1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Zeng H, Mayberry JE, Wadkins D, Chen N, Summers DW, Kuehn MH. Loss of Sarm1 reduces retinal ganglion cell loss in chronic glaucoma. Acta Neuropathol Commun 2024; 12:23. [PMID: 38331947 PMCID: PMC10854189 DOI: 10.1186/s40478-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.
Collapse
Affiliation(s)
- Huilan Zeng
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jordan E Mayberry
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, 52246, USA
| | - David Wadkins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, 52246, USA
| | - Nathan Chen
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, 52246, USA
| | - Daniel W Summers
- Department of Biology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, 52242, USA.
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, 52246, USA.
| |
Collapse
|
3
|
Wang H, Peng Z, Li Y, Sahn JJ, Hodges TR, Chou TH, Liu Q, Zhou X, Jiao S, Porciatti V, Liebl DJ, Martin SF, Wen R. σ 2R/TMEM97 in retinal ganglion cell degeneration. Sci Rep 2022; 12:20753. [PMID: 36456686 PMCID: PMC9715665 DOI: 10.1038/s41598-022-24537-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
The sigma 2 receptor (σ2R) was recently identified as an endoplasmic reticulum (ER) membrane protein known as transmembrane protein 97 (TMEM97). Studies have shown that σ2R/TMEM97 binding compounds are neuroprotective, suggesting a role of σ2R/TMEM97 in neurodegenerative processes. To understand the function of σ2R/TMEM97 in neurodegeneration pathways, we characterized ischemia-induced retinal ganglion cell (RGC) degeneration in TMEM97-/- mice and found that RGCs in TMEM97-/- mice are resistant to degeneration. In addition, intravitreal injection of a selective σ2R/TMEM97 ligand DKR-1677 significantly protects RGCs from ischemia-induced degeneration in wildtype mice. Our results provide conclusive evidence that σ2R/TMEM97 plays a role to facilitate RGC death following ischemic injury and that inhibiting the function of σ2R/TMEM97 is neuroprotective. This work is a breakthrough toward elucidating the biology and function of σ2R/TMEM97 in RGCs and likely in other σ2R/TMEM97 expressing neurons. Moreover, these findings support future studies to develop new neuroprotective approaches for RGC degenerative diseases by inhibiting σ2R/TMEM97.
Collapse
Affiliation(s)
- Hua Wang
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhiyou Peng
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yiwen Li
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - James J Sahn
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Timothy R Hodges
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Qiong Liu
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Xuezhi Zhou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephen F Martin
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Superior segmental optic nerve hypoplasia: A review. Surv Ophthalmol 2022; 67:1467-1475. [DOI: 10.1016/j.survophthal.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
|
5
|
Beckmann L, Cai Z, Cole J, Miller DA, Liu M, Grannonico M, Zhang X, Ryu HJ, Netland PA, Liu X, Zhang HF. In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography. Exp Eye Res 2021; 211:108756. [PMID: 34492282 PMCID: PMC10061273 DOI: 10.1016/j.exer.2021.108756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
The growth of the mouse eye and retina after birth is a dynamic, highly regulated process. In this study, we applied visible-light optical coherence tomography (vis-OCT), a non-invasive imaging technique, to examine developing retinal layer structures after eye-opening. We introduced a resampled circumpapillary B-scan averaging technique to improve the inter-layer contrast, enabling retinal layer thickness measurements as early as postnatal day 13 (P13) - right after eye-opening. We confirmed vis-OCT measurements using ex vivo confocal microscopy of retinal sections at different ages. Our results demonstrate that vis-OCT can visualize the developmental murine retinal layer structure in vivo, which offers us new opportunities to better characterize the pathological alterations in mouse models of developmental eye diseases.
Collapse
Affiliation(s)
- Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - James Cole
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - David A Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Mingna Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Xian Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hyun Jung Ryu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
6
|
Beros J, Rodger J, Harvey AR. Age Related Response of Neonatal Rat Retinal Ganglion Cells to Reduced TrkB Signaling in vitro and in vivo. Front Cell Dev Biol 2021; 9:671087. [PMID: 34150766 PMCID: PMC8213349 DOI: 10.3389/fcell.2021.671087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
During development of retinofugal pathways there is naturally occurring cell death of at least 50% of retinal ganglion cells (RGCs). In rats, RGC death occurs over a protracted pre- and early postnatal period, the timing linked to the onset of axonal ingrowth into central visual targets. Gene expression studies suggest that developing RGCs switch from local to target-derived neurotrophic support during this innervation phase. Here we investigated, in vitro and in vivo, how RGC birthdate affects the timing of the transition from intra-retinal to target-derived neurotrophin dependence. RGCs were pre-labeled with 5-Bromo-2'-Deoxyuridine (BrdU) at embryonic (E) day 15 or 18. For in vitro studies, RGCs were purified from postnatal day 1 (P1) rat pups and cultured with or without: (i) brain derived neurotrophic factor (BDNF), (ii) blocking antibodies to BDNF and neurotrophin 4/5 (NT-4/5), or (iii) a tropomyosin receptor kinase B fusion protein (TrkB-Fc). RGC viability was quantified 24 and 48 h after plating. By 48 h, the survival of purified βIII-tubulin immunopositive E15 but not E18 RGCs was dependent on addition of BDNF to the culture medium. For E18 RGCs, in the absence of exogenous BDNF, addition of blocking antibodies or TrkB-Fc reduced RGC viability at both 24 and 48 h by 25-40%. While this decrease was not significant due to high variance, importantly, each blocking method also consistently reduced complex process expression in surviving RGCs. In vivo, survival of BrdU and Brn3a co-labeled E15 or E18 RGCs was quantified in rats 24 h after P1 or P5 injection into the eye or contralateral superior colliculus (SC) of BDNF and NT-4/5 antibodies, or serum vehicle. The density of E15 RGCs 24 h after P1 or P5 injection of blocking antibodies was reduced after SC but not intraretinal injection. Antibody injections into either site had little obvious impact on viability of the substantially smaller population of E18 RGCs. In summary, most early postnatal RGC death in the rat involves the elimination of early-born RGCs with their survival primarily dependent upon the availability of target derived BDNF during this time. In contrast, late-born RGC survival may be influenced by additional factors, suggesting an association between RGC birthdate and developmental death mechanisms.
Collapse
Affiliation(s)
- Jamie Beros
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
7
|
Role of the Internal Limiting Membrane in Structural Engraftment and Topographic Spacing of Transplanted Human Stem Cell-Derived Retinal Ganglion Cells. Stem Cell Reports 2020; 16:149-167. [PMID: 33382979 PMCID: PMC7897583 DOI: 10.1016/j.stemcr.2020.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal ganglion cell (RGC) replacement holds potential for restoring vision lost to optic neuropathy. Transplanted RGCs must undergo neuroretinal integration to receive afferent visual signals for processing and efferent transmission. To date, retinal integration following RGC transplantation has been limited. We sought to overcome key barriers to transplanted human stem cell-derived RGC integration. Following co-culture ex vivo on organotypic mouse retinal explants, human RGCs cluster and extend bundled neurites that remain superficial to the neuroretina, hindering afferent synaptogenesis. To enhance integration, we increased the cellular permeability of the internal limiting membrane (ILM). Extracellular matrix digestion using proteolytic enzymes achieved ILM disruption while minimizing retinal toxicity and preserving glial reactivity. ILM disruption is associated with dispersion rather than clustering of co-cultured RGC bodies and neurites, and increased parenchymal neurite ingrowth. The ILM represents a significant obstacle to transplanted RGC connectivity and its circumvention may be necessary for functional RGC replacement.
Collapse
|
8
|
May CA, Rutkowski P. The Horizontal Raphe of the Human Retina and its Watershed Zones. Vision (Basel) 2019; 3:vision3040060. [PMID: 31735861 PMCID: PMC6969909 DOI: 10.3390/vision3040060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
The horizontal raphe (HR) as a demarcation line dividing the retina and choroid into separate vascular hemispheres is well established, but its development has never been discussed in the context of new findings of the last decades. Although factors for axon guidance are established (e.g., slit-robo pathway, ephrin-protein-receptor pathway) they do not explain HR formation. Early morphological organization, too, fails to establish a HR. The development of the HR is most likely induced by the long posterior ciliary arteries which form a horizontal line prior to retinal organization. The maintenance might then be supported by several biochemical factors. The circulation separate superior and inferior vascular hemispheres communicates across the HR only through their anastomosing capillary beds resulting in watershed zones on either side of the HR. Visual field changes along the HR could clearly be demonstrated in vascular occlusive diseases affecting the optic nerve head, the retina or the choroid. The watershed zone of the HR is ideally protective for central visual acuity in vascular occlusive diseases but can lead to distinct pathological features.
Collapse
|
9
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signalling in retinal progenitor cells leads to visual pathway dysfunction. Biol Open 2019; 8:bio.044370. [PMID: 31285269 PMCID: PMC6737973 DOI: 10.1242/bio.044370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Development of the vertebrate central nervous system involves the co-ordinated differentiation of progenitor cells and the establishment of functional neural networks. This neurogenic process is driven by both intracellular and extracellular cues that converge on the mammalian target of rapamycin complex 1 (mTORC1). Here we demonstrate that mTORC1-signalling mediates multi-faceted roles during central nervous system development using the mouse retina as a model system. Downregulation of mTORC1-signalling in retinal progenitor cells by conditional ablation of Rptor leads to proliferation deficits and an over-production of retinal ganglion cells during embryonic development. In contrast, reduced mTORC1-signalling in postnatal animals leads to temporal deviations in programmed cell death and the consequent production of asymmetric retinal ganglion cell mosaics and associated loss of axonal termination topographies in the dorsal lateral geniculate nucleus of adult mice. In combination these developmental defects induce visually mediated behavioural deficits. These collective observations demonstrate that mTORC1-signalling mediates critical roles during visual pathway development and function. Summary: Conditional deletion of Rptor in retinal progenitor cells demonstrates that mTORC1-signalling is critical for visual pathway development and function.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Anna-Carin Hägglund
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|