1
|
Guan D, Bruce AEE. In preprints: expanded insight into epithelial spreading during zebrafish epiboly. Development 2025; 152:dev204890. [PMID: 40337795 DOI: 10.1242/dev.204890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Affiliation(s)
- Donna Guan
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3G5, Canada
| |
Collapse
|
2
|
Moses RL, Woods EL, Dally J, Johns JP, Knäuper V, Boyle GM, Gordon V, Reddell P, Steadman R, Moseley R. Epoxytiglianes induce keratinocyte wound healing responses via classical protein kinase C activation to promote skin re-epithelialization. Biochem Pharmacol 2024; 230:116607. [PMID: 39489221 DOI: 10.1016/j.bcp.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Epoxytiglianes are a novel class of diterpene esters. The prototype epoxytigliane, EBC-46 (tigilanol tiglate), is a potent anti-cancer agent in clinical development for local treatment of a range of human and animal tumors. EBC-46 also consistently promotes wound re-epithelialization at the treatment sites, mediated via activation of classical protein kinase C (PKC) isoforms. We have previously shown that epoxytiglianes stimulate proliferative and wound repopulation responses in immortalized human skin keratinocytes (HaCaTs) in vitro, abrogated by pan-PKC inhibitor, bisindolylmaleimide-1. In this study, we further investigate the specific PKC isoforms responsible for inducing such wound healing responses, following HaCaT treatment with 1.51 nM-15.1 µM EBC-46 or analogue, EBC-211. Classical PKC inhibition by GӦ6976 (1 μM), significantly attenuated epoxytigliane induced, HaCaT proliferation and wound repopulation at all epoxytigliane concentrations. PKC-βI/-βII isoform inhibition by enzastaurin (1 μM), significantly inhibited HaCaT proliferation and wound repopulation responses induced by both epoxytiglianes, especially at 1.51-151 nM. PKC-α inhibitor, Ro 31-8220 mesylate (10 nM), exerted lesser inhibitory effects on HaCaT responses. Epoxytigliane changes in key keratin (KRT17) and cell cycle (cyclin B1, CDKN1A) protein levels were partly attenuated by GӦ6976 and enzastaurin. GӦ6976 also inhibited increases in matrix metalloproteinase (MMP-1, MMP-7, MMP-10) activities. Phospho-PKC (p-PKC) studies confirmed that epoxytiglianes transiently activated classical PKC isoforms (p-PKCα, p-PKC-βI/-βII, p-PKCγ) in a dose- and time-dependent manner. By identifying how epoxytiglianes stimulate classical PKCs to facilitate keratinocyte healing responses and re-epithelialization, these findings support further epoxytigliane development as topical therapeutics for clinical situations involving impaired re-epithelialization, such as non-healing wounds in skin.
Collapse
Affiliation(s)
- Rachael L Moses
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK; Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Emma L Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vera Knäuper
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
3
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
4
|
Tomasso A, Disela V, Longaker MT, Bartscherer K. Marvels of spiny mouse regeneration: cellular players and their interactions in restoring tissue architecture in mammals. Curr Opin Genet Dev 2024; 87:102228. [PMID: 39047585 DOI: 10.1016/j.gde.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Understanding the cellular and molecular determinants of mammalian tissue regeneration and repair is crucial for developing effective therapies that restore tissue architecture and function. In this review, we focus on the cell types involved in scarless wound response and regeneration of spiny mice (Acomys). Comparative -omics approaches with scar-prone mammals have revealed species-specific peculiarities in cellular behavior during the divergent healing trajectories. We discuss the developing views on which cell types engage in restoring the architecture of spiny mouse tissues through a co-ordinated spatiotemporal response to injury. While yet at the beginning of understanding how cells interact in these fascinating animals to regenerate tissues, spiny mice hold great promise for scar prevention and anti-fibrotic treatments.
Collapse
Affiliation(s)
- Antonio Tomasso
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA; Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@anto_tomasso
| | - Vanessa Disela
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@VDisela
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA. https://twitter.com/@LongakerLab
| | - Kerstin Bartscherer
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany.
| |
Collapse
|
5
|
McCauley KB, Kukreja K, Tovar Walker AE, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. Cell Syst 2024; 15:307-321.e10. [PMID: 38508187 PMCID: PMC11031335 DOI: 10.1016/j.cels.2024.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal cell and secretory cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell-cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine B McCauley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA; Disease Area X, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Aron B Jaffe
- Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Abel TR, Kosarek NN, Parvizi R, Jarnagin H, Torres GM, Bhandari R, Huang M, Toledo DM, Smith A, Popovich D, Mariani MP, Yang H, Wood T, Garlick J, Pioli PA, Whitfield ML. Single-cell epigenomic dysregulation of Systemic Sclerosis fibroblasts via CREB1/EGR1 axis in self-assembled human skin equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586316. [PMID: 38585776 PMCID: PMC10996484 DOI: 10.1101/2024.03.22.586316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-β1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.
Collapse
|
7
|
Ganier C, Mazin P, Herrera-Oropeza G, Du-Harpur X, Blakeley M, Gabriel J, Predeus AV, Cakir B, Prete M, Harun N, Darrigrand JF, Haiser A, Wyles S, Shaw T, Teichmann SA, Haniffa M, Watt FM, Lynch MD. Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma. Proc Natl Acad Sci U S A 2024; 121:e2313326120. [PMID: 38165934 PMCID: PMC10786309 DOI: 10.1073/pnas.2313326120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/04/2024] Open
Abstract
Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this, we have created a multiscale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single-cell RNA sequencing, spatial global transcriptional profiling, and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.
Collapse
Affiliation(s)
- Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Gabriel Herrera-Oropeza
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, LondonSE1 1UL, United Kingdom
| | - Xinyi Du-Harpur
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
- The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Matthew Blakeley
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Jeyrroy Gabriel
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Alexander V. Predeus
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
| | - Nasrat Harun
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Jean-Francois Darrigrand
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Alexander Haiser
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| | - Saranya Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN55905
| | - Tanya Shaw
- Centre for Inflammation Biology and Cancer Immunology, King’s College London, LondonSE1 1UL, United Kingdom
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, United Kingdom
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Service Foundation Trust, Newcastle upon TyneNE1 4LP, United Kingdom
| | - Fiona M. Watt
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
- Directors’ Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Magnus D. Lynch
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
- St. John’s Institute of Dermatology, King’s College London, Guy’s Hospital, LondonSE1 9RT, United Kingdom
| |
Collapse
|
8
|
Liarte S, Bernabé-García Á, Rodríguez-Valiente M, Moraleda JM, Castellanos G, Nicolás FJ. Amniotic Membrane Restores Chronic Wound Features to Normal in a Keratinocyte TGF-β-Chronified Cell Model. Int J Mol Sci 2023; 24:ijms24076210. [PMID: 37047181 PMCID: PMC10094701 DOI: 10.3390/ijms24076210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Unsuccessful wound closure in chronic wounds can be linked to altered keratinocyte activation and their inability to re-epithelize. Suggested mechanisms driving this impairment involve unbalanced cytokine signaling. However, the molecular events leading to these aberrant responses are poorly understood. Among cytokines affecting keratinocyte responses, Transforming Growth Factor-β (TFG-β) is thought to have a great impact. In this study, we have used a previously characterized skin epidermal in vitro model, HaCaT cells continuously exposed to TGF-β1, to study the wound recovery capabilities of chronified/senescent keratinocytes. In this setting, chronified keratinocytes show decreased migration and reduced activation in response to injury. Amniotic membrane (AM) has been used successfully to manage unresponsive complicated wounds. In our in vitro setting, AM treatment of chronified keratinocytes re-enabled migration in the early stages of wound healing, also promoting proliferation at later stages. Interestingly, when checking the gene expression of markers known to be altered in TGF-β chronified cells and involved in cell cycle regulation, early migratory responses, senescence, and chronic inflammation, we discovered that AM treatment seemed to reset back to keratinocyte status. The analysis of the evolution of both the levels of keratinocyte activation marker cytokeratin 17 and the spatial-temporal expression pattern of the proliferation marker Ki-67 in human in vivo biopsy samples suggests that responses to AM recorded in TGF-β chronified HaCaT cells would be homologous to those of resident keratinocytes in chronic wounds. All these results provide further evidence that sustained TGF-β might play a key role in wound chronification and postulate the validity of our TGF-β chronified HaCaT in vitro model for the study of chronic wound physiology.
Collapse
|
9
|
SOX2 Is a Univocal Marker for Human Oral Mucosa Epithelium Useful in Post-COMET Patient Characterization. Int J Mol Sci 2022; 23:ijms23105785. [PMID: 35628593 PMCID: PMC9144017 DOI: 10.3390/ijms23105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Total bilateral Limbal Stem Cells Deficiency is a pathologic condition of the ocular surface due to loss or impairment of corneal stem cell function, altering homeostasis of the corneal epithelium. Cultivated Oral Mucosa Epithelial Transplantation (COMET) is the only autologous treatment for this pathology. During the follow-up, a proper characterization of the transplanted oral mucosa on the ocular surface supports understanding the regenerative process. The previously proposed markers for oral mucosa identification (e.g., keratins 3 and 13) are co-expressed by corneal and conjunctival epithelia. Here, we propose a new specific marker to distinguish human oral mucosa from the epithelia of the ocular surface. We compared the transcriptome of holoclones (stem cells) from the human oral mucosa, limbal and conjunctival cultures by microarray assay. High expression of SOX2 identified the oral mucosa vs. cornea and conjunctiva, while PAX6 was highly expressed in corneal and conjunctival epithelia. The transcripts were validated by qPCR, and immunological methods identified the related proteins. Finally, the proposed markers were used to analyze a 10-year follow-up aniridic patient treated by COMET. These findings will support the follow-up analysis of COMET treated patients and help to shed light on the mechanism of corneal repair and regeneration.
Collapse
|
10
|
Yang LL, Jiang B, Chen SH, Liu HY, Chen TT, Huang LH, Yang M, Ding J, He JJ, Li JJ, Yu B. Abnormal keratin expression pattern in prurigo nodularis epidermis. SKIN HEALTH AND DISEASE 2022; 2:e75. [PMID: 35665210 PMCID: PMC9060049 DOI: 10.1002/ski2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Background Prurigo nodularis (PN) is a highly pruritic, chronic dermatosis and difficult to treat. PN lesions are characterized by existence of many hyperkeratotic, erosive papules and nodules. However, the pathogenesis of PN still remains unelucidated. Aim To clarify the keratin role in the epidermis hyperproliferation, the keratin expression pattern in the PN lesional skin. Methods In this study, we enrolled 24 patients with PN and 9 healthy control volunteers. K1/K10, K5/K14, K6/K16/K17 expression pattern were investigated by using immunohistochemical staining. Results The lesional skin consists of the thickened spinous layers, in which active cell division was found. K5/K14 were upregulated in PN lesional epidermis, the staining signal localized in the basal layer and lower suprabasal layers. Hyperproliferation‐associated K6 was found in all layers of epidermal lesional skin, especially in the spinous layers. In contrast, K16 was only detected in the basal and lower suprabasal layers, K17 was observed in the basal and spinous layers. Terminal differential keratins K1/K10 were upregulated, detected in the pan‐epidermis, but spared in the basal and low suprabasal layers. Conclusion The keratinocytes enter an alternative differentiation pathway, which are responsible for the activated keratinocyte phenotype, abnormal keratins expression potentially contributes to the keratinocytes proliferation, subsequently lead to increased lesional skin epidermis thickness, hyperkeratiosis and alteration of skin barrier properties.
Collapse
Affiliation(s)
- L L Yang
- Department of Dermatology Peking University Shenzhen Hospital Shenzhen Guangdong China.,Huzhou Center Hospital Huzhou China
| | - B Jiang
- Department of Dermatology Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - S H Chen
- Department of Dermatology Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - H Y Liu
- Department of Dermatology Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - T T Chen
- Department of Dermatology Affiliated Shenzhen Longhua People's Hospital of Southern Medical University Shenzhen Guangdong China
| | - L H Huang
- Guanghe Hui Shenzhen Guangdong China
| | - M Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong China
| | - J Ding
- Department of Dermatology Shenzhen Baoan Maternal and Child Health Hospital Shenzhen Guangdong China
| | - J J He
- Department of Plastic and Cosmetic Surgery Peking University Shenzhen Hospital Shenzhen Guangzhou China
| | - J J Li
- Department of Dermatology Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - B Yu
- Department of Dermatology Peking University Shenzhen Hospital Shenzhen Guangdong China
| |
Collapse
|
11
|
Zhang H, Zhang Y, Xia T, Lu L, Luo M, Chen Y, Liu Y, Li Y. The Role of Keratin17 in Human Tumours. Front Cell Dev Biol 2022; 10:818416. [PMID: 35281081 PMCID: PMC8912659 DOI: 10.3389/fcell.2022.818416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Keratins are a group of proteins that can constitute intermediate fibers. It is a component of the cytoskeleton and plays an important role in cell protection and structural support. Keratin 17, a Type I keratin, is a multifunctional protein that regulates a variety of biological processes, including cell growth, proliferation, migration, apoptosis and signal transduction. Abnormal expression of KRT17 is associated with a variety of diseases, such as skin diseases. In recent years, studies have shown that KRT17 is abnormally expressed in a variety of malignant tumours, such as lung cancer, cervical cancer, oral squamous cell carcinoma and sarcoma. These abnormal expressions are related to the occurrence, development and prognosis of malignant tumors. In this review, we summarized the expression patterns of KRT17 in a variety of malignant tumours, the role of KRT17 in the development and prognosis of different malignant tumors and its molecular mechanisms. We also discuss the potential clinical application of KRT17 as a valuable therapeutic target.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yun Zhang
- Department of Pathology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Tingting Xia
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| |
Collapse
|
12
|
Pang B, Zhu Z, Xiao C, Luo Y, Fang H, Bai Y, Sun Z, Ma J, Dang E, Wang G. Keratin 17 Is Required for Lipid Metabolism in Keratinocytes and Benefits Epidermal Permeability Barrier Homeostasis. Front Cell Dev Biol 2022; 9:779257. [PMID: 35096815 PMCID: PMC8790522 DOI: 10.3389/fcell.2021.779257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
The epidermal barrier refers to the stratum corneum, the uppermost layer of the skin, and constitutes the first line of defense against invasion by potentially harmful pathogens, diminishes trans-epidermal water loss, and plays a crucial role in the maintenance of skin homeostasis. Keratin 17 (K17) is a type I epithelial keratin with multiple functions, including in skin inflammation, epithelial cell growth, protein synthesis, and tumorigenesis. However, the relationship between K17 and the skin barrier has yet to be systematically investigated. In this study, we found that acute disruption of the epidermal permeability barrier led to a rapid increase in epidermal K17 expression in vivo. Krt17 gene deficiency in mice resulted in decreased expression of lipid metabolism-related enzymes and antimicrobial peptides, while also delaying epidermal permeability barrier recovery after acute disruption. Adenovirus-mediated overexpression of K17 enhanced, whereas siRNA-mediated knockdown of Krt17 inhibited, the expression of fatty acid synthase (FASN) and that of the transcription factors SREBP-1 and PPARγ in vitro. We further confirmed that K17 can facilitate the nuclear transportation of SREBP-1 and PPARγ and promote lipid synthesis in keratinocytes. This study demonstrated that K17 contributes to the restoration of the epidermal permeability barrier via stabilizing lipid metabolism in keratinocytes.
Collapse
Affiliation(s)
- Bingyu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhongbin Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyi Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Ho M, Thompson B, Fisk JN, Nebert DW, Bruford EA, Vasiliou V, Bunick CG. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum Genomics 2022; 16:1. [PMID: 34991727 PMCID: PMC8733776 DOI: 10.1186/s40246-021-00374-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Intermediate filament (IntFil) genes arose during early metazoan evolution, to provide mechanical support for plasma membranes contacting/interacting with other cells and the extracellular matrix. Keratin genes comprise the largest subset of IntFil genes. Whereas the first keratin gene appeared in sponge, and three genes in arthropods, more rapid increases in keratin genes occurred in lungfish and amphibian genomes, concomitant with land animal-sea animal divergence (~ 440 to 410 million years ago). Human, mouse and zebrafish genomes contain 18, 17 and 24 non-keratin IntFil genes, respectively. Human has 27 of 28 type I "acidic" keratin genes clustered at chromosome (Chr) 17q21.2, and all 26 type II "basic" keratin genes clustered at Chr 12q13.13. Mouse has 27 of 28 type I keratin genes clustered on Chr 11, and all 26 type II clustered on Chr 15. Zebrafish has 18 type I keratin genes scattered on five chromosomes, and 3 type II keratin genes on two chromosomes. Types I and II keratin clusters-reflecting evolutionary blooms of keratin genes along one chromosomal segment-are found in all land animal genomes examined, but not fishes; such rapid gene expansions likely reflect sudden requirements for many novel paralogous proteins having divergent functions to enhance species survival following sea-to-land transition. Using data from the Genotype-Tissue Expression (GTEx) project, tissue-specific keratin expression throughout the human body was reconstructed. Clustering of gene expression patterns revealed similarities in tissue-specific expression patterns for previously described "keratin pairs" (i.e., KRT1/KRT10, KRT8/KRT18, KRT5/KRT14, KRT6/KRT16 and KRT6/KRT17 proteins). The ClinVar database currently lists 26 human disease-causing variants within the various domains of keratin proteins.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Jeffrey Nicholas Fisk
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Daniel W Nebert
- Departments of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, Cincinnati, OH, 45229, USA
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Baraks G, Tseng R, Pan CH, Kasliwal S, Leiton CV, Shroyer KR, Escobar-Hoyos LF. Dissecting the Oncogenic Roles of Keratin 17 in the Hallmarks of Cancer. Cancer Res 2021; 82:1159-1166. [PMID: 34921015 PMCID: PMC9016724 DOI: 10.1158/0008-5472.can-21-2522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Gabriella Baraks
- Undergraduate Program in Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Robert Tseng
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Chun-Hao Pan
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Molecular and Cellular Biology Graduate Program, Stony Brook University, New York
| | - Saumya Kasliwal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Cindy V. Leiton
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| | - Kenneth R. Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Corresponding Authors: Kenneth R. Shroyer, Pathology, Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794. Phone: 631-444-3000; E-mail: Kenneth.; and Luisa F. Escobar-Hoyos, 15 York Street PO Box 208040, New Haven, CT 06513. Phone: 203-737-2003; E-mail:
| | - Luisa F. Escobar-Hoyos
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
- Department of Therapeutic Radiology and Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Corresponding Authors: Kenneth R. Shroyer, Pathology, Stony Brook University, 101 Nicolls Rd, Stony Brook, NY 11794. Phone: 631-444-3000; E-mail: Kenneth.; and Luisa F. Escobar-Hoyos, 15 York Street PO Box 208040, New Haven, CT 06513. Phone: 203-737-2003; E-mail:
| |
Collapse
|
15
|
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021; 21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Collective cancer invasion with leader-follower organization is increasingly recognized as a predominant mechanism in the metastatic cascade. Leader cells support cancer invasion by creating invasion tracks, sensing environmental cues and coordinating with follower cells biochemically and biomechanically. With the latest developments in experimental and computational models and analysis techniques, the range of specific traits and features of leader cells reported in the literature is rapidly expanding. Yet, despite their importance, there is no consensus on how leader cells arise or their essential characteristics. In this Perspective, we propose a framework for defining the essential aspects of leader cells and provide a unifying perspective on the varying cellular and molecular programmes that are adopted by each leader cell subtype to accomplish their functions. This Perspective can lead to more effective strategies to interdict a major contributor to metastatic capability.
Collapse
Affiliation(s)
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Elazezy M, Schwentesius S, Stegat L, Wikman H, Werner S, Mansour WY, Failla AV, Peine S, Müller V, Thiery JP, Ebrahimi Warkiani M, Pantel K, Joosse SA. Emerging Insights into Keratin 16 Expression during Metastatic Progression of Breast Cancer. Cancers (Basel) 2021; 13:cancers13153869. [PMID: 34359774 PMCID: PMC8345379 DOI: 10.3390/cancers13153869] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The mechanisms leading to tumor metastasis remain poorly understood, and therefore, phenotyping of circulating tumor cells from cancer patients may contribute to translating these mechanisms. In in silico analysis, high expression of keratin 16 was associated with higher tumor aggressiveness. According to our results, keratin 16 is a metastasis-associated protein that promotes EMT and acts as a positive regulator of cellular motility by reorganizing the actin cytoskeleton, which is the driving force behind disrupting intercellular adhesion and directional migration. In metastatic breast cancer patients, circulating tumor cells expressing keratin 16 were associated with shorter relapse-free survival. This is an important issue for future research to determine the exact function of keratin 16 in tumor dissemination and metastasis development by analyzing keratin 16 status in disseminating tumor cells. Furthermore, gaining a better knowledge of keratin 16’s biology would give crucial mechanistic insights that might lead to a unique treatment option. Abstract Keratins are the main identification markers of circulating tumor cells (CTCs); however, whether their deregulation is associated with the metastatic process is largely unknown. Previously we have shown by in silico analysis that keratin 16 (KRT16) mRNA upregulation might be associated with more aggressive cancer. Therefore, in this study, we investigated the biological role and the clinical relevance of K16 in metastatic breast cancer. By performing RT-qPCR, western blot, and immunocytochemistry, we investigated the expression patterns of K16 in metastatic breast cancer cell lines and evaluated the clinical relevance of K16 expression in CTCs of 20 metastatic breast cancer patients. High K16 protein expression was associated with an intermediate mesenchymal phenotype. Functional studies showed that K16 has a regulatory effect on EMT and overexpression of K16 significantly enhanced cell motility (p < 0.001). In metastatic breast cancer patients, 64.7% of the detected CTCs expressed K16, which was associated with shorter relapse-free survival (p = 0.0042). Our findings imply that K16 is a metastasis-associated protein that promotes EMT and acts as a positive regulator of cellular motility. Furthermore, determining K16 status in CTCs provides prognostic information that helps to identify patients whose tumors are more prone to metastasize.
Collapse
Affiliation(s)
- Maha Elazezy
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
| | - Sandra Schwentesius
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
| | - Luisa Stegat
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
| | - Wael Y. Mansour
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Jean Paul Thiery
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China;
| | | | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.E.); (S.S.); (L.S.); (H.W.); (S.W.); (K.P.)
- Correspondence: ; Tel.: +49-(0)-40-7410-51970
| |
Collapse
|
17
|
Lin Y, Zhang W, Li B, Wang G. Keratin 17 in psoriasis: Current understanding and future perspectives. Semin Cell Dev Biol 2021; 128:112-119. [PMID: 34229948 DOI: 10.1016/j.semcdb.2021.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Keratin 17 (K17) is a multifaceted cytoskeletal protein that is not commonly expressed in the epidermis under normal physiological conditions. However, in psoriasis, K17 is overexpressed in the suprabasal layer of the epidermis and plays an important role in the pathogenesis of the disease. In this review, we have summarized our findings and those reported in other studies concerning the pathogenic functions of K17, as well as the mechanisms underlying the increase in K17 expression in psoriasis. K17 exerts both pro-proliferative and pro-inflammatory effects on keratinocytes. Moreover, K17 peptides trigger autoreactive T cells and promote psoriasis-related cytokine production. In turn, these cytokines modulate the expression, stability, and protein-protein interactions of K17 through transcriptional and translational regulation and post-translational modification of K17 in keratinocytes. Thus, a K17/T-cell/cytokine autoimmune loop is implicated in the pathogenesis of psoriasis, which is supported by the fact that therapies targeting K17 have achieved good outcomes in psoriasis-like mouse models. Future perspectives of K17 in psoriasis have also been discussed to provide potential directions for further studies.
Collapse
Affiliation(s)
- Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Tantengco OAG, Richardson LS, Menon R. Effects of a gestational level of estradiol on cellular transition, migration, and inflammation in cervical epithelial and stromal cells. Am J Reprod Immunol 2020; 85:e13370. [PMID: 33152143 DOI: 10.1111/aji.13370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Estrogen (E2) is one of the main steroid hormones associated with pregnancy and parturition. High levels of E2 increase uterine contractions, promote fetal membrane weakening, and induce degradation of the cervical extracellular matrix (ECM). Current evidence supports the role of E2 in epithelial-to-mesenchymal transition (EMT) and inflammation in different cell types; however, its effects on the cellular components of the cervix are still unknown. METHOD OF STUDY In this study, we assessed the effects of gestational levels of E2 in: (a) the cellular transition of endocervical epithelial cells (EEC) and cervical stromal cells (CSC) in vitro using immunocytochemical staining and Western blot analyses for EMT markers (cytokeratin-18, E-cadherin, N-cadherin, SNAIL, and vimentin); (b) cell migration using in vitro scratch assays; (c) inflammatory cytokine (interleukin 1β and TNF-α) and MMP9 production under untreated and lipopolysaccharide (LPS)-treated conditions using immunoassays. RESULTS E2 treatment and co-treatment with LPS as a proxy for infection maintained the metastate of EEC (expression of both cytokeratin and vimentin) and the mesenchymal state of CSC. E2 delayed wound healing, which mimics the tissue remodeling process, in EEC and CSC. E2 led to persistently elevated levels of vimentin throughout the EEC wound healing process. E2 did not affect inflammatory cytokine production by EEC and CSC but increased MMP9 production by EEC. CONCLUSION Collectively, these results show that third trimester levels of E2 may permit localized inflammation, increase MMP-9 production, and cause an EMT-mediated impairment of the remodeling process in the cervix in vitro. These data suggest a potential contribution of E2 in cervical ripening.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
19
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
20
|
Laskin JD, Wahler G, Croutch CR, Sinko PJ, Laskin DL, Heck DE, Joseph LB. Skin remodeling and wound healing in the Gottingen minipig following exposure to sulfur mustard. Exp Mol Pathol 2020; 115:104470. [PMID: 32445752 DOI: 10.1016/j.yexmp.2020.104470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
Sulfur mustard (SM), a dermal vesicant that has been used in chemical warfare, causes inflammation, edema and epidermal erosions depending on the dose and time following exposure. Herein, a minipig model was used to characterize wound healing following dermal exposure to SM. Saturated SM vapor caps were placed on the dorsal flanks of 3-month-old male Gottingen minipigs for 30 min. After 48 h the control and SM wounded sites were debrided daily for 7 days with wet to wet saline gauze soaks. Animals were then euthanized, and full thickness skin biopsies prepared for histology and immunohistochemistry. Control skin contained a well differentiated epidermis with a prominent stratum corneum. A well-developed eschar covered the skin of SM treated animals, however, the epidermis beneath the eschar displayed significant wound healing with a hyperplastic epidermis. Stratum corneum shedding and a multilayered basal epithelium consisting of cuboidal and columnar cells were also evident in the neoepidermis. Nuclear expression of proliferating cell nuclear antigen (PCNA) was contiguous in cells along the basal epidermal layer of control and SM exposed skin; SM caused a significant increase in PCNA expression in basal and suprabasal cells. SM exposure was also associated with marked changes in expression of markers of wound healing including increases in keratin 10, keratin 17 and loricrin and decreases in E-cadherin. Trichrome staining of control skin showed a well-developed collagen network with no delineation between the papillary and reticular dermis. Conversely, a major delineation was observed in SM-exposed skin including a web-like papillary dermis composed of filamentous extracellular matrix, and compact collagen fibrils in the lower reticular dermis. Although the dermis below the wound site was disrupted, there was substantive epidermal regeneration following SM-induced injury. Further studies analyzing the wound healing process in minipig skin will be important to provide a model to evaluate potential vesicant countermeasures.
Collapse
Affiliation(s)
- Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, United States of America
| | - Gabriella Wahler
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | | | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States of America
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States of America.
| |
Collapse
|
21
|
Gouveia M, Zemljič-Jokhadar Š, Vidak M, Stojkovič B, Derganc J, Travasso R, Liovic M. Keratin Dynamics and Spatial Distribution in Wild-Type and K14 R125P Mutant Cells-A Computational Model. Int J Mol Sci 2020; 21:E2596. [PMID: 32283594 PMCID: PMC7177522 DOI: 10.3390/ijms21072596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal filament network whose structural organization seriously conditions its function. Dynamic keratin particles and aggregates are often observed at the periphery of mutant keratinocytes related to the hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and 14. To account for their emergence in mutant cells, we extended an existing mathematical model of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the keratin distribution inside the cell. This model includes the turnover between soluble, particulate and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly of an intermediate keratin phase into filaments, and demonstrated that this change is enough to account for the loss of keratin filaments in the cell's interior and the emergence of keratin particles at its periphery. The developed mathematical model is also particularly tailored to model the spatial distribution of keratins as the cell changes its shape.
Collapse
Affiliation(s)
- Marcos Gouveia
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Špela Zemljič-Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| | - Biljana Stojkovič
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Rui Travasso
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| |
Collapse
|
22
|
Zhang W, Das P, Kelangi S, Bei M. Potassium channels as potential drug targets for limb wound repair and regeneration. PRECISION CLINICAL MEDICINE 2020; 3:22-33. [PMID: 32257531 PMCID: PMC7093894 DOI: 10.1093/pcmedi/pbz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/02/2022] Open
Abstract
Background Ion channels are a large family of transmembrane proteins, accessible by soluble membrane-impermeable molecules, and thus are targets for development of therapeutic drugs. Ion channels are the second most common target for existing drugs, after G protein-coupled receptors, and are expected to make a big impact on precision medicine in many different diseases including wound repair and regeneration. Research has shown that endogenous bioelectric signaling mediated by ion channels is critical in non-mammalian limb regeneration. However, the role of ion channels in regeneration of limbs in mammalian systems is not yet defined. Methods To explore the role of potassium channels in limb wound repair and regeneration, the hindlimbs of mouse embryos were amputated at E12.5 when the wound is expected to regenerate and E15.5 when the wound is not expected to regenerate, and gene expression of potassium channels was studied. Results Most of the potassium channels were downregulated, except for the potassium channel kcnj8 (Kir6.1) which was upregulated in E12.5 embryos after amputation. Conclusion This study provides a new mouse limb regeneration model and demonstrates that potassium channels are potential drug targets for limb wound healing and regeneration.
Collapse
Affiliation(s)
- Wengeng Zhang
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| | - Pragnya Das
- Center for Regenerative Developmental Biology, The Forsyth Institute, Cambridge, MA 02116, USA
| | - Sarah Kelangi
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| | - Marianna Bei
- Center for Engineering in Medicine, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA
| |
Collapse
|
23
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Bozó R, Szél E, Danis J, Gubán B, Bata-Csörgő Z, Szabó K, Kemény L, Groma G. Cartilage Oligomeric Matrix Protein Negatively Influences Keratinocyte Proliferation via α5β1-Integrin: Potential Relevance of Altered Cartilage Oligomeric Matrix Protein Expression in Psoriasis. J Invest Dermatol 2020; 140:1733-1742.e7. [PMID: 32057837 DOI: 10.1016/j.jid.2019.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
In psoriasis, nonlesional skin shows alterations at the dermal-epidermal junction compared with healthy skin. Cartilage oligomeric matrix protein (COMP) is part of the papillary dermis of healthy skin, and its expression has not yet been studied in psoriatic skin. In this study, we found that COMP localization extended deeper into the dermis and formed a more continuous layer in psoriatic nonlesional skin compared with healthy skin, whereas in psoriatic lesions, COMP showed a partially discontinuous deposition at the dermal-epidermal junction. COMP and β1-integrin showed strong colocalization in nonlesional skin, where the laminin layer within the basement membrane is discontinuous. In in vitro models, the presence of exogenous COMP decreased the proliferation rate of keratinocytes, and this proliferation-suppressing effect was diminished by blocking α5β1-integrin. Our results suggest that COMP can interact with α5β1-integrin of basal keratinocytes through the disrupted basement membrane, and this interaction might stabilize the epidermis in the nonlesional state by contributing to the suppression of keratinocyte proliferation. The antiproliferative effect of COMP is likely to be relevant to other skin diseases in which chronic nonhealing wounds are coupled with massive COMP accumulation.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary
| | - Edit Szél
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary
| | - Judit Danis
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Barbara Gubán
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Kornélia Szabó
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary; HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary.
| |
Collapse
|
25
|
Jozic I, Sawaya AP, Pastar I, Head CR, Wong LL, Glinos GD, Wikramanayake TC, Brem H, Kirsner RS, Tomic-Canic M. Pharmacological and Genetic Inhibition of Caveolin-1 Promotes Epithelialization and Wound Closure. Mol Ther 2019; 27:1992-2004. [PMID: 31409528 PMCID: PMC6838864 DOI: 10.1016/j.ymthe.2019.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wounds-including diabetic foot ulcers, venous leg ulcers, and pressure ulcers-represent a major health problem that demands an urgent solution and new therapies. Despite major burden to patients, health care professionals, and health care systems worldwide, there are no efficacious therapies approved for treatment of chronic wounds. One of the major obstacles in achieving wound closure in patients is the lack of epithelial migration. Here, we used multiple pre-clinical wound models to show that Caveolin-1 (Cav1) impedes healing and that targeting Cav1 accelerates wound closure. We found that Cav1 expression is significantly upregulated in wound edge biopsies of patients with non-healing wounds, confirming its healing-inhibitory role. Conversely, Cav1 was absent from the migrating epithelium and is downregulated in acutely healing wounds. Specifically, Cav1 interacted with membranous glucocorticoid receptor (mbGR) and epidermal growth factor receptor (EGFR) in a glucocorticoid-dependent manner to inhibit cutaneous healing. However, pharmacological disruption of caveolae by MβCD or CRISPR/Cas9-mediated Cav1 knockdown resulted in disruption of Cav1-mbGR and Cav1-EGFR complexes and promoted epithelialization and wound healing. Our data reveal a novel mechanism of inhibition of epithelialization and wound closure, providing a rationale for pharmacological targeting of Cav1 as potential therapy for patients with non-healing chronic wounds.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lulu L Wong
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George D Glinos
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tongyu Cao Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Harold Brem
- Division of Wound Healing and Regenerative Medicine, Newark Beth Israel Medical Center, RWJBarnabas Health, Newark, NJ 07112, USA
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cellular and Molecular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
26
|
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat ML, Onaitis MW, Moutsopoulos NM, Gutkind JS, Morasso MI. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med 2019; 10:10/451/eaap8798. [PMID: 30045979 DOI: 10.1126/scitranslmed.aap8798] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.,Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Juan Luis Callejas-Valera
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dean Edwards
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Colleen Doci
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | | - Mark W Onaitis
- Moores Cancer Center, University California, San Diego, La Jolla, CA 92093, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA. .,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Wang Z, Yang MQ, Lei L, Fei LR, Zheng YW, Huang WJ, Li ZH, Liu CC, Xu HT. Overexpression of KRT17 promotes proliferation and invasion of non-small cell lung cancer and indicates poor prognosis. Cancer Manag Res 2019; 11:7485-7497. [PMID: 31496806 PMCID: PMC6689799 DOI: 10.2147/cmar.s218926] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Keratin 17 (KRT17) is a 48 KDa type I intermediate filament, which is mainly expressed in epithelial basal cells. KRT17 has been shown to be overexpressed in many malignant tumors and play an important role in the occurrence and development of tumors. Therefore, this study explored the role and underlying mechanism of KRT17 in non-small cell lung cancers (NSCLC). METHODS KRT17 expression and its correlations with clinicopathological factors were examined in lung cancer tissues by immunohistochemistry. The prognosis value of KRT17 in NSCLCs was retrieved from The Cancer Genome Atlas (TCGA) online databases. The expression level of KRT17 was increased or decreased by KRT17 gene transfection or small RNA interference in lung cancer cells, respectively. Further, proliferation and invasiveness of lung cancer cells were determined by cell proliferation and invasion assays, respectively. Finally, expression levels of proteins related to Wnt signaling pathways and epithelial mesenchymal transition (EMT) were detected by Western blot. RESULTS The expression level of KRT17 in NSCLCs was significantly higher than normal lung tissues. High expression of KRT17 predicted poor prognosis of patients with NSCLCs, especially lung adenocarcinomas, and was correlated with poor differentiation and lymphatic metastasis. Overexpression of KRT17 enhanced, while KRT17 knockdown inhibited, the proliferation and invasiveness of lung cancer cells. Overexpression of KRT17 up-regulated β-catenin activity and levels of Wnt target genes, such as cyclin D1, c-Myc, and MMP7. Moreover, KRT17 promoted EMT by up-regulating Vimentin, MMP-9, and Snail expression and down-regulating E-cadherin expression. CONCLUSION Overexpression of KRT17 is common in NSCLCs and indicates poor prognosis. Overexpression of KRT17 enhances the proliferation and invasiveness of NSCLC cells by activating the Wnt signaling pathway and EMT process. KRT17 is a potential indicator of NSCLC progression and poor survival.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
- Department of Pathology, General Hospital of Heilongjiang Land Reclamation Bureau, Harbin150088, People’s Republic of China
| | - Mai-Qing Yang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
- Department of Pathology, Changyi People’s Hospital, Changyi, People’s Republic of China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| | - Liang-Ru Fei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| | - Yi-Wen Zheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| | - Wen-Jing Huang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| | - Zhi-Han Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| | - Chen-Chen Liu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang110001, People’s Republic of China
| |
Collapse
|
28
|
Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-Critical Barrier Alarmin Molecules in Skin Wounds and Psoriasis. Cells 2019; 8:E807. [PMID: 31374826 PMCID: PMC6721482 DOI: 10.3390/cells8080807] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Located at the skin surface, keratinocytes (KCs) are constantly exposed to external stimuli and are the first responders to invading pathogens and injury. Upon skin injury, activated KCs secrete an array of alarmin molecules, providing a rapid and specific innate immune response against danger signals. However, dysregulation of the innate immune response of KCs may lead to uncontrolled inflammation and psoriasis pathogenesis. Keratins (KRT) are the major structural intermediate filament proteins in KCs and are expressed in a highly specific pattern at different differentiation stages of KCs. While KRT14-KRT5 is restricted to basal proliferative KCs, and KRT10-KRT1 is restricted to suprabasal differentiated KCs in normal skin epidermis, the wound proximal KCs downregulate KRT10-K1 and upregulate KRT16/KRT17-KRT6 upon skin injury. Recent studies have recognized KRT6/16/17 as key early barrier alarmins and upregulation of these keratins alters proliferation, cell adhesion, migration and inflammatory features of KCs, contributing to hyperproliferation and innate immune activation of KCs in response to an epidermal barrier breach, followed by the autoimmune activation of T cells that drives psoriasis. Here, we have reviewed how keratins are dysregulated during skin injury, their roles in wound repairs and in initiating the innate immune system and the subsequent autoimmune amplification that arises in psoriasis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meimei Yin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA, Brooks SR, Murray J, Morasso MI, MacLeod AS. The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One 2019; 14:e0216249. [PMID: 31059533 PMCID: PMC6502346 DOI: 10.1371/journal.pone.0216249] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease resulting in non-healing wounds affecting body areas of high hair follicle and sweat gland density. The pathogenesis of HS is not well understood but appears to involve dysbiosis-driven aberrant activation of the innate immune system leading to excessive inflammation. Marked dysregulation of antimicrobial peptides and proteins (AMPs) in HS is observed, which may contribute to this sustained inflammation. Here, we analyzed HS skin transcriptomes from previously published studies and integrated these findings through a comparative analysis with a published wound healing data set and with immunofluorescence and qPCR analysis from new HS patient samples. Among the top differently expressed genes between lesional and non-lesional HS skin were members of the S100 family as well as dermcidin, the latter known as a sweat gland-associated AMP and one of the most downregulated genes in HS lesions. Interestingly, many genes associated with sweat gland function, such as secretoglobins and aquaporin 5, were decreased in HS lesional skin and we discovered that these genes demonstrated opposite expression profiles in healing skin. Conversely, HS lesional and wounded skin shared a common gene signature including genes encoding for S100 proteins, defensins, and genes encoding antiviral proteins. Overall, our results suggest that the pathogenesis of HS may be driven by changes in AMP expression and altered sweat gland function, and may share a similar pathology with chronic wounds.
Collapse
Affiliation(s)
- Margaret Coates
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Paula Mariottoni
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Hélène Fradin Kirshner
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Tarannum Jaleel
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David A. Brown
- Department of Surgery, Duke University, Durham, NC, United States of America
| | - Stephen R. Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John Murray
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Amanda S. MacLeod
- Department of Dermatology, Duke University, Durham, NC, United States of America
- Department of Immunology, Duke University, Durham, NC, United States of America
- Pinnell Center for Investigative Dermatology, Duke University, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yoon DJ, Fregoso DR, Nguyen D, Chen V, Strbo N, Fuentes JJ, Tomic-Canic M, Crawford R, Pastar I, Isseroff RR. A tractable, simplified ex vivo human skin model of wound infection. Wound Repair Regen 2019; 27:421-425. [PMID: 30825247 DOI: 10.1111/wrr.12712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
The prevalence of infection in chronic wounds is well documented in the literature but not optimally studied due to the drawbacks of current methodologies. Here, we describe a tractable and simplified ex vivo human skin model of infection that addresses the critical drawbacks of high costs and limited translatability. Wounds were generated from excised abdominal skin from cosmetic procedures and cultured, inoculated with Staphylococcus aureus strain UAMS-1, or under aseptic conditions. After three days, the infected wounds exhibited biofilm formation and significantly impaired reepithelialization compared to the control. Additionally, promigratory and proreparative genes were significantly downregulated, while proinflammatory genes were significantly upregulated, demonstrating molecular characterizations of impaired healing as in chronic wounds. This model allows for a simplified and versatile tool for the study of wound infection and subsequent development of novel therapies.
Collapse
Affiliation(s)
- Daniel J Yoon
- Department of Dermatology, University of California, Davis, Sacramento, California
| | - Daniel R Fregoso
- Department of Dermatology, University of California, Davis, Sacramento, California
| | - Duc Nguyen
- Department of Dermatology, University of California, Davis, Sacramento, California
| | - Vivien Chen
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jaime J Fuentes
- Department of Biological Sciences, California State University Sacramento, Sacramento, California
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida
| | - Robert Crawford
- Department of Biological Sciences, California State University Sacramento, Sacramento, California
| | - Irena Pastar
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, Sacramento, California
| |
Collapse
|
31
|
Helou DG, Noël B, Gaudin F, Groux H, El Ali Z, Pallardy M, Chollet-Martin S, Kerdine-Römer S. Cutting Edge: Nrf2 Regulates Neutrophil Recruitment and Accumulation in Skin during Contact Hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2019; 202:2189-2194. [DOI: 10.4049/jimmunol.1801065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
|
32
|
Uchiyama A, Nayak S, Graf R, Cross M, Hasneen K, Gutkind JS, Brooks SR, Morasso MI. SOX2 Epidermal Overexpression Promotes Cutaneous Wound Healing via Activation of EGFR/MEK/ERK Signaling Mediated by EGFR Ligands. J Invest Dermatol 2019; 139:1809-1820.e8. [PMID: 30772301 DOI: 10.1016/j.jid.2019.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
Oral mucosa contains a unique transcriptional network that primes oral wounds for rapid resolution in humans. Our previous work identified genes that were consistently upregulated in the oral mucosa and demonstrated that induction of one of the identified genes, transcription factor SOX2, promoted cutaneous wound healing in mice. In this study, we investigated the molecular and cellular mechanisms by which SOX2 accelerates wound healing in skin. RNA-sequencing analysis showed that SOX2 induced a proliferative and wound-activated phenotype in skin keratinocytes prior to wounding. During wound healing, SOX2 induced proliferation of epithelial and connective tissue cells and promoted angiogenesis. Chromatin immunoprecipitation assay revealed that SOX2 directly regulates expression of EGFR ligands, resulting in activation of EGFR. In vitro, skin keratinocytes overexpressing SOX2 promoted cell migration via the EGFR/MEK/ERK pathway. We conclude that induction of SOX2 in skin keratinocytes accelerates cutaneous wound healing by promoting keratinocyte migration and proliferation, and enhancement of angiogenesis via upregulation of EGFR ligands and activation of EGFR/MEK/ERK pathway. Through the identification of putative cutaneous SOX2 targets, such as HBEGF, this study opens venues to determine clinical targets for treatment of skin wounds.
Collapse
Affiliation(s)
- Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Rose Graf
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Michael Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
33
|
Affiliation(s)
- Jan Stana
- Specialist in Vascular Surgery; Schön Klinik Vogtareuth, Klinik für operative und interventionelle Gefäßchirurgie, Krankenhausstraße 20, DE-83569 Vogtareuth, Germany
| | - Uroš Maver
- Head of Institute of Biomedical Sciences, Assistant Professor in Pharmacology and Toxicology; University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, SI-2000 Maribor, Slovenia. University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Uroš Potočnik
- Head of Center for Human Molecular Genetics and Pharmacogenomics, Professor of Biochemistry and Genetics; University of Maribor, Faculty of Medicine, Center for human molecular genetics and pharmacogenomics, Taborska ulica 8, SI-2000 Maribor, Slovenia. University of Maribor, Faculty for Chemistry and Chemical engineering, Laboratory for Biochemistry, Molecular Biology and Genomics, Smetanova 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
34
|
Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, Weissenbacher A, Sipos W, Tschachler E, Eckhart L. Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Mol Biol Evol 2019; 36:328-340. [PMID: 30517738 PMCID: PMC6367960 DOI: 10.1093/molbev/msy214] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Keratins are the main intermediate filament proteins of epithelial cells. In keratinocytes of the mammalian epidermis they form a cytoskeleton that resists mechanical stress and thereby are essential for the function of the skin as a barrier against the environment. Here, we performed a comparative genomics study of epidermal keratin genes in terrestrial and fully aquatic mammals to determine adaptations of the epidermal keratin cytoskeleton to different environments. We show that keratins K5 and K14 of the innermost (basal), proliferation-competent layer of the epidermis are conserved in all mammals investigated. In contrast, K1 and K10, which form the main part of the cytoskeleton in the outer (suprabasal) layers of the epidermis of terrestrial mammals, have been lost in whales and dolphins (cetaceans) and in the manatee. Whereas in terrestrial mammalian epidermis K6 and K17 are expressed only upon stress-induced epidermal thickening, high levels of K6 and K17 are consistently present in dolphin skin, indicating constitutive expression and substitution of K1 and K10. K2 and K9, which are expressed in a body site-restricted manner in human and mouse suprabasal epidermis, have been lost not only in cetaceans and manatee but also in some terrestrial mammals. The evolution of alternative splicing of K10 and differentiation-dependent upregulation of K23 have increased the complexity of keratin expression in the epidermis of terrestrial mammals. Taken together, these results reveal evolutionary diversification of the epidermal cytoskeleton in mammals and suggest a complete replacement of the quantitatively predominant epidermal proteins of terrestrial mammals by originally stress-inducible keratins in cetaceans.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Bettina Ebner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Figlak
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Khalil AA, de Rooij J. Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res 2019; 376:86-91. [PMID: 30633881 DOI: 10.1016/j.yexcr.2019.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Collective invasion drives the spread of multicellular cancer groups, into the normal tissue surrounding several epithelial tumors. Collective invasion recapitulates various aspects of the multicellular organization and collective migration that take place during normal development and repair. Collective migration starts with the specification of leader cells in which a polarized, migratory phenotype is established. Leader cells initiate and organize the migration of follower cells, to allow the group of cells to move as a cohesive and polarized unit. Leader-follower specification is essential for coordinated and directional collective movement. Forces exerted by cohesive cells represent key signals that dictate multicellular coordination and directionality. Physical forces originate from the contraction of the actomyosin cytoskeleton, which is linked between cells via cadherin-based cell-cell junctions. The cadherin complex senses and transduces fluctuations in forces into biochemical signals that regulate processes like cell proliferation, motility and polarity. With cadherin junctions being maintained in most collective movements the cadherin complex is ideally positioned to integrate mechanical information into the organization of collective cell migration. Here we discuss the potential roles of cadherin mechanotransduction in the diverse aspects of leader versus follower cell specification during collective migration and neoplastic invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Johan de Rooij
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin. Cell Rep 2018; 16:3334-3347. [PMID: 27653694 DOI: 10.1016/j.celrep.2016.08.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
Epidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment. We demonstrate that the molecular mechanism involves de novo expression of integrin αvβ6 in the basal epidermal cells, which activates a TGF-β1 driven inflammatory cascade resulting in upregulation of dermal NF-κB in a Tenascin C-dependent manner. Importantly, treatment of β1 KO embryos in utero with small molecule inhibitors of TGF-βR1 and NF-κB results in marked rescue of the BM defects and amelioration of immune response, revealing an unconventional immuno-protective role for integrin β1 during BM remodeling.
Collapse
|
37
|
Langa P, Wardowska A, Zieliński J, Podolak-Popinigis J, Sass P, Sosnowski P, Kondej K, Renkielska A, Sachadyn P, Trzonkowski P, Pikuła M. Transcriptional profile of in vitro expanded human epidermal progenitor cells for the treatment of non-healing wounds. J Dermatol Sci 2017; 89:272-281. [PMID: 29287803 DOI: 10.1016/j.jdermsci.2017.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epidermal progenitor cells (EPCs) have been under extensive investigation due to their increasing potential of application in medicine and biotechnology. Cultured human EPCs are used in the treatment of chronic wounds and have recently became a target for gene therapy and toxicological studies. One of the challenges in EPCs culture is to provide a high number of undifferentiated, progenitor cells displaying high viability and significant biological activity. OBJECTIVES The goal of this study was to characterize the in vitro cultured progenitor cells and to assess whether the cells with the progenitor phenotype are able to enhance wound healing. Additionally, we aimed to establish the complete procedure of the culture, analysis and clinical application of epidermal progenitor cells. METHODS In this study we present a method of cell isolation and culture followed by a technique of transplantation of the cultured cells onto the wound bed. The applied isolation technique involves two enzymatic steps (dispase, trypsin) and it is characterized by a high yield of cells. The obtained cells were cultured in vitro up to the second passage in serum-free and xeno-free keratinocytes-dedicated medium. Key stem cell markers were determined with means of flow cytometry and quantitative real-time PCR. RESULTS The in vitro expanded cells displayed high proliferative activity without features of neither apoptosis nor necrosis. The flow cytometry and transcriptomic analyses showed enhanced expression of stem cell markers (i.e. proteins: ΔNp63, CD29, CD49f and BNC1, CDKN1A transcripts) in the expanded cells. In the presented compassionate use study, cultured autologous cells from an oncological patient were suspended in fibrin sealant and transplanted directly to a non-healing wound, resulting in wound closure within 2 months. CONCLUSION The cells cultured in serum-free media display epidermal stem cells features and a potential to stimulate wound healing. This promising procedure of isolation, culture and application warrants further clinical trials in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Anna Wardowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdansk, Poland
| | - Justyna Podolak-Popinigis
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Sass
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Sosnowski
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Poland
| | | | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Michał Pikuła
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland.
| |
Collapse
|
38
|
The PDZ-Binding Motif of HPV16-E6 Oncoprotein Modulates the Keratinization and Stemness Transcriptional Profile In Vivo. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7868645. [PMID: 29130045 PMCID: PMC5654334 DOI: 10.1155/2017/7868645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 11/23/2022]
Abstract
Objective The aim of this work was to compare the early gene expression profiles in the skin of HPV16-E6 transgenic mice regulated by the E6 PDZ-binding motif. Materials and Methods The global transcriptional profiles in dorsal skin biopsies from K14E6 and K14E6Δ146-151 transgenic mice were compared using microarrays. Relevant genes obtained from the most differentially expressed processes were further examined by RT-qPCR, in situ RT-PCR, Western blot, or immunofluorescence. Results The transcriptomic landscape of K14E6 versus K14E6Δ146-151 shows that the most affected expression profiles were those related to keratinocyte differentiation, stem cell maintenance, and keratinization. Additionally, downregulation of epidermal stemness markers such as K15 and CD34, as well as the upregulation of cytokeratin 6b, appeared to be dependent on the E6 PDZ-binding motif. Finally, wound healing, a physiological process linked to stemness, is impaired in the K14E6 mice compared to K14E6Δ146-151. Conclusion The E6 PDZ-binding motif appears to affect stemness and keratinization during early stages of skin carcinogenesis. As E6 plays a significant role in HPV-induced skin carcinogenesis, the K14E6 versus K14E6Δ146-151 transcriptional profile provides a source of valuable data to uncover novel E6 functions in the skin.
Collapse
|
39
|
Hosur V, Burzenski LM, Stearns TM, Farley ML, Sundberg JP, Wiles MV, Shultz LD. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing. Exp Mol Pathol 2017; 102:337-346. [PMID: 28268192 DOI: 10.1016/j.yexmp.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022]
Abstract
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, ME 04609, United States.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kur-Piotrowska A, Kopcewicz M, Kozak LP, Sachadyn P, Grabowska A, Gawronska-Kozak B. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing. BMC Genomics 2017; 18:56. [PMID: 28068897 PMCID: PMC5223329 DOI: 10.1186/s12864-016-3401-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Results Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. Conclusions In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3401-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Pawel Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Anna Grabowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
41
|
Zhang W, Bei M. Kcnh2 and Kcnj8 interactively regulate skin wound healing and regeneration. Wound Repair Regen 2016. [PMID: 26220146 DOI: 10.1111/wrr.12347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies indicate that ion channels are mediators of bioelectricity promoting wound closure/regeneration in nonmammalian, lower vertebrate systems. The role of ion channels however in regeneration of wounds in mammalian systems that do not regenerate as adults is not yet defined. Using a mammalian model system that allows us to determine differentially expressed genes when skin regenerates and when skin does not regenerate after wound induction, we identified two potassium channels, kcnh2 and kcnj8, to be (1) differentially expressed between the two states and (2) highly expressed after wound induction at the nonregenerative state. We also found that kcnh2 small molecule inhibitor enhanced wound healing while kcnj8 small molecule inhibitor did not. In contrast, kcnj8 activator accelerated wound healing and even augmented the effect of kcnh2 inhibition. These results provide evidence for the first time that potassium channels may mediate skin wound healing and regeneration interactively.
Collapse
Affiliation(s)
- Wengeng Zhang
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Shriners Burns Hospital, Boston, Massachusetts
| | - Marianna Bei
- Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Shriners Burns Hospital, Boston, Massachusetts.,Center for Surgery, Innovation and Biotechnology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
42
|
Bergqvist C, Ramia P, Abbas O, Kurban M. Genetics of syndromic and non-syndromic hereditary nail disorders. Clin Genet 2016; 91:813-823. [PMID: 27613389 DOI: 10.1111/cge.12852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 01/18/2023]
Abstract
The nail is a unique epithelial skin appendage made up of a fully keratinized nail plate. The nail can be affected in several systemic illnesses, dermatological diseases, and inherited nail disorders. Nail dystrophies can present as isolated disorders or as a part of syndromes. Substantial progress has been achieved in the management and diagnosis of nail diseases; however, not much is known about the underlying molecular controls of nail growth. The homeostasis and development of the nail appendage depend on the intricate interactions between the epidermis and underlying mesenchyme, and comprise different signaling pathways such as the WNT signaling pathway. Digit-tip regeneration in mice and humans has been a known fact for the past six decades; however, only recently the underlying biological mechanisms by which the nail organ achieves digit regeneration have been elucidated. Moreover, significant progress has been made in identifying nail stem cells and localizing stem cell niches in the nail unit. More fascinating, however, is the role they play in orchestrating the processes that lead to the regeneration of the digit. Further elucidating the role of nail stem cells and the signaling pathways driving epithelial-mesenchymal interactions in the nail unit might contribute to the development of novel therapeutic tools for amputees.
Collapse
Affiliation(s)
- C Bergqvist
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - P Ramia
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - O Abbas
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - M Kurban
- Department of Dermatology, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.,Department of Dermatology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
43
|
Val S, Burgett K, Brown KJ, Preciado D. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi. PLoS One 2016; 11:e0148612. [PMID: 26859300 PMCID: PMC4747582 DOI: 10.1371/journal.pone.0148612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. Methods NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours– 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Results Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05). The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. Conclusions NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Val
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Katelyn Burgett
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Kristy J. Brown
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Diego Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
- Division of Pediatric Otolaryngology, Children’s National Health System, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
44
|
Yunusbaeva MM, Yunusbaev BB, Valiev RR, Khammatova AA, Khusnutdinova EK. Широкое многообразие кератинов человека. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-5-42-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
А review presents systematic data about the diversity of human keratins. The results of numerous studies concerning the structure and functions of keratins, their distribution in various cells and tissues were summarized. The role of these proteins in the development of human hereditary diseases, as well as modern approaches in use keratins in immunohistochemistry and perspectives of their further studies are discussed.
Collapse
|
45
|
Kim KH, Chung WS, Kim Y, Kim KS, Lee IS, Park JY, Jeong HS, Na YC, Lee CH, Jang HJ. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling. Phytother Res 2015; 29:1251-8. [PMID: 26014513 DOI: 10.1002/ptr.5375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/07/2022]
Abstract
Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway.
Collapse
Affiliation(s)
- Kang-Hoon Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yoomi Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Ki-Suk Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - In-Seung Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Ji Young Park
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hyeon-Soo Jeong
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Chang-Hun Lee
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
46
|
Orecchia V, Regis G, Tassone B, Valenti C, Avalle L, Saoncella S, Calautti E, Poli V. Constitutive STAT3 activation in epidermal keratinocytes enhances cell clonogenicity and favours spontaneous immortalization by opposing differentiation and senescence checkpoints. Exp Dermatol 2014; 24:29-34. [DOI: 10.1111/exd.12585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Valeria Orecchia
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Gabriella Regis
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Beatrice Tassone
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Chiara Valenti
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Stefania Saoncella
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences; Molecular Biotechnology Center; University of Turin; Turin Italy
| |
Collapse
|
47
|
Winter M, Moser MA, Meunier D, Fischer C, Machat G, Mattes K, Lichtenberger BM, Brunmeir R, Weissmann S, Murko C, Humer C, Meischel T, Brosch G, Matthias P, Sibilia M, Seiser C. Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J 2013; 32:3176-91. [PMID: 24240174 PMCID: PMC3981143 DOI: 10.1038/emboj.2013.243] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022] Open
Abstract
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage-dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co-repressor complex function, increased levels of c-Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.
Collapse
Affiliation(s)
- Mircea Winter
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 2013; 110:18507-12. [PMID: 24167274 DOI: 10.1073/pnas.1310493110] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell motility and cell shape adaptations are crucial during wound healing, inflammation, and malignant progression. These processes require the remodeling of the keratin cytoskeleton to facilitate cell-cell and cell-matrix adhesion. However, the role of keratins for biomechanical properties and invasion of epithelial cells is only partially understood. In this study, we address this issue in murine keratinocytes lacking all keratins on genome engineering. In contrast to predictions, keratin-free cells show about 60% higher cell deformability even for small deformations. This response is compared with the less pronounced softening effects for actin depolymerization induced via latrunculin A. To relate these findings with functional consequences, we use invasion and 3D growth assays. These experiments reveal higher invasiveness of keratin-free cells. Reexpression of a small amount of the keratin pair K5/K14 in keratin-free cells reverses the above phenotype for the invasion but does not with respect to cell deformability. Our data show a unique role of keratins as major players of cell stiffness, influencing invasion with implications for epidermal homeostasis and pathogenesis. This study supports the view that down-regulation of keratins observed during epithelial-mesenchymal transition directly contributes to the migratory and invasive behavior of tumor cells.
Collapse
|
49
|
Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol 2013; 134:827-837. [PMID: 24126843 PMCID: PMC3945401 DOI: 10.1038/jid.2013.419] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (BMP) signalling plays a key role in the control of skin development and postnatal remodelling by regulating keratinocyte proliferation, differentiation and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and qRT-PCR analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a, in the epidermis of K14-caSmad1 mice versus wild-type controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared to wild-type controls. Finally, siRNA-mediated silencing of Bmpr-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17 and Myo5a compared to controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.
Collapse
|
50
|
Cheng CH, Leferovich J, Zhang XM, Bedelbaeva K, Gourevitch D, Hatcher CJ, Basson CT, Heber-Katz E, Marx KA. Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state. Physiol Genomics 2013; 45:409-21. [PMID: 23512742 DOI: 10.1152/physiolgenomics.00142.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse strains C57BL/6 (B6) and MRL were studied by whole mouse genome chip microarray analyses of RNA isolated from amputation sites at different times pre- and postamputation at the midsecond phalange of the middle digit. Many keratin genes were highly differentially expressed. All keratin genes were placed into three temporal response classes determined by injury/preinjury ratios. One class, containing only Krt6 and Krt16, were uniquely expressed relative to the other two classes and exhibited different temporal responses in MRL vs. B6. Immunohistochemical staining for Krt6 and Krt16 in tissue sections, including normal digit, flank skin, and small intestine, and from normal and injured ear pinna tissue exhibited staining differences in B6 (low) and MRL (high) that were consistent with the microarray results. Krt10 staining showed no injury-induced differences, consistent with microarray expression. We analyzed Krt6 and Krt16 gene association networks and observed in uninjured tissue several genes with higher expression levels in MRL, but not B6, that were associated with the keratinocyte activated state: Krt6, Krt16, S100a8, S100a9, and Il1b; these data suggest that keratinocytes in the MRL strain, but not in B6, are in an activated state prior to wounding. These expression levels decreased in MRL at all times postwounding but rose in the B6, peaking at day 3. Other keratins significantly expressed in the normal basal keratinocyte state showed no significant strain differences. These data suggest that normal MRL skin is in a keratinocyte activated state, which may provide it with superior responses to wounding.
Collapse
Affiliation(s)
- Chia-Ho Cheng
- Center for Intelligent Biomaterials, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|