1
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Abstract
Viruses are intracellular pathogen that exploit host cellular machinery for their propagation. Extensive research on virus-host interaction have shed light on an alternative antiviral strategy that targets host cell factors. Epidermal growth factor receptor (EGFR) is a versatile signal transducer that is involved in a range of cellular processes. Numerous studies have revealed how viruses exploit the function of EGFR in different stages of viral life cycle. In general, viruses attach onto the host cell surface and interacts with EGFR to facilitate viral entry, viral replication and spread as well as evasion from host immunosurveillance. Moreover, virus-induced activation of EGFR signalling is associated with mucin expression, tissue damage and carcinogenesis that contribute to serious complications. Herein, we review our current understanding of roles of EGFR in viral infection and its potential as therapeutic target in managing viral infection. We also discuss the available EGFR-targeted therapies and their limitations.
Collapse
Affiliation(s)
- Kah Man Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Suzuki A, Ogata K, Iwata J. Cell signaling regulation in salivary gland development. Cell Mol Life Sci 2021; 78:3299-3315. [PMID: 33449148 PMCID: PMC11071883 DOI: 10.1007/s00018-020-03741-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review focuses on research conducted on mammalian salivary gland development, particularly on the differentiation of acinar, ductal, and myoepithelial cells. We discuss recent studies that provide conceptual advances in the understanding of the molecular mechanisms of salivary gland development. In addition, we describe the organogenesis of submandibular glands (SMGs), model systems used for the study of SMG development, and the key signaling pathways as well as cellular processes involved in salivary gland development. The findings from the recent studies elucidating the identity of stem/progenitor cells in the SMGs, and the process by which they are directed along a series of cell fate decisions to form functional glands, are also discussed. Advances in genetic tools and tissue engineering strategies will significantly increase our knowledge about the mechanisms by which signaling pathways and cells establish tissue architecture and function during salivary gland development, which may also be conserved in the growth and development of other organ systems. An increased knowledge of organ development mechanisms will have profound implications in the design of therapies for the regrowth or repair of injured tissues. In addition, understanding how the processes of cell survival, expansion, specification, movement, and communication with neighboring cells are regulated under physiological and pathological conditions is critical to the development of future treatments.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA.
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA.
| |
Collapse
|
4
|
Hosseini ZF, Nelson DA, Moskwa N, Sfakis LM, Castracane J, Larsen M. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J Cell Sci 2018; 131:jcs.208728. [PMID: 29361536 DOI: 10.1242/jcs.208728] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Epithelial progenitor cells are dependent upon a complex 3D niche to promote their proliferation and differentiation during development, which can be recapitulated in organoids. The specific requirements of the niche remain unclear for many cell types, including the proacinar cells that give rise to secretory acinar epithelial cells that produce saliva. Here, using ex vivo cultures of E16 primary mouse submandibular salivary gland epithelial cell clusters, we investigated the requirement for mesenchymal cells and other factors in producing salivary organoids in culture. Native E16 salivary mesenchyme, but not NIH3T3 cells or mesenchymal cell conditioned medium, supported robust protein expression of the progenitor marker Kit and the acinar/proacinar marker AQP5, with a requirement for FGF2 expression by the mesenchyme. Enriched salivary epithelial clusters that were grown in laminin-enriched basement membrane extract or laminin-111 together with exogenous FGF2, but not with EGF, underwent morphogenesis to form organoids that displayed robust expression of AQP5 in terminal buds. Knockdown of FGF2 in the mesenchyme or depletion of mesenchyme cells from the organoids significantly reduced AQP5 levels even in the presence of FGF2, suggesting a requirement for autocrine FGF2 signaling in the mesenchyme cells for AQP5 expression. We conclude that basement membrane proteins and mesenchyme cells function as niche factors in salivary organoids.
Collapse
Affiliation(s)
- Zeinab F Hosseini
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Lauren M Sfakis
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd, Albany, NY 12203, USA
| | - James Castracane
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd, Albany, NY 12203, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
5
|
Togarrati PP, Sasaki RT, Abdel-Mohsen M, Dinglasan N, Deng X, Desai S, Emmerson E, Yee E, Ryan WR, da Silva MCP, Knox SM, Pillai SK, Muench MO. Identification and characterization of a rich population of CD34 + mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7:3484. [PMID: 28615711 PMCID: PMC5471181 DOI: 10.1038/s41598-017-03681-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs.
Collapse
Affiliation(s)
| | - Robson T Sasaki
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, California, USA.,The Wistar Institute, Philadelphia, PA, USA
| | | | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Shivani Desai
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Elaine Emmerson
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Elizabeth Yee
- Blood Systems Research Institute, San Francisco, CA, USA
| | - William R Ryan
- Division of Head and Neck Oncologic/Endocrine/Salivary Surgery, Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - Marcelo C P da Silva
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA. .,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Peptide-modified Substrate for Modulating Gland Tissue Growth and Morphology In Vitro. Sci Rep 2015; 5:11468. [PMID: 26098225 PMCID: PMC4476418 DOI: 10.1038/srep11468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
In vitro fabricated biological tissue would be a valuable tool to screen newly synthesized drugs or understand the tissue development process. Several studies have attempted to fabricate biological tissue in vitro. However, controlling the growth and morphology of the fabricated tissue remains a challenge. Therefore, new techniques are required to modulate tissue growth. RGD (arginine-glycine-aspartic acid), which is an integrin-binding domain of fibronectin, has been found to enhance cell adhesion and survival; it has been used to modify substrates for in vitro cell culture studies or used as tissue engineering scaffolds. In addition, this study shows novel functions of the RGD peptide, which enhances tissue growth and modulates tissue morphology in vitro. When an isolated submandibular gland (SMG) was cultured on an RGD-modified alginate hydrogel sheet, SMG growth including bud expansion and cleft formation was dramatically enhanced. Furthermore, we prepared small RGD-modified alginate beads and placed them on the growing SMG tissue. These RGD-modified beads successfully induced cleft formation at the bead position, guiding the desired SMG morphology. Thus, this RGD-modified material might be a promising tool to modulate tissue growth and morphology in vitro for biological tissue fabrication.
Collapse
|
7
|
Hofmann D, Tenzer S, Bannwarth MB, Messerschmidt C, Glaser SF, Schild H, Landfester K, Mailänder V. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS NANO 2014; 8:10077-10088. [PMID: 25244389 DOI: 10.1021/nn502754c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rational design of nanocarriers for drug delivery approaches requires an unbiased knowledge of uptake mechanisms and intracellular trafficking pathways. Here we dissected these processes using a quantitative proteomics approach. We isolated intracellular vesicles containing superparamagnetic iron oxide polystyrene nanoparticles and analyzed their protein composition by label-free quantitative mass spectrometry. The proteomic snapshot of organelle marker proteins revealed that an atypical macropinocytic-like mechanism mediated the entry of nanoparticles. We show that the entry mechanism is controlled by actin reorganization, atypical macropinocytic signaling, and ADP-ribosylation factor 1. Additionally, our proteomics data demonstrated a central role for multivesicular bodies and multilamellar lysosomes in trafficking and final nanoparticle storage. This was confirmed by confocal microscopy and cryo-TEM measurements. By quantitatively analyzing the protein composition of nanoparticle-containing vesicles, our study clearly defines the routes of nanoparticle entry, intracellular trafficking, and the proteomic milieu of a nanoparticle-containing vesicle.
Collapse
Affiliation(s)
- Daniel Hofmann
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Leigh NJ, Nelson JW, Mellas RE, McCall AD, Baker OJ. Three-dimensional cultures of mouse submandibular and parotid glands: a comparative study. J Tissue Eng Regen Med 2014; 11:618-626. [PMID: 25186108 DOI: 10.1002/term.1952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/20/2014] [Accepted: 07/17/2014] [Indexed: 12/18/2022]
Abstract
Freshly isolated salivary cells can be plated on an extracellular matrix, such as growth factor-reduced Matrigel (GFR-MG), to induce the formation of three-dimensional (3D) structures. Cells grown on GFR-MG are able to form round structures with hollow lumina, capable of sustaining amylase expression. In contrast, cells grown on plastic do not exhibit these features. Our recent studies have used mouse parotid gland (PG) cells, grown on different extracellular matrices, as a model for acinar formation. However, PG cells were not able to respond to the secretory agonist carbachol beyond 5 days and did not sustain polarity over time, regardless of the substratum. An alternative option relies in the use of mouse submandibular glands (SMG), which are more anatomically accessible and yield a larger number of cells. We compared SMG and PG cell clusters (partially dissociated glands) for their ability to form hollow round structures, sustain amylase and maintain secretory function when grown on GFR-MG. The results were as follows: (a) SMG cell clusters formed more organized and larger structures than PG cell clusters; (b) both SMG and PG cell clusters maintained α-amylase expression over time; (c) SMG cell clusters maintained agonist-induced secretory responses over time; and (d) SMG cell clusters maintained secretory granules and cell-cell junctions. These results indicate that mouse SMG cell clusters are more amenable for the development of a bioengineered salivary gland than PG cell clusters, as they form more organized and functional structures. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Noel J Leigh
- School of Dentistry, The University of Utah, Salt Lake City, USA
| | - Joel W Nelson
- School of Dentistry, The University of Utah, Salt Lake City, USA
| | - Rachel E Mellas
- School of Dentistry, The University of Utah, Salt Lake City, USA
| | - Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, NY, USA
| | - Olga J Baker
- School of Dentistry, The University of Utah, Salt Lake City, USA
| |
Collapse
|
9
|
El-Sayed FG, Camden JM, Woods LT, Khalafalla MG, Petris MJ, Erb L, Weisman GA. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells. Am J Physiol Cell Physiol 2014; 307:C83-96. [PMID: 24760984 DOI: 10.1152/ajpcell.00380.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.
Collapse
Affiliation(s)
- Farid G El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Mahmoud G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri; and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
McCall AD, Nelson JW, Leigh NJ, Duffey ME, Lei P, Andreadis ST, Baker OJ. Growth factors polymerized within fibrin hydrogel promote amylase production in parotid cells. Tissue Eng Part A 2013; 19:2215-25. [PMID: 23594102 DOI: 10.1089/ten.tea.2012.0674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salivary gland cell differentiation has been a recurring challenge for researchers as primary salivary cells show a loss of phenotype in culture. Particularly, parotid cells show a marked decrease in amylase expression, the loss of tight junction organization and proper cell function. Previously, Matrigel has been used successfully as an extracellular matrix; however, it is not practical for in vivo applications as it is tumorigenic. An alternative method could rely on the use of fibrin hydrogel (FH), which has been used extensively in biomedical engineering applications ranging from cardiovascular tissue engineering to wound-healing experiments. Although several groups have examined the effects of a three-dimensional (3D) environment on salivary cell cultures, little is known about the effects of FH on salivary cell cultures. The current study developed a 3D cell culture model to support parotid gland cell differentiation using a combination of FH and growth factor-reduced Matrigel (GFR-MG). Furthermore, FH polymerized with a combination of EGF and IGF-1 induced formation of 3D spheroids capable of amylase expression and an agonist-induced increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) in salivary cells. These studies represent an initial step toward the construction of an artificial salivary gland to restore salivary gland dysfunction. This is necessary to reduce xerostomia in patients with compromised salivary function.
Collapse
Affiliation(s)
- Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, University at Buffalo-The State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Cytomegalovirus-induced salivary gland pathology: AREG, FGF8, TNF-α, and IL-6 signal dysregulation and neoplasia. Exp Mol Pathol 2013; 94:386-97. [DOI: 10.1016/j.yexmp.2013.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/10/2013] [Accepted: 01/31/2013] [Indexed: 12/19/2022]
|
12
|
Daley WP, Yamada KM. Cell–ECM Interactions and the Regulation of Epithelial Branching Morphogenesis. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Koyama N, Hayashi T, Mizukoshi K, Matsumoto T, Gresik EW, Kashimata M. Extracellular regulated kinase5 is expressed in fetal mouse submandibular glands and is phosphorylated in response to epidermal growth factor and other ligands of the ErbB family of receptors. Dev Growth Differ 2012; 54:801-8. [PMID: 23078124 DOI: 10.1111/dgd.12008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022]
Abstract
Growth factors and their receptors regulate development of many organs through activation of multiple intracellular signaling cascades including a mitogen-activated protein kinase (MAPK). Extracellular regulated kinases (ERK)1/2, classic MAPK family members, are expressed in fetal mouse submandibular glands (SMG), and stimulate branching morphogenesis. ERK5, also called big mitogen-activated protein kinase 1, was recently found as a new member of MAPK super family, and its biological roles are still largely unknown. In this study, we investigated the expression and function of ERK5 in developing fetal mouse SMGs. Western blotting analysis showed that the expression pattern of ERK5 was different from the pattern of ERK1/2 in developing fetal SMGs. Both ERK1/2 and ERK5 were phosphorylated after exposure to ligands of the ErbB family of receptor tyrosine kinases (RTKs). Phosphorylation of ERK1/2 was strongly induced by epidermal growth factor (EGF) in SMG rudiments at embryonic day 14 (E14), E16 and E18. However, ERK5 phosphorylation induced by EGF was clearly observed at E14 and E16, but not at E18. Branching morphogenesis of cultured E13 SMG rudiments was strongly suppressed by administration of U0126, an inhibitor for ERK1/2 activation, whereas the phosphorylation of ERK5 was not inhibited by U0126. BIX02188, a specific inhibitor for ERK5 activation, also inhibited branching morphogenesis in cultured SMG rudiments. These results show that EGF-responsive ERK5 is expressed in developing fetal mouse SMG, and suggest that both ERK1/2 and ERK5 signaling cascades might play an important role in the regulation of branching morphogenesis.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Pharmacology, Asahi University School of Dentistry, Hozumi, Mizuho, Gifu, 501-0296, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Zhu W, Nelson CM. PI3K signaling in the regulation of branching morphogenesis. Biosystems 2012; 109:403-11. [PMID: 22525052 DOI: 10.1016/j.biosystems.2012.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/03/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
Branching morphogenesis drives the formation of epithelial organs including the mammary gland, lung, kidney, salivary gland and prostate. Branching at the cellular level also drives development of the nervous and vascular systems. A variety of signaling pathways are orchestrated together to establish the pattern of these branched organs. The phosphoinositide 3-kinase (PI3K) signaling network is of particular interest because of the diverse outcomes it generates, including proliferation, motility, growth, survival and cell death. Here, we focus on the role of the PI3K pathway in the development of branched tissues. Cultured cells, explants and transgenic mice have revealed that the PI3K pathway is critical for the regulation of cell proliferation, apoptosis and motility during branching of tissues.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
15
|
Ohshima H. Oral Biosciences: The annual review 2011. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Odusanwo O, Chinthamani S, McCall A, Duffey ME, Baker OJ. Resolvin D1 prevents TNF-α-mediated disruption of salivary epithelial formation. Am J Physiol Cell Physiol 2012; 302:C1331-45. [PMID: 22237406 DOI: 10.1152/ajpcell.00207.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sjögren's syndrome is a chronic autoimmune disorder characterized by inflammation of salivary glands resulting in impaired secretory function. Our present studies indicate that chronic exposure of salivary epithelium to TNF-α and/or IFN-γ alters tight junction integrity, leading to secretory dysfunction. Resolvins of the D-series (RvDs) are endogenous lipid mediators derived from DHA that regulate excessive inflammatory responses leading to resolution and tissue homeostasis. In this study, we addressed the hypothesis that activation of the RvD1 receptor ALX/FPR2 in salivary epithelium prevents and/or resolves the TNF-α-mediated disruption of acinar organization and enhances monolayer formation. Our results indicate that 1) the RvD1 receptor ALX/FPR2 is present in fresh, isolated cells from mouse salivary glands and in cell lines of salivary origin; and 2) the agonist RvD1 (100 ng/ml) abolished tight junction and cytoskeletal disruption caused by TNF-α and enhanced cell migration and polarity in salivary epithelium. These effects were blocked by the ALX/FPR2 antagonist butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe. The ALX/FPR2 receptor signals via modulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways since, in our study, blocking PI3K activation with LY294002, a potent and selective PI3K inhibitor, prevented RvD1-induced cell migration. Furthermore, Akt gene silencing with the corresponding siRNA almost completely blocked the ability of Par-C10 cells to migrate. Our findings suggest that RvD1 receptor activation promotes resolution of inflammation and tissue repair in salivary epithelium, which may have relevance in the restoration of salivary gland dysfunction associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Olutayo Odusanwo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York 14214-3092, USA.
| | | | | | | | | |
Collapse
|
17
|
Koyama N, Hayashi T, Kashimata M. Regulation of Branching Morphogenesis in Fetal Mouse Submandibular Gland by Signaling Pathways Activated by Growth Factors and α6 Integrin. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Okamoto K, Kikuchi-Handa T, Nogawa H. Evidence of interlobular repulsion during branching morphogenesis in mouse salivary glands. Dev Dyn 2010; 239:2208-18. [PMID: 20568245 DOI: 10.1002/dvdy.22354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We developed a culture method for detecting repulsion among epithelial lobules during branching morphogenesis in mouse submandibular glands. Three epithelia were placed at each vertex of an imaginary triangle apart but near enough to meet with one another if each of them expands radially during the culture period. No repulsion was observed following cultivation with neuregulin 1 and lysophosphatidic acid; the epithelia actively branched and nearly contacted one another in the triangle's center. In contrast, strong repulsion was observed among the epithelia cultured with fibroblast growth factor 1 (FGF1), which exhibited less branching and moved away from the center. The localization of DiI- (1,1', di-octadecyl-3,3,3',3',-tetramethylindo-carbocyanine perchlorate) and BrdU- (5-bromodeoxyuridine) labeled cells in the cultures exposed to FGF1 indicated that the cells were unable to move and proliferate in the center. SB431542, an inhibitor of transforming growth factor-beta (TGFbeta) signaling, was unable to abolish this repulsion, suggesting that TGFbetas will not probably act as repellants in this case.
Collapse
Affiliation(s)
- Katsuya Okamoto
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | | | | |
Collapse
|
19
|
Regulation of Expression of Sprouty Isoforms by EGF, FGF7 or FGF10 in Fetal Mouse Submandibular Glands. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1348-8643(10)80002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Larsen M, Yamada KM, Musselmann K. Systems analysis of salivary gland development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:670-82. [PMID: 20890964 PMCID: PMC3398465 DOI: 10.1002/wsbm.94] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Branching morphogenesis is a crucial developmental process in which vertebrate organs generate extensive epithelial surface area while retaining a compact size. In the vertebrate submandibular salivary gland, branching morphogenesis is crucial for the generation of the large surface area necessary to produce sufficient saliva. However, in many salivary gland diseases, saliva-producing acinar cells are destroyed, resulting in dry mouth and secondary health conditions. Systems-based approaches can provide insights into understanding salivary gland development, function, and disease. The traditional approach to understanding these processes is the identification of molecular signals using reductionist approaches; we review current progress with such methods in understanding salivary gland development. Taking a more global approach, multiple groups are currently profiling the transcriptome, the proteome, and other 'omes' in both developing mouse tissues and in human patient samples. Computational methods have been successful in deciphering large data sets, and mathematical models are starting to make predictions regarding the contribution of molecules to the physical processes of morphogenesis and cellular function. A challenge for the future will be to establish comprehensive, publicly accessible salivary gland databases spanning the full range of genes and proteins; plans are underway to provide these resources to researchers in centralized repositories. The greatest challenge for the future will be to develop realistic models that integrate multiple types of data to both describe and predict embryonic development and disease pathogenesis.
Collapse
Affiliation(s)
- Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York
| | - Kenneth M. Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Kurt Musselmann
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health
| |
Collapse
|
21
|
Gresik EW, Koyama N, Hayashi T, Kashimata M. Branching morphogenesis in the fetal mouse submandibular gland is codependent on growth factors and extracellular matrix. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 56 Suppl:228-33. [PMID: 20224186 DOI: 10.2152/jmi.56.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).
Collapse
Affiliation(s)
- Edward W Gresik
- Department of Cell Biology and Anatomy, Sophie Davis School of Biomedical Education, City University of New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Koyama N, Hayashi T, Gresik EW, Kashimata M. Role of alpha 6 integrin subunit in branching morphogenesis of fetal mouse submandibular gland: investigation by mesenchyme-free epithelial culture system. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 56 Suppl:247-9. [PMID: 20224190 DOI: 10.2152/jmi.56.247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The submandibular gland (SMG) of the fetal mouse is a well-studied model for the epithelial-mesenchymal interactions required for branching morphogenesis (BrM), which involves cleft formation and stalk elongation. In a previous report, we showed that alpha 6 integrin subunit is involved in BrM of this gland rudiment, since the neutralizing antibody against alpha 6 integrin subunit, GoH3, strongly inhibited branching of cultured intact E13 SMG. In this study, we investigated whether GoH3 inhibits cleft formation and/or stalk elongation during BrM of cultured mesenchyme-free epithelial rudiments of fetal SMG and also analyzed by Western blotting the levels of phosphorylation of ERK1/2, which is a signaling molecule known to regulate BrM of the fetal mouse SMG.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Pharmacology, Asahi University School of Dentistry, Mizuho, Japan
| | | | | | | |
Collapse
|
23
|
Nitta M, Kume T, Nogawa H. FGF alters epithelial competence for EGF at the initiation of branching morphogenesis of mouse submandibular gland. Dev Dyn 2009; 238:315-23. [PMID: 18985730 DOI: 10.1002/dvdy.21780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Embryonic day 13 mouse submandibular gland (E13-SMG) rudiments with two to four clefts have been commonly used in culture experiments to show that growth factors, such as epidermal growth factor (EGF) -family and fibroblast growth factor (FGF) -family ligands, are involved in branching morphogenesis. In the present study, we focused on E12 rudiments and attempted to elucidate the roles of EGF- and FGF-family ligands in SMG development from E12 to E13. In mesenchyme-free, Matrigel-embedded cultures, EGF + lysophosphatidic acid (LPA) induced branching in E13 epithelium, whereas E12 epithelium remained spherical and no branching occurred under the same culture conditions; however, both E12 and E13 epithelia elongated in response to FGF10. Reverse transcriptase-polymerase chain reaction studies showed that the expression of ErbB1 among four EGF receptors and Lpa3 among three LPA receptors was lower in E12 than in E13 epithelia. Fgf10, Fgf7, and their major receptor Fgfr2b were highly and equally expressed in E12 and E13 rudiments. After 24 hr of mesenchyme-free culture with FGF10 or FGF7, E12 epithelium was primed to initiate branching morphogenesis in response to EGF + LPA coincident with ErbB1 and Lpa3 up-regulation. These results suggest that the EGF-family ligand-receptor system is undeveloped at E12 and that it becomes primed on E13 by the FGF ligand-receptor system to play an important role in the induction of branching morphogenesis.
Collapse
Affiliation(s)
- Mari Nitta
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
24
|
Li W, Ma L, Zhao J, Liu X, Li Z, Zhang Y. Expression profile of MTA1 in adult mouse tissues. Tissue Cell 2009; 41:390-9. [PMID: 19524276 DOI: 10.1016/j.tice.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 04/03/2009] [Accepted: 04/10/2009] [Indexed: 01/08/2023]
Abstract
MTA1, as a constituent of the nucleosome-remodeling and -deacetylation complex (NuRD), is thought to modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of several cancer cell lines and tissues, MTA1 can also regulate divergent cellular pathways by modifying the acetylation status of crucial target genes. However, its fundamental physiological functions have not been characterized. To further address the possible physiological role of this protein in mammals, the authors examined the expression pattern of mouse MTA1 in a variety of adult mouse tissues by a combination of techniques, including semi-quantitative RT-PCR, Western blotting and immunohistochemistry. Positive signals were observed on variety of tissues/cells in multiple systems including nervous, cardiovascular, respiratory, digestive, immune, endocrine, urinary, reproductive and sensory organ systems. MTA1 was localized in both the cytoplasm and the nuclei, and was accumulated in the nuclei. In mature mice, MTA1 expression was seen in cell types that constantly undergo proliferation or self-renewal, such as testis and cell types not constantly engaged in proliferation or self-renewal, such as brain, liver and kidney. This differential expression suggests that this protein serves distinct functions in murine organs.
Collapse
Affiliation(s)
- Wei Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Shaanxi Province, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Koyama N, Hayashi T, Ohno K, Siu L, Gresik EW, Kashimata M. Signaling pathways activated by epidermal growth factor receptor or fibroblast growth factor receptor differentially regulate branching morphogenesis in fetal mouse submandibular glands. Dev Growth Differ 2009; 50:565-76. [PMID: 19238727 DOI: 10.1111/j.1440-169x.2008.01053.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although growth factor signaling is required for embryonic development of organs, individual signaling mechanisms regulating these organotypic processes are just beginning to be defined. We compared signaling activated in fetal mouse submandibular glands (SMGs) by three growth factors, epidermal growth factor (EGF), fibroblast growth factor (FGF) 7, or FGF10, and correlated it with specific events of branching morphogenesis. Immunoblotting showed that EGF strongly stimulated phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and weakly stimulated phosphorylation of phospholipase Cgamma1 (PLCgamma1) and phosphatidylinositol-3 kinase (PI3K) in cultured E14 SMG. However, FGF7 and FGF10 stimulated phosphorylation of both PLCgamma1 and PI3K, but elicited only minimal phosphorylation of ERK-1/2. Morphological study of mesenchyme-free SMG epithelium cultured in Matrigel revealed that EGF induced cleft formation of endpieces, that FGF7 stimulated both cleft formation and stalk elongation, but that FGF10 induced only stalk elongation. In mesenchyme-free SMG epithelium cultured with EGF, FGF7 and FGF10, U0126 (MEK inhibitor) completely blocked cleft formation, whereas U73122 (PLCgamma1 inhibitor) suppressed stalk elongation. These finding suggest that EGF stimulates cleft formation and drives branch formation via ERK-1/2, and that FGF7 stimulates both cleft formation and stalk elongation via PLCgamma1 and partly via ERK-1/2, but that FGF10 stimulates stalk elongation mainly via PLCgamma1.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Pharmacology, Asahi University School of Dentistry 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Batarseh A, Giatzakis C, Papadopoulos V. Phorbol-12-myristate 13-acetate acting through protein kinase Cepsilon induces translocator protein (18-kDa) TSPO gene expression. Biochemistry 2009; 47:12886-99. [PMID: 18975922 DOI: 10.1021/bi8012643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Translocator protein (TSPO) is an 18-kDa cholesterol-binding protein that is expressed at high levels in steroid synthesizing and several cancer cells where it is involved in steroidogenesis and cell proliferation, respectively. The factors regulating Tspo expression are unknown. We analyzed Tspo transcriptional responses to the tumor promoter, phorbol-12-myristate 13-acetate (PMA), in cells with varying TSPO levels. PMA induced Tspo promoter activity and Tspo mRNA levels in TSPO-poor nonsteroidogenic cells (NIH-3T3 fibroblasts and COS-7 kidney) but not in TSPO-rich steroidogenic cells (MA-10 Leydig) with high basal Tspo transcriptional activity. The stimulatory effect of PMA was mediated by an 805-515-bp region upstream of the transcription start site. Electrophoretic mobility shift assay (EMSA) revealed that PMA induced binding of c-jun and GA-binding protein transcription factor (GABP-alpha) to their respective activator protein 1 (AP1) and v-ets erythroblastosis virus E26 oncogene homologue (Ets) sites in this region. Protein kinase C (PKC)-specific inhibitors blocked PMA induction of Tspo promoter activity with an inhibition profile suggestive of involvement of PKCepsilon. PKCepsilon expression correlated with TSPO content in the three cell lines. In NIH-3T3 cells, PKCepsilon overexpression induced Tspo promoter activity and mRNA levels and enhanced PMA-induced up regulation of c-jun and TSPO. In MA-10 cells, a PKCepsilon-specific translocation inhibitor peptide reduced basal Tspo promoter activity. PKCepsilon siRNA pool reduced PKCepsilon and TSPO levels in MA-10 cells indicating a role for PKCepsilon in regulating TSPO expression. Taken together, these data suggest that elevated TSPO expression in steroidogenic cells may be due to high constitutive expression of PKCepsilon that renders them unresponsive to further induction while PMA activation of PKCepsilon drives inducible TSPO expression in nonsteroidogenic cells, likely through AP1 and Ets.
Collapse
Affiliation(s)
- Amani Batarseh
- Department of Biochemistry & Molecular and Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
27
|
Inhibition and transcriptional silencing of a subtilisin-like proprotein convertase, PACE4/SPC4, reduces the branching morphogenesis of and AQP5 expression in rat embryonic submandibular gland. Dev Biol 2009; 325:434-43. [DOI: 10.1016/j.ydbio.2008.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 10/03/2008] [Accepted: 10/03/2008] [Indexed: 12/16/2022]
|
28
|
EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells. Differentiation 2008; 77:298-306. [PMID: 19272528 DOI: 10.1016/j.diff.2008.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/12/2008] [Accepted: 09/23/2008] [Indexed: 01/20/2023]
Abstract
Epidermal growth factor receptor (EGF-R) regulates epithelial morphogenesis during development and is important for the proper branching of the lung, mammary gland, and pancreas. We analyzed the salivary gland phenotype of EGF-R-deficient mice and showed impaired growth, branching, and maturation of the epithelium. Furthermore, treatment of wild-type E13 salivary glands with gefitinib, a small molecular inhibitor of EGF-R, led to apoptosis of the mesenchyme. Interestingly, MMP2 and plasminogen activators were upregulated upon inhibition of EGF-R signaling. To summarize, we show that EGF-R is a physiological regulator of salivary gland development and its main function is to support the proliferation and maturation of the epithelium and the survival of the mesenchyme.
Collapse
|
29
|
Dang H, Elliott JJ, Lin AL, Zhu B, Katz MS, Yeh CK. Mitogen-activated protein kinase up-regulation and activation during rat parotid gland atrophy and regeneration: role of epidermal growth factor and β2-adrenergic receptors. Differentiation 2008; 76:546-57. [DOI: 10.1111/j.1432-0436.2007.00251.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Abstract
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Unit, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Ishibe S, Haydu JE, Togawa A, Marlier A, Cantley LG. Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a beta-catenin-dependent manner. Mol Cell Biol 2006; 26:9232-43. [PMID: 17030602 PMCID: PMC1698536 DOI: 10.1128/mcb.01312-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Following organ injury, morphogenic epithelial responses can vary depending on local cell density. In the present study, the role of cell confluence in determining the responsiveness of renal epithelial cells to the dedifferentiating morphogenic signals of hepatocyte growth factor (HGF) was examined. Increasing confluence resulted in a greater tendency of cells to organize into epithelial tubes and a significant decrease in migratory responsiveness to HGF. Analysis of downstream signaling revealed that the HGF receptor c-Met was equally activated in confluent and nonconfluent cells following HGF stimulation but that phosphoinositide 3-kinase-dependent activation of Akt and Rac were selectively diminished in confluent cells. In nonconfluent cells treated with HGF, the high level of Akt activation resulted in inhibitory phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) and increased beta-catenin nuclear signaling. In contrast, confluent cells, in which HGF-stimulated Akt activation was diminished, displayed less inhibitory phosphorylation of GSK-3beta and less nuclear signaling by beta-catenin. Overexpression of beta-catenin (SA), which cannot be phosphorylated by GSK-3beta and targeted for ubiquitination, significantly increased migration in fully confluent cells. Thus, cells maintained at high confluence selectively downregulate signaling events such as Rac activation and beta-catenin-dependent transcription that would otherwise promote cell dedifferentiation and migration.
Collapse
Affiliation(s)
- Shuta Ishibe
- Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
32
|
Melnick M, Mocarski ES, Abichaker G, Huang J, Jaskoll T. Cytomegalovirus-induced embryopathology: mouse submandibular salivary gland epithelial-mesenchymal ontogeny as a model. BMC DEVELOPMENTAL BIOLOGY 2006; 6:42. [PMID: 16959038 PMCID: PMC1601957 DOI: 10.1186/1471-213x-6-42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/07/2006] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV) is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues. It has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs). RESULTS We infected E15 SMG explants with mouse CMV (mCMV). Active infection for up to 12 days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal metaplasia, beta-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2. Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to initiate and maintain SMG dysmorphogenesis. CONCLUSION mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and, possibly, anaplasia. The molecular pathogenesis appears to center around the activation of canonical and, perhaps more importantly, noncanonical NFkappaB. Further, COX-2 and IL-6 are important downstream effectors of embryopathology. At the cellular level, there appears to be a consequential interplay between the transformed SMG cells and the surrounding extracellular matrix, resulting in the nuclear translocation of beta-catenin. From these studies, a tentative framework has emerged within which additional studies may be planned and performed.
Collapse
Affiliation(s)
- Michael Melnick
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA 90089-0641, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - George Abichaker
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA 90089-0641, USA
| | - Jing Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Tina Jaskoll
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA 90089-0641, USA
| |
Collapse
|
33
|
Crema VO, Hamassaki DE, Santos MF. Small Rho GTPases are important for acinus formation in a human salivary gland cell line. Cell Tissue Res 2006; 325:493-500. [PMID: 16639616 DOI: 10.1007/s00441-006-0192-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
Abstract
Rho GTPases participate in a wide variety of signal transduction pathways regulating the actin cytoskeleton, gene expression, cellular migration and proliferation. The aim of this study was to evaluate the role of Rho GTPases in signal transduction pathways during acinus formation in a human salivary gland (HSG) cell line initiated by extracellular matrix (ECM; Matrigel) alone or in combination with epidermal growth factor, basic fibroblast growth factor and lysophosphatidic acid (LPA). Immunohistochemical and Western blotting analyses showed that HSG cells contained RhoA, RhoB, Rac1 and Cdc42 proteins. All growth factors enhanced the effects of ECM on acinus formation, in a pathway dependent on PI3-kinase and Rho GTPases. The role of ROCK, a major RhoA effector, seemed limited to cortical actin polymerization. LPA stimulated cell migration and acinus formation in a PI3-kinase-independent pathway. The results suggest that Rho proteins are important for epithelial-mesenchymal interactions during salivary gland development.
Collapse
Affiliation(s)
- Virgínia O Crema
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, SP CEP 05508-900, Brazil
| | | | | |
Collapse
|
34
|
Hashizume A, Hieda Y. Hedgehog peptide promotes cell polarization and lumen formation in developing mouse submandibular gland. Biochem Biophys Res Commun 2006; 339:996-1000. [PMID: 16332353 DOI: 10.1016/j.bbrc.2005.11.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/16/2005] [Indexed: 02/01/2023]
Abstract
Tube formation of the developing mouse submandibular salivary gland (SMG) begins at embryonic day (E) 14. The SMG of Sonic hedgehog (Shh) null mice was recently shown to fail to progress to stages beyond around E14. Here, we examined the effects of Shh peptide on tube formation of SMG explants. When the SMG rudiments from E14 mice were cultured, terminal buds of glands treated with Shh peptide formed the acini-like structure with a lumen whereas those of control glands remained as cell masses. In the acini-like terminal buds of the treated glands, tight junction proteins of ZO-1 and claudin-3 delineated the lumen and the apical membrane protein aquaporin-5 accumulated at the luminal cell surfaces. Moreover, laminin-5 deposition at the basal lamina region of terminal buds was accelerated in treated glands. It is suggested that hedgehog signaling promotes lumen formation and cell polarization of developing SMG epithelium.
Collapse
Affiliation(s)
- Atsushi Hashizume
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
35
|
Heo JS, Han HJ. PKC and MAPKs Pathways Mediate EGF-induced Stimulation of 2-Deoxyglucose Uptake in Mouse Embryonic Stem Cells. Cell Physiol Biochem 2006; 17:145-58. [PMID: 16543731 DOI: 10.1159/000092076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been reported that epidermal growth factor (EGF) and EGF receptor were highly expressed in embryo, suggesting that the EGF system is related to early embryo development in an autocrine and/or paracrine manner. Glucose becomes the preimplantation exogenous energy substrate and enters the blastocyst via glucose transporters. Thus, the effect of EGF on [3H]-2-deoxyglucose (2-DG) uptake and its related signaling pathways were examined in mouse embryonic stem (ES) cells. EGF significantly increased 2-DG uptake in time- and concentration- dependent manner (>12 hr, >10 ng/ ml) and increased mRNA and protein level of glucose transporter 1 (GLUT1) compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of EGF on 2-DG uptake. EGF-induced increase of 2-DG uptake was blocked by AG1478 (EGF receptor tyrosine kinase blocker), genistein or herbimycin (tyrosine kinase inhibitors). In addition, EGF effect was blocked by neomycin and U 73122 [phospholipase C (PLC) inhibitors] as well as staurosporine and bisindolylmaleimide I [protein kinase C (PKC) inhibitors]. EGF was also observed to increase inositol phosphates (IPs) formation and activate a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PLC and PKC. SB 203580 [p38 mitogen activated protein kinase (MAPK) inhibitor] or PD 98059 (p44/42 MAPKs inhibitor) blocked EGF-induced increase of 2-DG uptake. EGF also increased phosphorylation of p38 MAPK and p44/42 MAPKs, which was blocked by genistein or bisindolylmaleimide I, respectively. In conclusion, EGF partially increased 2-DG uptake via PKC, p38 MAPK, and p44/42 MAPKs in mouse ES cells.
Collapse
Affiliation(s)
- Jung Sun Heo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
36
|
Noguchi Y, Okamoto A, Kasama T, Imajoh-Ohmi S, Karatsu T, Nogawa H. Lysophosphatidic acid cooperates with EGF in inducing branching morphogenesis of embryonic mouse salivary epithelium. Dev Dyn 2006; 235:403-10. [PMID: 16317726 DOI: 10.1002/dvdy.20651] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epithelial morphogenesis is supported by diffusible growth factors and by nondiffusible cell substrata, such as laminin and fibronectin. When embedded in a laminin-rich basement-membrane substratum, embryonic mouse submandibular epithelium undergoes cell proliferation and branching morphogenesis in response to epidermal growth factor (EGF) in mesenchyme-free culture but not in serum-free medium. In this study, we sought to identify the biologically active factor in serum. As this factor was heat-stable and trypsin-resistant, the lipid fraction was analyzed. Horse serum was fractionated by ethanol extraction, Folch partition with chloroform-methanol-water, and high-performance liquid chromatography, and we tested the branch-inducing activity of each fraction. We also analyzed the partially purified fraction with a mass spectrometer, indicating that the active fraction largely consisted of lysophosphatidyl-hexose. Finally we identified the molecule as lysophosphatidic acid (LPA), because, whereas lysophosphatidyl-inositol had only a slight branch-inducing activity, its relevant LPA fully substituted for serum and induced branching morphogenesis in cooperation with EGF. LPA receptor genes were expressed in submandibular epithelial cells. DNA-synthesizing cells were abundant only when cultured in the presence of both EGF and LPA, but not either singly.
Collapse
Affiliation(s)
- Yohei Noguchi
- Department of Life and Earth Sciences, Graduate School of Science and Technology, Chiba University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S, Hajihosseini MK, Melnick M. FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2005; 5:11. [PMID: 15972105 PMCID: PMC1184065 DOI: 10.1186/1471-213x-5-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/22/2005] [Indexed: 11/25/2022]
Abstract
Background Analyses of Fgf10 and Fgfr2b mutant mice, as well as human studies, suggest that FGF10/FGFR2b signaling may play an essential, nonredundant role during embryonic SMG development. To address this question, we have analyzed the SMG phenotype in Fgf10 and Fgfr2b heterozygous and null mutant mice. In addition, although previous studies suggest that the FGF10/FGFR2b and FGF8/FGFR2c signaling pathways are functionally interrelated, little is known about the functional relationship between these two pathways during SMG development. We have designed in vivo and in vitro experiments to address this question. Results We analyzed Fgf10 and Fgfr2b heterozygous mutant and null mice and demonstrate dose-dependent SMG phenotypic differences. Hypoplastic SMGs are seen in Fgf10 and Fgfr2b heterozygotes whereas SMG aplasia is seen in Fgf10 and Fgfr2b null embryos. Complementary in vitro studies further indicate that FGF10/FGFR2b signaling regulates SMG epithelial branching and cell proliferation. To delineate the functional relationship between the FGF10/FGFR2b and FGF8/FGFR2c pathways, we compared the SMG phenotype in Fgfr2c+/Δ/Fgf10+/- double heterozygous mice to that seen in wildtype, Fgf10+/- (Fgfr2c+/+/Fgf10+/-) and Fgfr2c+/Δ (Fgfr2c+/Δ/Fgf10+/+) single heterozygous mutant littermates and demonstrate genotype-specific SMG phenotypes. In addition, exogenous FGF8 was able to rescue the abnormal SMG phenotype associated with abrogated FGFR2b signaling in vitro and restore branching to normal levels. Conclusion Our data indicates that FGF10/FGFR2b signaling is essential for the SMG epithelial branching and histodifferentiation, but not earliest initial bud formation. The functional presence of other endogenous signaling pathways could not prevent complete death of embryonic SMG cells in Fgf10 and Fgfr2b null mice. Though we were able to rescue the abnormal phenotype associated with reduced in vitro FGF10/FGFR2b signaling with exogenous FGF8 supplementation, our results indicate that the FGF10/FGFR2b and FGF8/FGFR2c are nonredundant signaling pathways essential for in vivo embryonic SMG development. What remains to be determined is the in vivo functional relationship between the FGF10/FGFR2b signal transduction pathway and other key signaling pathways, and how these pathways are integrated during embryonic SMG development to compose the functional epigenome.
Collapse
Affiliation(s)
- Tina Jaskoll
- Laboratory Developmental Genetics, University of Southern California, Los Angeles, CA, USA
| | - George Abichaker
- Laboratory Developmental Genetics, University of Southern California, Los Angeles, CA, USA
| | - Daniel Witcher
- Laboratory Developmental Genetics, University of Southern California, Los Angeles, CA, USA
| | - Frederic G Sala
- Department of Surgery, and Division of Developmental Biology, the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Saverio Bellusci
- Department of Surgery, and Division of Developmental Biology, the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Michael Melnick
- Laboratory Developmental Genetics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Abstract
The basement membrane separates the epithelium from the surrounding mesenchyme and plays an essential role in the development of various epithelial-mesenchymal organs. Among these, the submandibular salivary gland (SMG) has been chosen to review the expression patterns and roles of the epithelial basement membrane and its components, in particular the laminins, during SMG morphogenesis. At the outset, a brief description of SMG development is provided with special reference to changes in the epithelial architecture and the epithelial basement membrane. The restricted expression patterns of various laminin isoforms in the developing SMGs are also summarized. Furthermore, an overview is given of several lines of experimental evidence that indicate significant but distinct roles for laminin-1 and laminin-10, their individual domains and their receptor-mediated signaling in SMG morphogenesis.
Collapse
Affiliation(s)
- Yuichi Kadoya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan.
| | | |
Collapse
|
39
|
Miyazaki Y, Nakanishi Y, Hieda Y. Tissue interaction mediated by neuregulin-1 and ErbB receptors regulates epithelial morphogenesis of mouse embryonic submandibular gland. Dev Dyn 2005; 230:591-6. [PMID: 15254894 DOI: 10.1002/dvdy.20078] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization and activation of ErbB receptors by their ligands play crucial roles in organogenesis. Epithelial morphogenesis of embryonic mouse submandibular gland (SMG) has been shown to depend on intraepithelial signaling mediated by the epidermal growth factor (EGF) family of molecules and the EGF receptor (ErbB1). Here, we report on the neuregulin (NRG) -1 protein and its receptors ErbB2 and ErbB3 in the developing SMG. The expression of these molecules was demonstrated by reverse transcriptase-polymerase chain reaction and Western blot analysis. Immunofluorescence microscopy showed that the two ErbB receptors as well as ErbB1 were expressed mainly in the epithelium, whereas NRG-1 was exclusively found in the mesenchyme. Epithelial morphogenesis was retarded by anti-NRG-1 neutralizing antibody and promoted by recombinant NRG-1 protein. We suggest that, in the developing SMG, both mesenchyme-derived NRG molecules and epithelium-derived EGF molecules regulate ErbB signaling in the epithelium to participate in tissue morphogenesis.
Collapse
Affiliation(s)
- Yuji Miyazaki
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | | | | |
Collapse
|
40
|
Wang J, Ito T, Udaka N, Okudela K, Yazawa T, Kitamura H. PI3K-AKT pathway mediates growth and survival signals during development of fetal mouse lung. Tissue Cell 2004; 37:25-35. [PMID: 15695173 DOI: 10.1016/j.tice.2004.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 09/20/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022]
Abstract
We examined the roles of the PI3K-AKT signalling pathway in fetal lung development. By Western blotting, phosphorylated AKT (pAKT) was highly expressed in fetal days 12 and 14 with decreased expression thereafter. By immunohistochemistry, pAKT was expressed mainly in the respiratory epithelium of early fetal days. We examined the effects of fibroblast growth factor 1 (FGF1), PI3K inhibitors (LY294002 and wortmannin), MAPK inhibitor (PD98059) and both of FGF1 and each inhibitor on lung morphogenesis, BrdU incorporation and apoptosis. In the FGF1-treated explants, the number of terminal buds and BrdU-labelled cells increased significantly, while the LY294002-, wortmannin-, PD98059-treated explants demonstrated obvious decreases. The effects by FGF1 were inhibited by LY294002, wortmannin and PD98059. Regardless of the presence of FGF1, the LY294002-, wortmannin- and PD98059-treated explants increased apoptosis revealed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay in the mesenchyme of the explants. At the same time, the effect of LY294002, wortmannin, PD98059 on expression of surfactant apoprotein C (SPC) were also studied. The LY294002 and wortmannin treatments showed decreased expression of SPC. These findings suggest that the PI3K-AKT signalling pathway plays a pivotal role in mouse lung development through various biological processes.
Collapse
Affiliation(s)
- J Wang
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM, Melnick M. FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol 2004; 268:457-69. [PMID: 15063181 DOI: 10.1016/j.ydbio.2004.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/20/2003] [Accepted: 01/02/2004] [Indexed: 11/21/2022]
Abstract
FGF8 has been shown to play important morphoregulatory roles during embryonic development. The observation that craniofacial, cardiovascular, pharyngeal, and neural phenotypes vary with Fgf8 gene dosage suggests that FGF8 signaling induces differences in downstream responses in a dose-dependent manner. In this study, we investigated if FGF8 plays a dose-dependent regulatory role during embryonic submandibular salivary gland (SMG) morphogenesis. We evaluated SMG phenotypes of Fgf8 hypomorphic mice, which have decreased Fgf8 gene function throughout embryogenesis. We also evaluated SMG phenotypes of Fgf8 conditional mutants in which Fgf8 function has been completely ablated in its expression domain in the first pharyngeal arch ectoderm from the time of arch formation. Fgf8 hypomorphs have hypoplastic SMGs, whereas conditional mutant SMGs exhibit ontogenic arrest followed by involution and are absent by E18.5. SMG aplasia in Fgf8 ectoderm conditional mutants indicates that FGF8 signaling is essential for the morphogenesis and survival of Pseudoglandular Stage and older SMGs. Equally important, the presence of an initial SMG bud in Fgf8 conditional mutants indicates that initial bud formation is FGF8 independent. Mice heterozygous for either the Fgf8 null allele (Fgf8(+/N)) or the hypomorphic allele (Fgf8(+/H)) have SMGs that are indistinguishable from wild-type (Fgf8(+/+)) mice which suggest that there is not only an FGF8 dose-dependent phenotypic response, but a nonlinear, threshold-like, epistatic response as well. We also found that enhanced FGF8 signaling induced, and abrogated FGF8 signaling decreased, SMG branching morphogenesis in vitro. Furthermore, since FGF10 and Shh expression is modulated by Fgf8 levels, we postulated that exogenous FGF10, Shh, or FGF10 + Shh peptide supplementation in vitro would largely "rescue" the abnormal SMG phenotype associated with decreased FGF8 signaling. This is as expected, though there is no synergistic effect with FGF10 + Shh peptide supplementation. These in vitro experiments model the principle that mutations have different effects in the context of different epigenotypes.
Collapse
Affiliation(s)
- Tina Jaskoll
- Laboratory for Developmental Genetics, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | | | | | | | | | | |
Collapse
|