1
|
Leuenberger N, Jan N, Kuuranne T, Castella V. Characterization of DNA concentration in urine and dried blood samples to detect the c.577 deletion within the EPO gene. Drug Test Anal 2024; 16:1225-1233. [PMID: 38247130 DOI: 10.1002/dta.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
The EPO gene variant, c.577del (VAR-EPO), was discovered in the Chinese population in 2021. The mutated protein is naturally present in urine from individuals heterozygous for the variant. Electrophoresis methods currently applied in anti-doping laboratories produce a pattern in samples from individuals carrying VAR-EPO that cannot be unambiguously distinguished from individuals who received recombinant EPO doses. Consequently, the analysis of blood samples is obligatory to facilitate interpretation of suspicious findings from urine samples. However, this complicates the process and delays the reporting. Objective of this study was to develop EPO c.577del detection in urine and dried blood samples (DBS) in order to facilitate and accelerate EPO results management. Moreover, estimation of the success rate of sequencing regarding concentration of DNA in urine and DBS was evaluated. Conclusive results regarding Sanger sequencing were obtained for all samples with DNA concentrations above 0.024 ng/μL DNA in 80% of urines samples from volunteers. The potential success of DNA sequencing rate in athletes' urines was investigated. A total of 191 urine samples were considered. DNA concentration exceeding 0.024 ng/μL was detected in 85% of the samples. Interestingly, in-competition samples had a significantly higher DNA concentration than out-of-competition male urine samples (0.330 vs. 0.084 ng/μL). Moreover, conclusive EPO sequences were obtained for 100% of DBS (cellulose and polymer matrices). In conclusion, method for detection of EPO gene variant was developed in urine and DBS. Characterization of DNA concentration was performed in order to evaluate the probability of success of sequencing EPO gene in anti-doping field.
Collapse
Affiliation(s)
- Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jan
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Castella
- Forensic Genetics Unit, University Center of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Naumann N, Walpurgis K, Rubio A, Thomas A, Paßreiter A, Thevis M. Detection of doping control sample substitutions via single nucleotide polymorphism-based ID typing. Drug Test Anal 2023; 15:1521-1533. [PMID: 37946680 DOI: 10.1002/dta.3597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
The authenticity of a doping control sample is a key element of sports drug testing programmes. Doping control sample manipulation by providing another individual's urine or blood (instead of the tested athlete's sample) has been observed in the past and is an unequivocal violation of the World Anti-Doping Agency anti-doping rules. To determine attempts of manipulations by sample swapping, the utility of a single nucleotide polymorphism (SNP)-based sample authentication with a multi-target SNP panel was assessed. The panel comprises detection assays for 44 different SNPs, 3 gender markers and 5 quality control markers for DNA-profile determination. Sample analysis is based on a multiplex polymerase chain reaction step followed by a multiplex single base extension (SBE) reaction and subsequent SBE-product detection by MALDI-TOF MS. Panel performance was evaluated for urine and dried blood spot (DBS) samples. Urine (8 ml) and DBS (20 μl) test samples were reliably typed and matched to whole blood reference samples, while efficient typing of urine samples correlated with sample quality and input amounts. Robust profiling of urine doping control specimens was confirmed with an assay input of 12 ml. Samples can be processed in a high-throughput format with an overall assay turnaround time of approximately 11 h. SNP-based DNA typing via MALDI-TOF MS thus represents a high throughput-capable possibility for doping control sample authentication. SNP profiling of samples could offer the opportunity to complement existing steroid profile analytics to substantiate sample manipulations and to support quality control processes in high throughput routine settings.
Collapse
Affiliation(s)
- Nana Naumann
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Ana Rubio
- Laboratory Medicine, Hospital Universitario Son Espases, Palma, Spain
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Alina Paßreiter
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
3
|
Heaton C, Clement S, Kelly PF, King RSP, Reynolds JC. Differentiation of Body Fluid Stains Using a Portable, Low-Cost Ion Mobility Spectrometry Device-A Pilot Study. Molecules 2023; 28:6533. [PMID: 37764309 PMCID: PMC10534372 DOI: 10.3390/molecules28186533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The identification and recovery of suspected human biofluid evidence can present a bottleneck in the crime scene investigation workflow. Crime Scene Investigators typically deploy one of a number of presumptive enhancement reagents, depending on what they perceive an analyte to be; the selection of this reagent is largely based on the context of suspected evidence and their professional experience. Positively identified samples are then recovered to a forensic laboratory where confirmatory testing is carried out by large lab-based instruments, such as through mass-spectrometry-based techniques. This work proposes a proof-of-concept study into the use of a small, robust and portable ion mobility spectrometry device that can analyse samples in situ, detecting, identifying and discriminating commonly encountered body fluids from interferences. This analysis exploits the detection and identification of characteristic volatile organic compounds generated by gentle heating, at ambient temperature and pressure, and categorises samples using machine learning, providing investigators with instant identification. The device is shown to be capable of producing characteristic mobility spectra using a dual micro disc pump configuration which separates blood and urine from three visually similar interferences using an unsupervised PCA model with no misclassified samples. The device has the potential to reduce the need for potentially contaminating and destructive presumptive tests, and address the bottleneck created by the time-consuming and laborious detection, recovery and analysis workflow currently employed.
Collapse
Affiliation(s)
- Cameron Heaton
- Foster + Freeman, Evesham WR11 1TD, UK; (S.C.); (R.S.P.K.)
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; (P.F.K.); (J.C.R.)
| | - Simon Clement
- Foster + Freeman, Evesham WR11 1TD, UK; (S.C.); (R.S.P.K.)
| | - Paul F. Kelly
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; (P.F.K.); (J.C.R.)
| | | | - James C. Reynolds
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK; (P.F.K.); (J.C.R.)
| |
Collapse
|
4
|
Grignani P, Manfredi A, Monti MC, Moretti M, Morini L, Visonà SD, Fattorini P, Previderè C. GENETIC INDIVIDUAL IDENTIFICATION FROM DRIED URINE SPOTS (DUS): A COMPLEMENTARY TOOL TO DRUG MONITORING AND ANTI DOPING TESTING. Drug Test Anal 2022; 14:1234-1243. [PMID: 35195361 PMCID: PMC9540579 DOI: 10.1002/dta.3243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
The collection of liquid biological matrices onto paper cards (dried matrix spots [DMS]) is becoming an alternative sampling strategy. The stability over time of molecules of interest for therapeutic, sport drug monitoring, and forensic toxicology on DMS has been recently investigated representing a reliable alternative to conventional analytical techniques. When a tampering of a urine sample in drug monitoring or doping control cases is suspected, it could be relevant to know whether genetic profiles useful for individual identification could be generated from urine samples spotted onto paper (dried urine spot [DUS]). To understand the influence of sex, storage conditions, and time on the quality and quantity of the DNA, five female and ten male urine samples were dispensed onto Whatman 903 paper and sampled after different storage conditions over time, from 1 to 12 weeks. Direct PCR was performed starting from 2‐mm punches collected from each spot amplifying a panel of markers useful for individual identification. The female DUS stored in different conditions produced genetic profiles fully matching the reference samples. The same result was obtained for the male DUS but using urine 30X concentrated by centrifugation instead of the original samples. Our data show that this approach is valid for genetic individual identification of urine samples spotted onto paper cards up to 12 weeks after deposition and could be easily incorporated in anti‐doping or drug screening protocols to help on the suspicion of evidence tampering or to solve questions on the reliability of samples collection.
Collapse
Affiliation(s)
- Pierangela Grignani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Alessandro Manfredi
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Matteo Moretti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Luca Morini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Carlo Previderè
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| |
Collapse
|
5
|
Podolskiy II, Mochalova ES, Temerdashev AZ, Gashimova EM. Application of Statistical Data Analysis Methods to Test the Degradation of Urine Samples for Doping Control Purposes. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nauwelaerts SJD, Van Geel D, Delvoye M, De Cremer K, Bernard A, Roosens NHC, De Keersmaecker SCJ. Selection of a Noninvasive Source of Human DNA Envisaging Genotyping Assays in Epidemiological Studies: Urine or Saliva? J Biomol Tech 2021; 31:27-35. [PMID: 32042275 DOI: 10.7171/jbt.20-3101-004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic epidemiology requires an appropriate approach to measure genetic variation within the population. The aim of this study was to evaluate the characteristics and genotyping results of DNA extracted from 2 human DNA sources, selected for their rapid and noninvasive sampling, and the use of simple and standardized protocols that are essential for large-scale epidemiologic studies. Saliva and urine samples were collected at the same day from 20 subjects aged 9-10 yr. Genomic DNA was extracted using commercial kits. Quantitative and qualitative evaluation was done by assessing the yield, the purity, and integrity of the extracted DNA. As a proof-of-concept, genotyping was performed targeting CC16 A38G and uteroglobin-related protein 1 (UGRP1)-112G/A. Saliva was found to provide the highest yield and concentration of total DNA extracted. Salivary DNA showed higher purity and a significantly less degraded state compared to urinary DNA. Consequently, the salivary DNA gave better genotyping results than urinary DNA. Therefore, if the choice exists, saliva is the preferred noninvasive matrix for genotyping purposes in large-scale genetic epidemiologic studies. Only in particular cases using urine could nevertheless be considered useful, although specific limitations need to be taken into account.
Collapse
Affiliation(s)
- Sarah J D Nauwelaerts
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain Woluwe, 1200 Brussels, Belgium
| | - Dirk Van Geel
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | - Maud Delvoye
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | - Koen De Cremer
- Platform Chromatography and Mass Spectrometry, Sciensano, 1050 Brussels, Belgium; and
| | - Alfred Bernard
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain Woluwe, 1200 Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | | |
Collapse
|
7
|
Voss S, Abushreeda W, Vonaparti A, Al-Wahaibi A, Al-Sowaidi N, Al-Mohannadi I, Mahieddine S, Khelifi S, Salama S, Saleh A, Al-Mohannadi M, El-Saftawy W, Al-Hamad K, Nofal A, Dbes N, Aguilera R, Al Maadheed M, Georgakopoulos C. Biosafety Level 2 cabinet UV-C light exposure of sports antidoping human urine samples does not affect the stability of selected prohibited substances. Drug Test Anal 2020; 13:460-465. [PMID: 33119942 DOI: 10.1002/dta.2954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/07/2020] [Accepted: 10/17/2020] [Indexed: 11/09/2022]
Abstract
The current study examined the stability of several antidoping prohibited substances analytes in urine after 15-min exposure to UV-C light in a Biosafety Level 2 cabinet. The urine matrices were exposed within the original antidoping bottles with the aim to destroy DNA/RNA and possible SARS CoV-2. The analytes small molecules Phase I and Phase II metabolites and peptides, in total 444, endogenous, internal standards, and prohibited substances, pH, and specific gravity in urine were studied. The accredited analytical methods were used by Anti-Doping Laboratory Qatar for the comparison of data of the same urine samples analyzed with and without UV-C exposure. In the study conditions, no problems of stability were detected in the substances spiked in the urine samples exposed in the UV-C irradiation.
Collapse
Affiliation(s)
- Sven Voss
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | | | | | | | | | | | | | | | | | - Amal Saleh
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | | | | | | | | | - Najib Dbes
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | | | | | | |
Collapse
|
8
|
Ragazzo M, Carboni S, Caputo V, Buttini C, Manzo L, Errichiello V, Puleri G, Giardina E. Interpreting Mixture Profiles: Comparison between Precision ID GlobalFiler™ NGS STR Panel v2 and Traditional Methods. Genes (Basel) 2020; 11:E591. [PMID: 32466613 PMCID: PMC7349666 DOI: 10.3390/genes11060591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/28/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Forensic investigation for the identification of offenders, recognition of human remains, and verification of family relationships requires the analysis of particular types of highly informative DNA markers, which have high discriminatory power and are efficient for typing degraded samples. These markers, called STRs (Short Tandem Repeats), can be amplified by multiplex-PCR (Polymerase Chain Reaction) allowing attainment of a unique profile through which it is possible to distinguish one individual from another with a high statistical significance. The rapid and progressive evolution of analytical techniques and the advent of Next-Generation Sequencing (NGS) have completely revolutionized the DNA sequencing approach. This technology, widely used today in the diagnostic field, has the advantage of being able to process several samples in parallel, producing a huge volume of data in a short time. At this time, although default parameters of interpretation software are available, there is no general agreement on the interpretation rules of forensic data produced via NGS technology. Here we report a pilot study aimed for a comparison between NGS (Precision ID GlobalFiler™ NGS STR Panel v2, Thermo Fisher Scientific, Waltham, MA, USA) and traditional methods in their ability to identify major and minor contributors in DNA mixtures from saliva and urine samples. A quantity of six mixed samples were prepared for both saliva and urine samples from donors. A total of 12 mixtures were obtained in the ratios of 1:2; 1:4; 1:6; 1:8; 1:10; and 1:20 between minor and major contributors. Although the number of analyzed mixtures is limited, our results confirm that NGS technology offers a huge range of additional information on samples, but cannot ensure a higher sensitivity in respect to traditional methods. Finally, the Precision ID GlobalFiler™ NGS STR Panel v2 is a powerful method for kinship analyses and typing reference samples, but its use in biological evidence should be carefully considered on the basis of the characteristics of the evidence.
Collapse
Affiliation(s)
- Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
| | - Stefania Carboni
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation IRCCS, 00142 Rome, Italy;
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
| | - Carlotta Buttini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
| | - Laura Manzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
| | - Valeria Errichiello
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
| | - Giulio Puleri
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.); (C.B.); (L.M.); (V.E.); (G.P.)
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation IRCCS, 00142 Rome, Italy;
| |
Collapse
|
9
|
A Fluorescence Sensing Method with Reduced DNA Typing and Low-Cost Instrumentation for Detection of Sample Tampering Cases in Urinalysis. Ann Biomed Eng 2019; 48:644-654. [PMID: 31624980 DOI: 10.1007/s10439-019-02386-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
This work presents a method to unequivocally detect urine sample tampering in cases where integrity of the sample needs to be verified prior to urinalysis. The technique involves the detection of distinct patterns of a triplex short tandem repeats system in DNA extracted from human urine. The analysis is realized with single-dye fluorescence detection and using a regular smartphone camera. The experimental results had demonstrated the efficacy of the analytical approach to obtaining distinct profiles of amplicons in urine from different sample providers. Reproducibility tests with fresh and stored urine have revealed a maximum variation in the profiles within an interval of 5 to 9%. Cases of urine sample tampering via mixture were simulated in the study, and the experiments have identified patterns of mixed genotypes from dual mixtures of urine samples. Moreover, sample adulteration by mixing a non-human fluid with urine in a volume ratio over 25% can be detected. The low cost of the approach is accompanied by the compatibility of the technique to use with different DNA sample preparation protocols and PCR instrumentation. Furthermore, the possibility of realizing the method in an integrated microchip system open great perspectives to conducting sample integrity tests at the site of urine sample reception and/or at resource-limited settings.
Collapse
|
10
|
Aoki K, Tanaka H, Kawahara T. Multiplexed Microsphere Suspension-Array Assay for Urine Mitochondrial DNA Typing by C-Stretch Length in Hypervariable Regions. J Clin Med Res 2018; 10:552-561. [PMID: 29904439 PMCID: PMC5997413 DOI: 10.14740/jocmr3302w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/10/2018] [Indexed: 11/11/2022] Open
Abstract
Background The standard method for personal identification and verification of urine samples in doping control is short tandem repeat (STR) analysis using nuclear DNA (nDNA). The DNA concentration of urine is very low and decreases under most conditions used for sample storage; therefore, the amount of DNA from cryopreserved urine samples may be insufficient for STR analysis. We aimed to establish a multiplexed assay for urine mitochondrial DNA typing containing only trace amounts of DNA, particularly for Japanese populations. Methods A multiplexed suspension-array assay using oligo-tagged microspheres (Luminex MagPlex-TAG) was developed to measure C-stretch length in hypervariable region 1 (HV1) and 2 (HV2), five single nucleotide polymorphisms (SNPs), and one polymorphic indel. Based on these SNPs and the indel, the Japanese population can be classified into five major haplogroups (D4, B, M7a, A, D5). The assay was applied to DNA samples from urine cryopreserved for 1 - 1.5 years (n = 63) and fresh blood (n = 150). Results The assay with blood DNA enabled Japanese subjects to be categorized into 62 types, exhibiting a discriminatory power of 0.960. The detection limit for cryopreserved urine was 0.005 ng of nDNA. Profiling of blood and urine pairs revealed that 5 of 63 pairs showed different C-stretch patterns in HV1 or HV2. Conclusions The assay described here yields valuable information in terms of the verification of urine sample sources employing only trace amounts of recovered DNA. However, blood cannot be used as a reference sample.
Collapse
Affiliation(s)
- Kimiko Aoki
- Anti-doping Research Laboratory, Japan Chemical Analysis Center, 6-39-4, Minami Senju, Arakawa-ku, Tokyo, 116-0003, Japan.,Nihon Pharmaceutical University, 10281, Komuro, Inamachi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroyuki Tanaka
- Anti-doping Research Laboratory, Japan Chemical Analysis Center, 6-39-4, Minami Senju, Arakawa-ku, Tokyo, 116-0003, Japan
| | - Takashi Kawahara
- Anti-doping Research Laboratory, Japan Chemical Analysis Center, 6-39-4, Minami Senju, Arakawa-ku, Tokyo, 116-0003, Japan
| |
Collapse
|