Inc. Providence RI USA
- Department of Pathology and Laboratory Medicine The Alpert Medical School of Brown University Providence RI USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology Massachusetts General Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
2
|
Bitar L, Stonestreet BS, Lim YP, Qiu J, Chen X, Mir IN, Chalak LF. Association between decreased cord blood inter-alpha inhibitor levels and neonatal encephalopathy at birth. Early Hum Dev 2024; 193:106036. [PMID: 38733833 PMCID: PMC11768766 DOI: 10.1016/j.earlhumdev.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Inter-alpha inhibitor proteins (IAIPs) are structurally related proteins found in the systemic circulation with immunomodulatory anti-inflammatory properties. Reduced levels are found in inflammatory related conditions including sepsis and necrotizing enterocolitis, and in neonatal rodents after exposure to hypoxia ischemia. In the current study, cord blood IAIP levels were measured in neonates with and without exposure to hypoxic-ischemic encephalopathy (HIE). METHODS This is a prospective cohort study including infants born ≥36 weeks over a one-year period. Term pregnancies were divided into two groups: a "reference control" (uncomplicated term deliveries), and "moderate to severe HIE" (qualifying for therapeutic hypothermia). IAIPs were quantified using a sensitive ELISA on the cord blood samples. RESULTS The study included 57 newborns: Reference control group (n = 13) and moderate/severe HIE group (n = 44). Measurement of IAIP cord blood concentrations in moderate to severe HIE group [278.2 (138.0, 366.0) μg/ml] revealed significantly lower IAIP concentrations compared with the control group [418.6 (384.5, 445.0) μg/ml] (p = 0.002). CONCLUSIONS These findings suggest a potential role for IAIPs as indicators of neonates at risk for HIE. IAIP levels could have diagnostic implications in the management of HIE. Future research is required to explore the relationship between HIE and IAIPs as biomarkers for disease severity. CATEGORY OF STUDY Translational.
Collapse
Affiliation(s)
- Lynn Bitar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Barbara S Stonestreet
- The Alpert Medical School of Brown University, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States of America
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, United States of America; The Alpert Medical School of Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, United States of America
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, United States of America
| | - Xiaodi Chen
- The Alpert Medical School of Brown University, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States of America
| | - Imran N Mir
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Lina F Chalak
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
3
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
4
|
Koehn LM, Nguyen K, Chen X, Santoso A, Tucker R, Lim YP, Stonestreet BS. Effects of Three Different Doses of Inter-Alpha Inhibitor Proteins on Severe Hypoxia-Ischemia-Related Brain Injury in Neonatal Rats. Int J Mol Sci 2022; 23:13473. [PMID: 36362257 PMCID: PMC9655902 DOI: 10.3390/ijms232113473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2024] Open
Abstract
Hypoxia-ischemia (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. We have previously shown that human plasma-derived inter-alpha inhibitor proteins (hIAIPs) attenuate HI-related brain injury in neonatal rats. The optimal dose of hIAIPs for their neuroprotective effects and improvement in behavioral outcomes remains to be determined. We examined the efficacy of 30, 60, or 90 mg/kg of hIAIPs administered to neonatal rats after exposure to HI for 2 h. Postnatal day 7 (P7) Wistar rats were exposed to either sham-surgery or unilateral HI (right carotid artery ligation, 2 h of 8% O2) brain injury. A placebo, 30, 60, or 90 mg/kg of hIAIPs were injected intraperitoneally at 0, 24 and 48 h after HI (n = 9-10/sex). We carried out the following behavioral analyses: P8 (righting reflex), P9 (negative geotaxis) and P10 (open-field task). Rats were humanely killed on P10 and their brains were stained with cresyl violet. Male extension/contraction responses and female righting reflex times were higher in the HI placebo groups than the sham groups. Female open-field exploration was lower in the HI placebo group than the sham group. hIAIPs attenuated these behavioral deficits. However, the magnitude of the responses did not vary by hIAIP dose. hIAIPs reduced male brain infarct volumes in a manner that correlated with improved behavioral outcomes. Increasing the hIAIP dose from 30 to 90 mg/kg did not further accentuate the hIAIP-related decreases in infarct volumes. We conclude that larger doses of hIAIPs did not provide additional benefits over the 30 mg/kg dose for behavior tasks or reductions in infarct volumes in neonatal rats after exposure to severe HI.
Collapse
Affiliation(s)
- Liam M. Koehn
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Kevin Nguyen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Xiaodi Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | - Richard Tucker
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02905, USA
| | - Barbara S. Stonestreet
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
| |
Collapse
|
5
|
Changes in Cellular Localization of Inter-Alpha Inhibitor Proteins after Cerebral Ischemia in the Near-Term Ovine Fetus. Int J Mol Sci 2021; 22:ijms221910751. [PMID: 34639091 PMCID: PMC8509455 DOI: 10.3390/ijms221910751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Inter-alpha Inhibitor Proteins (IAIPs) are key immunomodulatory molecules. Endogenous IAIPs are present in human, rodent, and sheep brains, and are variably localized to the cytoplasm and nuclei at multiple developmental stages. We have previously reported that ischemia-reperfusion (I/R) reduces IAIP concentrations in the fetal sheep brain. In this study, we examined the effect of I/R on total, cytoplasmic, and nuclear expression of IAIPs in neurons (NeuN+), microglia (Iba1+), oligodendrocytes (Olig2+) and proliferating cells (Ki67+), and their co-localization with histones and the endoplasmic reticulum in fetal brain cells. At 128 days of gestation, fetal sheep were exposed to Sham (n = 6) or I/R induced by cerebral ischemia for 30 min with reperfusion for 7 days (n = 5). Although I/R did not change the total number of IAIP+ cells in the cerebral cortex or white matter, cells with IAIP+ cytoplasm decreased, whereas cells with IAIP+ nuclei increased in the cortex. I/R reduced total neuronal number but did not change the IAIP+ neuronal number. The proportion of cytoplasmic IAIP+ neurons was reduced, but there was no change in the number of nuclear IAIP+ neurons. I/R increased the number of microglia and decreased the total numbers of IAIP+ microglia and nuclear IAIP+ microglia, but not the number of cytoplasmic IAIP+ microglia. I/R was associated with reduced numbers of oligodendrocytes and increased proliferating cells, without changes in the subcellular IAIP localization. IAIPs co-localized with the endoplasmic reticulum and histones. In conclusion, I/R alters the subcellular localization of IAIPs in cortical neurons and microglia but not in oligodendrocytes or proliferating cells. Taken together with the known neuroprotective effects of exogenous IAIPs, we speculate that endogenous IAIPs may play a role during recovery from I/R.
Collapse
|
6
|
McCullough LD, Roy-O'Reilly M, Lai YJ, Patrizz A, Xu Y, Lee J, Holmes A, Kraushaar DC, Chauhan A, Sansing LH, Stonestreet BS, Zhu L, Kofler J, Lim YP, Venna VR. Exogenous inter-α inhibitor proteins prevent cell death and improve ischemic stroke outcomes in mice. J Clin Invest 2021; 131:144898. [PMID: 34580244 DOI: 10.1172/jci144898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Louise D McCullough
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Meaghan Roy-O'Reilly
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony Patrizz
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aleah Holmes
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniel C Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, Texas, USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yow-Pin Lim
- ProThera Biologics Inc., Providence, Rhode Island, USA.,Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Hatayama K, Chen RH, Hanson J, Teshigawara K, Qiu J, Santoso A, Disdier C, Nakada S, Chen X, Nishibori M, Lim YP, Stonestreet BS. High-mobility group box-1 and inter-alpha inhibitor proteins: In vitro binding and co-localization in cerebral cortex after hypoxic-ischemic injury. FASEB J 2021; 35:e21399. [PMID: 33559227 DOI: 10.1096/fj.202002109rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.
Collapse
Affiliation(s)
- Kazuki Hatayama
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ray H Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jordan Hanson
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | | | - Clémence Disdier
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sakura Nakada
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA.,Department Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Zhu S, Ying Y, Ye J, Chen M, Wu Q, Dou H, Ni W, Xu H, Xu J. AAV2-mediated and hypoxia response element-directed expression of bFGF in neural stem cells showed therapeutic effects on spinal cord injury in rats. Cell Death Dis 2021; 12:274. [PMID: 33723238 PMCID: PMC7960741 DOI: 10.1038/s41419-021-03546-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso-Beattie-Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China.
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, 325027, Wenzhou, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Koehn LM, Chen X, Logsdon AF, Lim YP, Stonestreet BS. Novel Neuroprotective Agents to Treat Neonatal Hypoxic-Ischemic Encephalopathy: Inter-Alpha Inhibitor Proteins. Int J Mol Sci 2020; 21:E9193. [PMID: 33276548 PMCID: PMC7731124 DOI: 10.3390/ijms21239193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/02/2023] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.
Collapse
Affiliation(s)
- Liam M. Koehn
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| | - Xiaodi Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA;
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA; (L.M.K.); (X.C.)
| |
Collapse
|
10
|
Abstract
Stroke remains a major unmet clinical need that warrants novel therapies. Following an ischemic insult, the cerebral vasculature secretes inflammatory molecules, creating the stroke vasculome profile. The present study evaluated the therapeutic effects of endothelial cells on the inflammation-associated stroke vasculome. qRT-PCR analysis revealed that specific inflammation-related vasculome genes BRM, IκB, Foxf1, and ITIH-5 significantly upregulated by oxygen glucose deprivation (OGD. Interestingly, co-culture of human endothelial cells (HEN6) with human endothelial cells (EPCs) during OGD significantly blocked the elevations of BRM, IκB, and Foxf1, but not ITIH-5. Next, employing the knockdown/antisense technology, silencing the inflammation-associated stroke vasculome gene, IκB, as opposed to scrambled knockdown, blocked the EPC-mediated protection of HEN6 against OGD. In vivo, stroke animals transplanted with intracerebral human EPCs (300,000 cells) into the striatum and cortex 4 h post ischemic stroke displayed significant behavioral recovery up to 30 days post-transplantation compared to vehicle-treated stroke animals. At 7 days post-transplantation, quantification of the fluorescent staining intensity in the cortex and striatum revealed significant upregulation of the endothelial marker RECA1 and a downregulation of the stroke-associated vasculome BRM, IKB, Foxf1, ITIH-5 and PMCA2 in the ipsilateral side of cortex and striatum of EPC-transplanted stroke animals relative to vehicle-treated stroke animals. Altogether, these results demonstrate that EPCs exert therapeutic effects in experimental stroke possibly by modulating the inflammation-plagued vasculome.
Collapse
|
11
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Kim B, De La Monte S, Hovanesian V, Patra A, Chen X, Chen RH, Miller MC, Pinar MH, Lim YP, Stopa EG, Stonestreet BS. Ontogeny of inter-alpha inhibitor protein (IAIP) expression in human brain. J Neurosci Res 2019; 98:869-887. [PMID: 31797408 DOI: 10.1002/jnr.24565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain. In this study, we examined the immunohistochemical expression of endogenous IAIPs in human cerebral cortex from early in development through the neonatal period and in adults using well-preserved postmortem brains. We examined total, nuclear, and cytoplasmic staining of endogenous IAIPs and their expression in neurofilament light polypeptide-positive neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes. IAIPs were ubiquitously detected for the first time in cerebral cortical cells at 24-26, 27-28, 29-36, and 37-40 weeks of gestation and in adults. Quantitative analyses revealed that IAIPs were predominately localized in the nucleus in all age groups, but cytoplasmic IAIP expression was more abundant in adult than in the younger ages. Immunoreactivity of IAIPs was expressed in neurons and astrocytes in all age groups. In addition, IAIP co-localization with GFAP-positive astrocytes was more abundant in adults than in the developing brain. We conclude that IAIPs exhibit ubiquitous expression, and co-localize with neurons and astrocytes in the developing and adult human brain suggesting a potential role for IAIPs in development and endogenous neuroprotection.
Collapse
Affiliation(s)
- Boram Kim
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Suzanne De La Monte
- Department of Neurology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Aparna Patra
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Ray H Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Miles C Miller
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mehmet Halit Pinar
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Yow-Pin Lim
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA.,ProThera Biologics, Inc., Providence, RI, USA
| | - Edward G Stopa
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
13
|
Disdier C, Zhang J, Fukunaga Y, Lim YP, Qiu J, Santoso A, Stonestreet BS. Alterations in inter-alpha inhibitor protein expression after hypoxic-ischemic brain injury in neonatal rats. Int J Dev Neurosci 2018; 65:54-60. [PMID: 29079121 PMCID: PMC5837925 DOI: 10.1016/j.ijdevneu.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023] Open
Abstract
Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full-term birth-related complications that reflect widespread damage to cerebral cortical structures. Inflammation has been implicated in the long-term evolution and severity of HI brain injury. Inter-Alpha Inhibitor Proteins (IAIPs) are immune modulator proteins that are reduced in systemic neonatal inflammatory states. We have shown that endogenous IAIPs are present in neurons, astrocytes and microglia and that exogenous treatment with human plasma purified IAIPs decreases neuronal injury and improves behavioral outcomes in neonatal rats with HI brain injury. In addition, we have shown that endogenous IAIPs are reduced in the brain of the ovine fetus shortly after ischemic injury. However, the effect of HI on changes in circulating and endogenous brain IAIPs has not been examined in neonatal rats. In the current study, we examined changes in endogenous IAIPs in the systemic circulation and brain of neonatal rats after exposure to HI brain injury. Postnatal day 7 rats were exposed to right carotid artery ligation and 8% oxygen for 2h. Sera were obtained immediately, 3, 12, 24, and 48h and brains 3 and 24h after HI. IAIPs levels were determined by a competitive enzyme-linked immunosorbent assay (ELISA) in sera and by Western immunoblots in cerebral cortices. Serum IAIPs were decreased 3h after HI and remained lower than in non-ischemic rats up to 7days after HI. IAIP expression increased in the ipsilateral cerebral cortices 24h after HI brain injury and in the hypoxic contralateral cortices. However, 3h after hypoxia alone the 250kDa IAIP moiety was reduced in the contralateral cortices. We speculate that changes in endogenous IAIPs levels in blood and brain represent constituents of endogenous anti-inflammatory neuroprotective mechanism(s) after HI in neonatal rats.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Jiyong Zhang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA
| | - Yuki Fukunaga
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI 02903, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI 02903, USA
| | | | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| |
Collapse
|