1
|
Saint-Ruf C, Boumerdassi Y, Kouakou F, Wolf JP, Eustache F, Vaiman D, Miralles F. Blastocyst exposure to plastic during mice in vitro fertilization impacts placental development. Reprod Toxicol 2025; 132:108856. [PMID: 39952332 DOI: 10.1016/j.reprotox.2025.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Pregnancies from Assisted Reproductive Technologies (ARTs) are associated with a significant prevalence of maternal, neonatal and long-term adverse health issues. These anomalies are generally attributed to the in vitro manipulations involved in these procedures. Concerns have been raised on the quality of the culture media, however the potential influence of the chemical composition of the devices used in the in vitro fertilization (IVF) has been poorly analysed. By comparing the transcriptomes of placentas from mouse blastocysts obtained by IVF on plasticware, glassware and naturally conceived, we have previously established that plasticware profoundly impacts placental development. METHODS Transcriptomics, transcriptome deconvolution analysis, Gene Set Enrichment Analysis. RESULTS Plasticware alters placental gene expression mostly in the trophoblast compartment, and alters cell composition favouring Glycogen Cells. These modifications correlate with alterations of epigenetic mechanisms (alterations of imprinted genes, microRNAs expression, methylation alterations). Also, sex-stratified analysis reveals that these effects are more drastic in female than male placentas. The effect of glassware on the transcriptome and cellular composition of the placenta is milder, and in particular has lower impact on the imprinted gene or microRNAs expression. CONCLUSION In vitro culture in plasticware during IVF procedures sex-specifically alters gene expression and/or cell composition in the placenta, possibly through factors released by the plasticware having an action on epigenetic actors (imprinted genes, miRNAs and DNA methylation).
Collapse
Affiliation(s)
- Claude Saint-Ruf
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | | | - Franck Kouakou
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Jean-Philippe Wolf
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Florence Eustache
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Daniel Vaiman
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Francisco Miralles
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France.
| |
Collapse
|
2
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Meyrueix LP, Gharaibeh R, Xue J, Brouwer C, Jones C, Adair L, Norris SA, Ideraabdullah F. Gestational diabetes mellitus placentas exhibit epimutations at placental development genes. Epigenetics 2022; 17:2157-2177. [DOI: 10.1080/15592294.2022.2111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Raad Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL, USA
| | - Jing Xue
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
| | - Cory Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
| | - Corbin Jones
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Adair
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
| | - Shane A. Norris
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Folami Ideraabdullah
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Ustunyurt E, Dundar B, Simsek D, Temur M. Act of fibulin-1 in preeclamptic patients: can it be a predictive marker? J Matern Fetal Neonatal Med 2021; 34:3775-3781. [PMID: 34238097 DOI: 10.1080/14767058.2021.1949277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Preeclampsia is one of the leading causes of maternal-neonatal morbidity and mortality, especially in developed and developing countries. Incidence of preeclampsia differs in accordance with parity, race, age, geography, and concomitant diseases. The role of placental implantation and risk factors was elucidated precisely. Antenatal care, use of medications, change in lifestyle, and nutritional supplementation were investigated for the prevention or decrease the complications; however, to date, there has not exposed a proper approach for prevention and prediction. The trigger mechanism or circumstance is still debate. Placental development especially spiral artery remodeling might be supposed to be the accused primary site of preeclampsia. Extracellular matrix proteins play a crucial role in implantation. Fibulin is one of these proteins which represents an association with matrix proteins, basement membranes, and elastic fibers. Fibulins are mainly functioning in the remodeling of tissues especially blood vessels, endocardial cushion, the mesenchymal, and connective tissue of several organs including heart, lung, intestine, kidneys, and liver. Several diseases were associated with altered fibulin levels. We aimed to examine fibulin-1 levels in preeclamptic patients and to focus on the possible role of fibulin-1 in preeclampsia. MATERIAL AND METHOD A prospective observational, case-control study was achieved. Patients diagnosed with preeclampsia and healthy controls were recruited in the study. Patients' demographic features, perinatal outcomes, complications, obstetrics doppler ultrasonographic evaluations, laboratory results, and serum fibulin-1 levels were reviewed. The comparison of the groups was determined statistically. Correlation analysis and multivariate logistic analysis were calculated. The receiver operating characteristic (ROC) curve was used to indicate fibulin-1 levels for the prediction of preeclampsia. RESULTS A total of 36 healthy pregnant and 38 preeclamptic patients were included in the study. Comparison of the groups with age, gravidity, BMI, APGAR scores, birth weight did not differ significantly. Kidney and liver function tests and complete hemogram parameters did not have a clinically important difference. Fibulin-1 levels were significantly lower in patients with preeclampsia. The ROC curve for fibulin-1 for predicting the preeclampsia risk was analyzed. The area under the ROC curves was 0.682 (95% CI [0.560-0.804, p < .007) for fibulin-1. The optimal cutoff value of fibulin-1 for detecting preeclampsia was ≤ 27.81 ng/ml, at which the sensitivity was 61.1% and specificity was 63.2 %. CONCLUSION Fibulin-1 levels could be a beneficial marker for preeclampsia diagnosis and prediction. It might have a role in the etiopathology of preeclampsia, due to its function in the extracellular matrix.
Collapse
Affiliation(s)
- Emin Ustunyurt
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Betul Dundar
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Deniz Simsek
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Muzaffer Temur
- Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey.,Department of Obstetrics and Gynecology, Doruk Private Y?ld?r?m Hospital, Bursa, Turkey
| |
Collapse
|
5
|
Abstract
The mouse is the most extensively used mammalian laboratory species in biology and medicine because of the ready availability of a wide variety of defined genetic and gene-modified strains and abundant genetic information. Its small size and rapid generation turnover are also advantages compared with other experimental animals. Using these advantages, somatic cell nuclear transfer (SCNT) in mice has provided invaluable information on epigenetics related to SCNT technology and cloning, playing a leading role in relevant technical improvements. These improvements include treatment with histone deacetylase inhibitors, correction of Xist gene expression (controlling X chromosome inactivation), and removal of methylated histones from SCNT-generated embryos, which have proven to be effective for SCNT cloning of other species. However, even with the best combination of these treatments, the birth rate in cloned offspring is still lower than intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). One remaining issue associated with SCNT is placental enlargement (hyperplasia) found in late pregnancy, but this abnormality might not be a major cause for the low efficiency of SCNT because many SCNT-derived embryos die before their placentas start to enlarge at midgestation (early postimplantation stage). It is known that, at this stage, undifferentiated trophoblast cells in the extraembryonic tissue of SCNT-derived embryos fail to proliferate. Understanding the molecular mechanisms is essential for further technical improvements of mouse SCNT, which might also provide clues for technical breakthroughs in mammalian SCNT and cloning in general.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
Gardner S, Grindstaff JL, Campbell P. Placental genotype affects early postpartum maternal behaviour. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190732. [PMID: 31598302 PMCID: PMC6774950 DOI: 10.1098/rsos.190732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/20/2019] [Indexed: 05/06/2023]
Abstract
The mammalian placenta is a source of endocrine signals that prime the onset of maternal care at parturition. While consequences of placental dysfunction for offspring growth are well defined, how altered placental signalling might affect maternal behaviour is unstudied in a natural system. In the cross between sympatric mouse species, Mus musculus domesticus and Mus spretus, hybrid placentas are undersized and show misexpression of genes critical to placental endocrine function. Using this cross, we quantified the effects of placental dysregulation on maternal and anxiety-like behaviours in mice that differed only in pregnancy type. Relative to mothers of conspecific litters, females exposed to hybrid placentas did not differ in anxiety-like behaviours but were slower to retrieve 1-day-old pups and spent less time in the nest on the night following parturition. Early deficits in maternal responsiveness were not explained by reduced ultrasonic vocalization production in hybrid pups and there was no effect of pup genotype on measures of maternal behaviour and physiology collected after the first 24 h postpartum. These results suggest that placental dysregulation leads to poor maternal priming, the effect of which is alleviated by continued exposure to pups. This study provides new insight into the placental mediation of mother-offspring interactions.
Collapse
Affiliation(s)
- Sarah Gardner
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
- Author for correspondence: Sarah Gardner e-mail:
| | | | - Polly Campbell
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
7
|
Mahmoudian J, Ghods R, Nazari M, Jeddi-Tehrani M, Ghahremani MH, Ghaffari-Tabrizi-Wizsy N, Ostad SN, Zarnani AH. PLAC1: biology and potential application in cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1039-1058. [PMID: 31165204 PMCID: PMC11028298 DOI: 10.1007/s00262-019-02350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran
| | | | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Nafisi Building, Enghelab St., Tehran, 1417613151, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol 2017; 17:34. [PMID: 28347305 PMCID: PMC5368936 DOI: 10.1186/s12896-017-0355-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 03/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Placental defects in somatic cell nuclear transfer (SCNT) are a major cause of complications during pregnancy. One of the most critical factors for the success of SCNT is the successful epigenetic reprogramming of donor cells. Recently, it was reported that the placental weight in mice cloned with the aggregated SCNT method was significantly reduced. Here, we examine the profile of abnormal gene expression using microarray technology in both regular SCNT and aggregated SCNT placentas as well as in vivo fertilization placentas. One SCNT embryo was aggregated with two 2 to 4 -cell stage tetraploid embryos from B6D2F1 mice (C57BL/6 × DBA/2). Results In SCNT placentas, 206 (1.6%) of the 12,816 genes probed were either up-regulated or down-regulated by more than two-fold. However, 52 genes (0.4%) showed differential expression in aggregated SCNT placentas compared to that in controls. In comparison of both types of SCNT placentas with the controls, 33 (92%) out of 36 genes were found to be up-regulated (>2-fold) in SCNT placentas. Among 36 genes, 13 (36%) genes were up-regulated in the aggregated SCNT placentas. Eighty-five genes were down-regulated in SCNT placentas compared with the controls. However, only 9 (about 10.5%) genes were down-regulated in the aggregated SCNT placentas. Of the 34 genes known as imprinted genes, expression was lower in SCNT placentas than that in the controls. Thus, these genes may be the cause of placentomegaly in mice produced post SCNT. Conclusions These results suggest that placentomegaly in the SCNT placentas was probably caused by abnormal expression of multiple genes. Taken together, these results suggest that abnormal gene expression in cloned placentas was reduced in a genome-wide manner using the aggregation method with tetraploid embryos. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0355-4) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Muto M, Fujihara Y, Tobita T, Kiyozumi D, Ikawa M. Lentiviral Vector-Mediated Complementation Restored Fetal Viability but Not Placental Hyperplasia in Plac1-Deficient Mice. Biol Reprod 2015; 94:6. [PMID: 26586843 DOI: 10.1095/biolreprod.115.133454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 12/25/2022] Open
Abstract
The X-linked Plac1 gene is maternally expressed in trophoblast cells during placentation, and its disruption causes placental hyperplasia and intrauterine growth restriction. In contrast, Plac1 is also reported to be one of the upregulated genes in the hyperplastic placenta generated by nuclear transfer. However, the effect of overexpressed Plac1 on placental formation and function remained unaddressed. We complemented the Plac1 knockout placental dysfunction by lentiviral vector-mediated, placenta-specific Plac1 transgene expression. Whereas fetal development and the morphology of maternal blood sinuses in the labyrinth zone improved, placental hyperplasia remained, with an expanded the junctional zone that migrated and encroached into the labyrinth zone. Further experiments revealed that wild-type placenta with transgenically expressed Plac1 resulted in placental hyperplasia without the encroaching of the junctional zone. Our findings suggest that Plac1 is involved in trophoblast cell proliferation, differentiation, and migration. Its proper expression is required for normal placentation and fetal development.
Collapse
Affiliation(s)
- Masanaga Muto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Tobita
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Hirasawa R, Matoba S, Inoue K, Ogura A. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos. PLoS One 2013; 8:e76422. [PMID: 24146866 PMCID: PMC3797840 DOI: 10.1371/journal.pone.0076422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.
Collapse
Affiliation(s)
| | - Shogo Matoba
- RIKEN BioResouce Center, Tsukuba, Ibaraki, Japan
| | - Kimiko Inoue
- RIKEN BioResouce Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- RIKEN BioResouce Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Kong X, Jackman SM, Fant ME. Plac1 (placenta-specific 1) is widely expressed during fetal development and is associated with a lethal form of hydrocephalus. ACTA ACUST UNITED AC 2013; 97:571-7. [PMID: 24014101 DOI: 10.1002/bdra.23171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/11/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Plac1 is an X-linked gene essential for normal placental development. Plac1 ablation is associated with placentomegaly and intrauterine growth retardation. Additionally, Plac1-null mice exhibit reduced postnatal viability. This study was conducted as part of our ongoing examination of the postnatal phenotype associated with Plac1 ablation. METHODS Plac1 was deleted in murine embryonic stem cells and bred against a C57BL/6 background. Mutant mice were genotyped using a polymerase chain reaction-based strategy. Embryonic Plac1 expression was assessed by quantitative real-time polymerase chain reaction, in situ hybridization, and β-galactosidase expression. RESULTS A total of 20% of the surviving X(m-)Y (knockout) males as well as 10-15% of the X(m-)X females (mutant maternal allele) developed lethal hydrocephalus at 4-8 weeks. By contrast, XX(p-) hets (paternal null allele) did not. Plac1 mRNA expression was detected in the fetal brain that markedly decreased after birth. Plac1 mRNA expression localized to the hindbrain and lateral ventricles of wild-type embryos. Additionally, Plac1 expression was observed throughout the fetus including the fetal lungs, kidney, intestine, liver, and heart. Embryonic Plac1 expression was paternally imprinted with partial escape of the paternal allele from complete inactivation. The Plac1 protein localized to the apical surface of the epithelial cells lining the developing airways of the lung and proximal renal tubules, consistent with its localization in the differentiated syncytiotrophoblast. CONCLUSION Plac1 is expressed in the brain in a developmentally regulated manner and its absence is linked to increased risk for hydrocephalus. It is also widely expressed in fetal tissues expanding the existing paradigm to include direct tissue-specific roles during development.
Collapse
Affiliation(s)
- Xiaoyuan Kong
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, Florida
| | | | | |
Collapse
|
12
|
Murthi P, Kalionis B, Cocquebert M, Rajaraman G, Chui A, Keogh RJ, Evain-Brion D, Fournier T. Homeobox genes and down-stream transcription factor PPARγ in normal and pathological human placental development. Placenta 2013; 34:299-309. [PMID: 23484914 DOI: 10.1016/j.placenta.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 01/12/2023]
Abstract
The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface is controlled by nuclear transcription factors including homeobox genes. Here we summarize current knowledge regarding the expression and function of homeobox genes in the placenta. We also describe the identification of target transcription factors including PPARγ, biological pathways regulated by homeobox genes and their role in placental development. The role of the nuclear receptor PPARγ, ligands and target genes in human placental development is also discussed. A better understanding of these pathways will improve our knowledge of placental cell biology and has the potential to reveal new molecular targets for the early detection and diagnosis of pregnancy complications including human fetal growth restriction.
Collapse
Affiliation(s)
- P Murthi
- Department of Perinatal Medicine Pregnancy Research Centre, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jackman SM, Kong X, Fant ME. Plac1 (placenta-specific 1) is essential for normal placental and embryonic development. Mol Reprod Dev 2012; 79:564-72. [PMID: 22729990 DOI: 10.1002/mrd.22062] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/05/2012] [Indexed: 12/28/2022]
Abstract
Plac1 is a recently identified, X-linked gene whose expression is restricted primarily to cells of the trophoblast lineage. It localizes to a chromosomal locus previously implicated in placental growth. We therefore sought to determine if Plac1 is necessary for placental and embryonic development by examining a mutant mouse model. Plac1 ablation resulted in placentomegaly and mild intrauterine growth retardation (IUGR). At E16.5, knockout (KO) and heterozygous (Het) placentae of the Plac1-null allele inherited from the mother (X(m-) X) weighed approximately 100% more than wildtype (WT) placentae, whereas the corresponding embryos weighed 7-12% less. Histologically, Plac1 mutants exhibited an expanded spongiotrophoblast layer that invaded the labyrinth. By contrast, Het placentae that inherited the null allele from the father (XX(p-) ) exhibited normal growth and were histologically indistinguishable from WT placentae, consistent with paternal imprinting of Plac1. When examined across gestation, WT and X(m-) X placental weights peaked at E16.5 and decreased slightly thereafter. KO placentae (X(m-) X(p-) and X(m-) Y), however, continued to increase in weight after E16.5, consistent with a functional role for the paternal Plac1 allele. Subsequent analysis confirmed that the paternal allele partially escapes complete X-inactivation and thus contributes to placental growth regulation. Additionally, although male Plac1 KO mice can survive, they exhibit decreased viability as a consequence of events occurring late in gestation or shortly after birth. Thus, Plac1 is a paternally imprinted, X-linked gene essential for normal placental and embryonic development.
Collapse
Affiliation(s)
- Suzanne M Jackman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | |
Collapse
|
14
|
Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 2011; 21:548-58. [PMID: 22025075 DOI: 10.1093/hmg/ddr488] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Desmarais JA, Demers SP, Suzuki J, Laflamme S, Vincent P, Laverty S, Smith LC. Trophoblast stem cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos. Reproduction 2011; 141:321-32. [PMID: 21209071 DOI: 10.1530/rep-09-0536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although putative horse embryonic stem (ES)-like cell lines have been obtained recently from in vivo-derived embryos, it is currently not known whether it is possible to obtain ES cell (ESC) lines from somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) embryos. Our aim is to establish culture conditions for the derivation of autologous ESC lines for cell therapy studies in an equine model. Our results indicate that both the use of early-stage blastocysts with a clearly visible inner cell mass (ICM) and the use of pronase to dissect the ICM allow the derivation of a higher proportion of primary ICM outgrowths from PA and SCNT embryos. Primary ICM outgrowths express the molecular markers of pluripotency POU class 5 homeobox 1 (POU5F1) and (sex determining region-Y)-box2 (SOX2), and in some cases, NANOG. Cells obtained after the passages of PA primary ICM outgrowths display alkaline phosphatase (AP) activity and POU5F1, SOX2, caudal-related homeobox-2 (CDX2) and eomesodermin (EOMES) expression, but may lose NANOG. Cystic embryoid body-like structures expressing POU5F1, CDX2 and EOMES were produced from these cells. Immunohistochemical analysis of equine embryos reveals the presence of POU5F1 in trophectoderm, primitive endoderm and ICM. These results suggest that cells obtained after passages of primary ICM outgrowths are positive for trophoblast stem cell markers while expressing POU5F1 and displaying AP activity. Therefore, these cells most likely represent trophoblast cells rather than true ESCs. This study represents an important first step towards the production of autologous equine ESCs for pre-clinical cell therapy studies on large animal models.
Collapse
Affiliation(s)
- Joëlle A Desmarais
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Centre de Recherche en Reproduction Animale, University of Montreal, 3200 Sicotte, St-Hyacinthe, Quebec J2S 7C6, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim HR, Han RX, Wakayama T, Park CS, Jin DI. Aberrant protein expression in the placenta of cloned mouse derived from embryonic stem cell. Placenta 2010; 31:853-9. [DOI: 10.1016/j.placenta.2010.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 12/23/2022]
|
17
|
Oh H, Hong S, Park J, Kang J, Kim M, Kim M, Kang S, Kim D, Jang G, Lee B. Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts. Theriogenology 2009; 72:461-70. [PMID: 19497615 DOI: 10.1016/j.theriogenology.2009.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/16/2009] [Accepted: 03/29/2009] [Indexed: 12/25/2022]
|
18
|
Singh U, Rizvi F, Yu Y, Shi W, Orth A, Karimi M, Ekström TJ, Plagge A, Kelsey G, Fundele R. Characterization of a novel obesity phenotype caused by interspecific hybridization. Arch Physiol Biochem 2008; 114:301-30. [PMID: 19085233 DOI: 10.1080/13813450802542495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
UNLABELLED Interspecific hybridization in mammals causes hybrid dysgenesis effects, such as sterility and abnormal placentation. Here, we describe a novel obesity syndrome caused by interspecific hybridization in the genus Mus and show that this obesity, appearing sporadically in F1 littermates derived from inbred strains, has an epigenetic basis. Mus hybrids from various strains of M. musculus and M. spretus were generated and the sporadic obese phenotype was confirmed through assessment of physiological and biochemical parameters in littermates. To understand the underlying mechanisms, large-scale and candidate gene expression assays, global DNA methylation assays and allelic expression analysis were performed. Studies showed that obese hybrids are similar to other known models of obesity. While increased axial growth indicated a defect in POMC pathway, comparison of global gene expression patterns in brain of obese F1 and obese Pomc mutant mice showed little similarity. In F1 obese mice many genes involved in the maintenance of epigenetic states, as well as several imprinted genes, were differentially expressed. Global DNA methylation analysis in brain showed that increased methylation levels were associated with obesity. The imprinted gene Gnasxl, known to be important in lipid homeostasis, was found over expressed in the obese hybrids. Allelic expression and methylation analysis of Gnasxl showed that alterations of epigenetic marks underlying F1 obesity are probably many and multi-factorial. CONCLUSIONS This model of obesity, which is both spontaneous and epigenetic, may be a useful tool to address the epigenetic aspects of clinical obesity.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Palmieri C, Loi P, Ptak G, Della Salda L. Review Paper: A Review of the Pathology of Abnormal Placentae of Somatic Cell Nuclear Transfer Clone Pregnancies in Cattle, Sheep, and Mice. Vet Pathol 2008; 45:865-80. [DOI: 10.1354/vp.45-6-865] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cloning of cattle, sheep, and mice by somatic cell nuclear transfer (SCNT) can result in apparently healthy offspring, but the probability of a successful and complete pregnancy is less than 5%. Failures of SCNT pregnancy are associated with placental abnormalities, such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium, and altered basement membrane. The pathogenesis of these changes is poorly understood, but current evidence implicates aberrant reprogramming of donor nuclei by the recipient oocyte cytoplast, resulting in epigenetic modifications of key regulatory genes essential for normal placental development. The purpose of this review is to provide an overview of the anatomic pathology of abnormal placentae of SCNT clones and to summarize current knowledge concerning underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- C. Palmieri
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - P. Loi
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - G. Ptak
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - L. Della Salda
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
Tian G, Singh U, Yu Y, Ellsworth BS, Hemberger M, Geyer R, Stewart MD, Behringer RR, Fundele R. Expression and function of the LIM homeobox containing genes Lhx3 and Lhx4 in the mouse placenta. Dev Dyn 2008; 237:1517-25. [PMID: 18425848 DOI: 10.1002/dvdy.21546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The LIM homeobox containing genes of the LIM-3 group, Lhx3 and Lhx4, are critical for normal development. Both genes are involved in the formation of the pituitary and the motoneuron system and loss of either gene causes perinatal lethality. Previous studies had shown that Lhx3 is overexpressed in hyperplastic placentas of mouse interspecies hybrids. To determine the role of LHX3 in the mouse placenta, we performed expression and function analyses. Our results show that Lhx3 exhibits specific spatial and temporal expression in the mouse placenta. However, deletion of Lhx3 does not produce a placental phenotype. To test whether this is due to functional substitution by Lhx4, we performed a phenotype analysis of Lhx3-/-; Lhx4-/- double-mutant placentas. A subset of Lhx3-/-; Lhx4-/- placentas exhibited abnormal structure of the labyrinth. However, absence of both LIM-3 genes did not interfere with placental transport nor consistently with expression of target genes such as Gnrhr. Thus, LHX3 and LHX4 appear to be dispensable for placental development and function.
Collapse
Affiliation(s)
- Geng Tian
- Department of Animal Genetics and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
22
|
Wakisaka N, Inoue K, Ogonuki N, Miki H, Sekita Y, Hanaki K, Akatsuka A, Kaneko-Ishino T, Ishino F, Ogura A. Ultrastructure of placental hyperplasia in mice: comparison of placental phenotypes with three different etiologies. Placenta 2008; 29:753-9. [PMID: 18602690 DOI: 10.1016/j.placenta.2008.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 11/28/2022]
Abstract
Hyperplastic placentas have been reported in several experimental mouse models, including animals produced by somatic cell nuclear transfer, by inter(sub)species hybridization, and by somatic cytoplasm introduction to oocytes followed by intracytoplasmic sperm injection. Of great interest are the gross and histological features common to these placental phenotypes--despite their quite different etiologies--such as the enlargement of the spongiotrophoblast layers. To find morphological clues to the pathways leading to these similar placental phenotypes, we analyzed the ultrastructure of the three different types of hyperplastic placenta. Most cells affected were of trophoblast origin and their subcellular ultrastructural lesions were common to the three groups, e.g., a heavy accumulation of cytoplasmic vacuoles in the trophoblastic cells composing the labyrinthine wall and an increased volume of spongiotrophoblastic cells with extraordinarily dilatated rough endoplasmic reticulum. Although the numbers of trophoblastic glycogen cells were greatly increased, they maintained their normal ultrastructural morphology, including a heavy glycogen deposition throughout the cytoplasm. The fetal endothelium and small vessels were nearly intact. Our ultrastructural study suggests that these three types of placental hyperplasias, with different etiologies, may have common pathological pathways, which probably exclusively affect the development of certain cell types of the trophoblastic lineage during mouse placentation.
Collapse
Affiliation(s)
- N Wakisaka
- Bioresouce Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pan Z, Sikandar S, Witherspoon M, Dizon D, Nguyen T, Benirschke K, Wiley C, Vrana P, Lipkin SM. Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dyn 2008; 237:316-27. [PMID: 18163532 DOI: 10.1002/dvdy.21418] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
E. coli AlkB has been intensively studied since 1983, but the in vivo roles of its mammalian homologue Alkbh1 are unknown. We, therefore, created null mice for Alkbh1. Alkbh1 mRNA is expressed at highest levels in the trophoblast lineages of the developing placenta. Alkbh1(-/-) placentas have decreased expression of differentiated trophoblast markers including Tpbp, Gcm1, and Pl-1, and increased expression of the trophoblast stem cell marker Eomes. Alkbh1 localizes to nuclear euchromatin, and interacts strongly with Mrj, an essential placental gene that mediates gene repression by recruitment of class II histone deacetylases (HDACs). Competition experiments show Alkbh1 and HDAC4 binding to Mrj are mutually exclusive, which causes decreased HDAC activity and increased target gene expression. Our study demonstrates Alkbh1 performs important functions in placental trophoblast lineage differentiation and participates in mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Zishu Pan
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rampon C, Bouillot S, Climescu-Haulica A, Prandini MH, Cand F, Vandenbrouck Y, Huber P. Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiol Genomics 2008; 34:193-204. [PMID: 18477666 DOI: 10.1152/physiolgenomics.00220.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protocadherins are transmembrane proteins exhibiting homophilic adhesive activities through their extracellular domain. Protocadherin 12 (Pcdh12) is expressed in angiogenic endothelial cells, mesangial cells of kidney glomeruli, and glycogen cells of the mouse placenta. To get insight into the role of this protein in vivo, we analyzed PCDH12-deficient mice and investigated their placental phenotype. The mice were alive and fertile; however, placental and embryonic sizes were reduced compared with wild-type mice. We observed defects in placental layer segregation and a decreased vascularization of the labyrinth associated with a reduction in cell density in this layer. To understand the molecular events responsible for the phenotypic alterations observed in Pcdh12(-/-) placentas, we analyzed the expression profile of embryonic day 12.5 mutant placentas compared with wild-type placentas, using pangenomic chips: 2,289 genes exhibited statistically significant changes in expressed levels due to loss of PCDH12. Functional grouping of modified genes was obtained by GoMiner software. Gene clusters that contained most of the differentially expressed genes were those involved in tissue morphogenesis and development, angiogenesis, cell-matrix adhesion and migration, immune response, and chromatin remodeling. Our data show that loss of PCDH12 leads to morphological alterations of the placenta and to notable changes in its gene expression profile. Specific genes emerging from the microarray screen support the biological modifications observed in PCDH12-deficient placentas.
Collapse
Affiliation(s)
- Christine Rampon
- Laboratory of Vascular Pathophysiology, Institut National de la Santé et de la Recherche Médicale U882, Commissariat à l'Energie Atomique (CEA), Grenoble University, CEA, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Talbot NC, Powell AM, Ocón OM, Caperna TJ, Camp M, Garrett WM, Ealy AD. Comparison of the interferon-tau expression from primary trophectoderm outgrowths derived from IVP, NT, and parthenogenote bovine blastocysts. Mol Reprod Dev 2008; 75:299-308. [PMID: 17721989 DOI: 10.1002/mrd.20741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of interferon-tau (IFN-tau) is essential for bovine embryo survival in the uterus. An evaluation of IFN-tau production from somatic cell nuclear transfer (NT)-embryo-derived primary trophectoderm cultures in comparison to trophectoderm cultured from parthenogenote (P) and in vitro matured, fertilized, and cultured (IVP) bovine embryos was performed. In Experiment 1, the success/failure ratio for primary trophectoderm colony formation was similar for IVP and NT blastocysts [IVP = 155/29 (84%); NT 104/25 (81%)], but was decreased (P = .05) for P blastocysts [54/43 (56%)]. Most trophectoderm colonies reached diameters of at least 1 cm within 3-4 weeks, and at this time, 72 hr conditioned cell culture medium was measured for IFN-tau concentration by antiviral activity assay. The amount of IFN-tau produced by IVP-outgrowths [4311 IU/mL (n = 155)] was greater (P < .05) than that from NT- [626 IU/mL (n = 104)] and P - [1595 IU/mL (n = 54)] derived trophectoderm. Differential expression of IFN-tau was confirmed by immunoblotting. In Experiment 2, colony formation was again similar for IVP and NT blastocysts [IVP = 70/5 (93%); NT 67/1 (99%)] and less (P < .05) for P blastocysts [65/27 (70%)]. Analysis of trophectoderm colony size after 23 days in culture showed a similar relationship with P-derived colonies being significantly smaller in comparison to IVP and NT colonies. A differential expression of IFN-tau was also observed again, but this time as measured over time in culture. Maximal IFN-tau production was found at day-14 of primary culture and diminished to a minimum by the 23rd day.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, ANRI, Biotechnology and Germplasm Laboratory, Beltsville, Maryland 20705-2350, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yu Y, Singh U, Shi W, Konno T, Soares MJ, Geyer R, Fundele R. Influence of murine maternal diabetes on placental morphology, gene expression, and function. Arch Physiol Biochem 2008; 114:99-110. [PMID: 18484278 DOI: 10.1080/13813450802033776] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Maternal diabetes causes placental and foetal abnormalities in both rat and humans; however, its effect is less well documented in the mouse. We used a standard approach to induce manifest diabetes in pregnant mice and assessed morphology, function and gene expression in the placentas isolated from these females. We found that diabetic placentas exhibit a consistent abnormal phenotype characterized by increased junctional zone cross sectional area. Lipid profiling of diabetic foetuses and placentas showed that the placental phenotypes do not compromise the lipid transport function of this organ. In a genome-wide survey of mRNA expression by using cDNA micro-arrays, we identified 118 ESTs, corresponding to 59 annotated genes, with differential expression in the diabetic placentas. A significant proportion of these known is involved in metabolism, immunity and defence, and signal transduction. In addition, we found two imprinted genes, Igf2 and Gatm, which exhibited altered expression. The expression of other imprinted genes, Peg1, Gtl2, Peg3, Igf2r and Grb10, was determined by quantitative RT-PCR. For all of these genes, slight changes in gene expression were observed between diabetic placentas and control placentas. Our study thus provides the basis for future work that will address gene action in the diabetic mouse placenta.
Collapse
Affiliation(s)
- Yang Yu
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Tamashiro KLK, Sakai RR, Yamazaki Y, Wakayama T, Yanagimachi R. Developmental, behavioral, and physiological phenotype of cloned mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:72-83. [PMID: 17176555 DOI: 10.1007/978-0-387-37754-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cloning from adult somatic cells has been successful in at least ten species. Although generating viable cloned mammals from adult cells is technically feasible, prenatal and perinatal mortality is high and live cloned offspring have had health problems. This chapter summarizes the health consequences of cloning in mice and discusses possible mechanisms through which these conditions may arise. These studies have further significance as other assisted reproductive techniques (ART) also involve some of the same procedures used in cloning, and there are some reports that offspring generated by ART display aberrant phenotypes as well. At the moment, the long-term consequences of mammalian cloning remain poorly characterized. Data available thus far suggest that we should use this technology with great caution until numerous questions are addressed and answered.
Collapse
Affiliation(s)
- Kellie L K Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
28
|
Shinmen A, Honda A, Ohkawa M, Hirose M, Ogonuki N, Yuzuriha M, Miki H, Mochida K, Inoue K, Abe K, Ito M, Ogura A. Efficient production of intersubspecific hybrid mice and embryonic stem cells by intracytoplasmic sperm injection. Mol Reprod Dev 2007; 74:1081-8. [PMID: 17290420 DOI: 10.1002/mrd.20612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, mice and embryonic stem (ES) cells with allelic polymorphisms have been used extensively in the field of genetics and developmental biology. In this study, we examined whether intersubspecific hybrid mice and ES cells with these genotypes can be efficiently produced by intracytoplasmic sperm injection (ICSI). Frozen-thawed spermatozoa from wild-derived strains, JF1 (Mus musculus molossinus), MSM (M. m. molossinus), HMI (M. m. castaneus), and SWN (M. m. spp.), were directly injected into mature oocytes from laboratory mice ([C57BL/6 x DBA2]F1; M. m. domesticus). The in vitro and in vivo developmental capacity of F1 embryos was not significantly different among the groups (P > 0.05), and term offspring were efficiently obtained in all groups (27%-34% of transferred embryos). However, the mean body and placental weights of the offspring differed significantly with genotype (P < 5 x 10(-10)), with the HMI hybrid greatest in both body and placental weights. In an application study using these F1 offspring, we analyzed their mitochondrial DNA using intersubspecific polymorphisms and found the consistent disappearance of sperm mitochondrial DNA in the F1 progeny. In a second series of experiments, we generated F1 blastocysts by injecting MSM spermatozoa into C57BL/6 oocytes and used them to generate hybrid ES cell lines. The ES cell lines were established at a high efficiency (9 lines from 20 blastocysts) and their allelic polymorphisms were confirmed. Thus, ICSI using cryopreserved spermatozoa allows the efficient and immediate production of a number of F1 hybrid mice and ES cell lines, which can be used for polymorphic analysis of mouse genetics.
Collapse
Affiliation(s)
- Akie Shinmen
- RIKEN Bioresource Center, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee SY, Park JY, Choi YJ, Cho SK, Ahn JD, Kwon DN, Hwang KC, Kang SJ, Paik SS, Seo HG, Lee HT, Kim JH. Comparative proteomic analysis associated with term placental insufficiency in cloned pig. Proteomics 2007; 7:1303-15. [PMID: 17380531 DOI: 10.1002/pmic.200601045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Somatic cell-derived nuclear transfer (scNT) is a method of animal cloning in which the oocyte reprograms a somatic cell nucleus to divide and execute developmental programs. Despite many successes in this field, cloning by scNT remains very inefficient. Unlike other cloned animals, pigs derived by scNT have placentas with severe villous hypoplasia. To obtain a better understanding of the protein networks involved in this phenomenon, we assessed global protein expression profiles in term placentas from scNT-derived and control animals. Proteomic analysis of term placentas from scNT-derived animals identified 43 proteins that were differentially expressed compared to control animals. Among them, 14-3-3 proteins and Annexin V, which are closely involved in the apoptotic signaling pathway, were significantly down- and up-regulated, respectively. Western blot analysis and immunohistochemistry indicated that down-regulation of 14-3-3 proteins in scNT-derived placentas induced apoptosis of cytotrophoblast cells via mitochondria-mediated apoptosis. Taken together, our results suggest that placental insufficiency in scNT-derived placentas may be due to apoptosis, induced in part by the down-regulation of 14-3-3 proteins and up-regulation of Annexin V. They also indicate that proteomic maps represent an important tool for future studies of placental insufficiency and pathology.
Collapse
Affiliation(s)
- So-Young Lee
- CHO-A Biotechnology Research Institute, CHO-A Pharmaceutical Company, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Talbot NC, Powell AM, Camp M, Ealy AD. Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation. In Vitro Cell Dev Biol Anim 2007; 43:59-71. [PMID: 17570020 DOI: 10.1007/s11626-007-9013-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 02/09/2007] [Indexed: 01/14/2023]
Abstract
Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.
Collapse
Affiliation(s)
- Neil C Talbot
- USDA, ARS, ANRI, Biotechnology and Germplasm Laboratory, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
31
|
Singh U, Yu Y, Kalinina E, Konno T, Sun T, Ohta H, Wakayama T, Soares MJ, Hemberger M, Fundele RH. Carboxypeptidase E in the mouse placenta. Differentiation 2007; 74:648-60. [PMID: 17177860 DOI: 10.1111/j.1432-0436.2006.00093.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carboxypeptidase E (CPE) has important functions in processing of endocrine pro-peptides, such as pro-insulin, pro-opiomelanocortin, or pro-gonadotropin-releasing hormone, as evidenced by the hyper-pro-insulinemia, obesity, and sterility of Cpe mutant mice. Down-regulation of Cpe in enlarged placentas of interspecific hybrid (interspecies hybrid placental dysplasia (IHPD)) and cloned mice suggested that reduced CPE enzyme and receptor activity could underlie abnormal placental phenotypes. In this study, we have explored the role of Cpe in murine placentation by determining its expression at various stages of gestation, and by phenotypic analysis of Cpe mutant placentas. Our results show that Cpe and Carboxypeptidase D (Cpd), another carboxypeptidase with a very similar function, are strictly co-localized in the mouse placenta from late mid-gestation to term. We also show that absence of CPE causes a sporadic but striking placental phenotype characterized by an increase in giant and glycogen cell numbers and giant cell hypertrophy. Microarray-based transcriptional profiling of Cpe mutant placentas identified only a very small number of genes with altered expression, including Dtprp, which belongs to the prolactin gene family. Concordant deregulation of Cpe and Cpd in abnormal placentas of interspecies hybrids before the onset of IHPD phenotype and recapitulation of some phenotypes of IHPD hyperplastic placentas in Cpe mutant placentas suggests that these two genes are causally involved in IHPD and may function as speciation genes in the genus Mus.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Duselis AR, Obergfell C, Mack JA, O'Neill MJ, Nguyen QK, O'Neill RJ, Vrana PB. Changes in cell cycle and extracellular matrix gene expression during placental development in deer mouse (Peromyscus) hybrids. Reprod Fertil Dev 2007; 19:695-708. [PMID: 17601418 DOI: 10.1071/rd07015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 05/06/2007] [Indexed: 12/20/2022] Open
Abstract
Crosses between two species of the rodent genus Peromyscus produce defects in both growth and development. The defects are pronounced in the hybrid placentas. Peromyscuys maniculatus (strain BW) females mated to P. polionotus (strain PO) males produce placentas half the size of the parental species, as well as growth-retarded embryos. In contrast, PO females mated to BW males result in defective conceptuses that display embryonic and placental overgrowth. These ‘parent-of-origin’-dependent phenotypes are consistent with previous studies that demonstrated altered expression of imprinted genes and genetic linkage of the overgrowth phenotypes to imprinted domains. In the present study, we take a broader approach in assessing perturbations in hybrid placental gene expression through the use of Mus musculus cDNA microarrays. In verifying classes of genes identified in microarray screens differentially regulated during hybrid placental development, we focused on those influencing the cell cycle and extracellular matrix (ECM). Our work suggests that cell cycle regulators at the G1/S phase check-point are downregulated in the large hybrid placenta, whereas the small hybrid placenta is more variable. The ECM genes are typically downstream targets of cell cycle regulation and their misregulation is consistent with many of the dysmorphic phenotypes. Thus, these data suggest imbalances in proliferation and differentiation in hybrid placentation.
Collapse
Affiliation(s)
- Amanda R Duselis
- Department of Biological Chemistry, Sprague Hall 350, School of Medicine, University of California Irvine, Irvine, CA 92799-1700, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The correlation between epigenetic aberrations and disease underscores the importance of epigenetic mechanisms. Here, we review recent findings regarding chromatin modifications and their relevance to cancer.
Collapse
Affiliation(s)
- Miryam Ducasse
- Institute for Biomedical Research Georg-Speyer-Haus, 60596 Frankfurt, Germany
| | - Mark A Brown
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A5000, Austin TX 78712, USA
| |
Collapse
|
34
|
Singh U, Sun T, Larsson T, Elliott RW, Kostka G, Fundele RH. Expression and Functional Analysis of Fibulin-1 (Fbln1) During Normal and Abnormal Placental Development of the Mouse. Placenta 2006; 27:1014-21. [PMID: 16338003 DOI: 10.1016/j.placenta.2005.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 12/27/2022]
Abstract
The extracellular matrix protein fibulin-1 (FBLN1) is an important component of blood vessel walls, as shown by the lethality of mice with homozygous targeted deletion of the Fbln1 gene. Here, we show that a murine placental overgrowth phenotype is associated with elevated Fbln1 transcript levels, suggesting that the gene and its product have a functional role in placentation. Fbln1 exhibits a specific expression pattern in the mouse placenta. Transcripts could not be detected prior to day 12. In subsequent stages, Fbln1 was expressed strongly in the spongiotrophoblast. Other sites of expression were endothelia of large fetal blood vessels, a tissue type reported to not express this gene. In addition, a subset of giant cells expressed the gene. This giant cell specific expression was strongly increased in hyperplastic placentas. Analysis of the placentation in fibulin null mice did not show any abnormality. Attempts to rescue the placental phenotypes of a congenic model of interspecies hybrid placental dysplasia (IHPD) by normalizing expression of Fbln1 proved that Fbln1 alone is not the key cause of phenotypes in these models of placental hyperplasia.
Collapse
Affiliation(s)
- U Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Singh U, Sun T, Looman C, Heuchel R, Elliott R, Freichel M, Meissner M, Flockerzi V, Fundele R. Expression and function of the gene encoding the voltage-dependent calcium channel beta3-subunit in the mouse placenta. Placenta 2006; 28:412-20. [PMID: 16822546 DOI: 10.1016/j.placenta.2006.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 01/02/2023]
Abstract
Voltage-dependent Ca(2+) channels (VDCC) exist in most excitable cells and their properly regulated activity is essential for critical biological processes as many of these are sensitive to cellular Ca(2+) ion concentration. The ancillary cytoplasmic Ca(2+) channel beta subunits (CACNB) modulate Ca(2+) channel function and are required to enhance the number of functional channels in the plasma membrane. There are four genes encoding CACNB subunits and the gene encoding CACNB3 is over expressed in hyperplastic placentas of mouse interspecies hybrids. To determine the role of CACNB3 in the mouse placenta, we performed an expression and function analysis. Our results show that Cacnb3 exhibits specific spatial and temporal expression in the mouse placenta. Deletion of Cacnb3 does not produce a strong placental phenotype, which may be due to expression of other CACNB subunit encoding genes; however, sporadic occurrence of a labyrinthine architecture phenotype, characterized by reduced density of fetal blood vessels and decrease in pericyte number, could be observed. Down-regulation of Cacnb3 expression did not rescue placental hyperplasia in a model of interspecies hybrid placentas, which indicates that up-regulation in the hyperplastic placentas is a downstream event.
Collapse
Affiliation(s)
- U Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singh U, Sun T, Shi W, Schulz R, Nuber UA, Varanou A, Hemberger MC, Elliott RW, Ohta H, Wakayama T, Fundele R. Expression and functional analysis of genes deregulated in mouse placental overgrowth models: Car2 and Ncam1. Dev Dyn 2006; 234:1034-45. [PMID: 16247769 DOI: 10.1002/dvdy.20597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different causes, such as maternal diabetes, cloning by nuclear transfer, interspecific hybridization, and deletion of some genes such as Esx1, Ipl, or Cdkn1c, may underlie placental overgrowth. In a previous study, we carried out comparative gene expression analysis in three models of placental hyperplasias, cloning, interspecies hybridization (IHPD), and Esx1 deletion. This study identified a large number of genes that exhibited differential expression between normal and enlarged placentas; however, it remained unclear how altered expression of any specific gene was related to any specific placental phenotype. In the present study, we focused on two genes, Car2 and Ncam1, which both exhibited increased expression in interspecies and cloned hyperplastic placentas. Apart from a detailed expression analysis of both genes during normal murine placentation, we also assessed morphology of placentas that were null for Car2 or Ncam1. Finally, we attempted to rescue placental hyperplasia in a congenic model of IHPD by decreasing transcript levels of Car2 or Ncam1. In situ analysis showed that both genes are expressed mainly in the spongiotrophoblast, however, expression patterns exhibited significant variability during development. Contrary to expectations, homozygous deletion of either Car2 or Ncam1 did not result in placental phenotypes. However, expression analysis of Car3 and Ncam2, which can take over the function of Car2 and Ncam1, respectively, indicated a possible rescue mechanism, as Car3 and Ncam2 were expressed in spongiotrophoblast of Car2 and Ncam1 mutant placentas. On the other hand, downregulation of either Car2 or Ncam1 did not rescue any of the placental phenotypes of AT24 placentas, a congenic model for interspecies hybrid placentas. This strongly suggested that altered expression of Car2 and Ncam1 is a downstream event in placental hyperplasia.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kishigami S, Wakayama S, van Thuan N, Wakayama T. Cloned mice and embryonic stem cell establishment from adult somatic cell. Hum Cell 2006; 19:2-10. [PMID: 16643601 DOI: 10.1111/j.1749-0774.2005.00001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cloning methods are now well described and becoming routine. Yet the frequency at which cloned offspring are produced remains below 2% irrespective of nucleus donor species or cell type. Especially in the mouse, few laboratories can make clones from adult somatic cells, and most mouse strains never succeed to produce cloned mice. On the other hand, nuclear transfer can be used to generate embryonic stem (ntES) cell lines from a patient's own somatic cells. We have shown that ntES cells can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. Several reports have already demonstrated that ntES cells can be used in regenerative medicine in order to rescue immune deficient or infertile phenotypes. However, it is unclear whether ntES cells are identical to fertilized embryonic stem (ES) cells. In general, ntES cell techniques are expected to be applicable to regenerative medicine, however, these techniques can also be used for the preservation of the genetic resources of mouse strains instead of preserving such resources in embryos, oocytes or spermatozoa. This review seeks to describe the phenotype, application, and possible abnormalities of cloned mice and ntES cell lines.
Collapse
Affiliation(s)
- Satoshi Kishigami
- Center for Developmental Biology RIKEN, Kobe University, Kobe, Japan
| | | | | | | |
Collapse
|
38
|
Van Thuan N, Wakayama S, Kishigami S, Ohta H, Hikichi T, Mizutani E, Bui HT, Wakayama T. Injection of somatic cell cytoplasm into oocytes before intracytoplasmic sperm injection impairs full-term development and increases placental weight in mice. Biol Reprod 2006; 74:865-73. [PMID: 16436529 DOI: 10.1095/biolreprod.105.047803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects on fertilized embryo development of somatic cytoplasm after its injection into intact mouse oocytes. Mature oocytes collected from female B6D2F1 mice were injected with cumulus cell cytoplasm of different volumes and from different mouse strains (B6D2F1, ICR, and C57BL/6), or with embryonic cytoplasm. After culture for 1 h, B6D2F1 sperm were injected into those oocytes by intracytoplasmic sperm injection (ICSI). The oocytes were examined for pre- and postimplantation developmental competence. Increases in the volume of the somatic cytoplasm from onefold to fourfold resulted in an impairment of blastocyst development and full-term development (28% and 7%, respectively, vs. 96% and 63%, respectively, in the control group; P < 0.01). An increase in the volume of somatic cytoplasm reduced the expression of POU5F1 (more commonly known as OCT4) in expanded blastocysts. The frequency of embryos that developed to the blastocyst stage did not differ when B6D2F1 or ICR somatic cytoplasm was injected, but injection of C57BL/6 somatic cytoplasm induced a two-cell block in embryo development. Injection of the cytoplasm from fertilized embryos did not reduce the frequency of embryos attaining full-term development. Interestingly, somatic cytoplasm significantly increased the placental weight of ICSI embryos, even the injection of onefold cytoplasm (0.20 +/- 0.02 [n = 32] vs. 0.12 +/- 0.02 in the control group [n = 87]; P < 0.01). These findings indicate that the injection of somatic cytoplasm into oocytes before ICSI causes a decrease in preimplantation development, clearly impairs full-term development, and causes placental overgrowth in fertilized embryos. To our knowledge, placental overgrowth phenotypes are only caused by interspecies hybridization and cloning, and in genetically modified mice. Here, we report for the first time that somatic cytoplasm causes abnormal placentas in fertilized embryos. This study suggests that somatic cell cytoplasmic material is one cause of the low rate of full-term development in cloned mammals.
Collapse
Affiliation(s)
- Nguyen Van Thuan
- RIKEN Kobe Institute, Center for Developmental Biology, Laboratory for Genomic Reprogramming, Kobe City, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vajta G, Gjerris M. Science and technology of farm animal cloning: state of the art. Anim Reprod Sci 2006; 92:211-30. [PMID: 16406426 DOI: 10.1016/j.anireprosci.2005.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/04/2005] [Accepted: 12/14/2005] [Indexed: 12/25/2022]
Abstract
Details of the first mammal born after nuclear transfer cloning were published by Steen Malte Willadsen in 1986. In spite of its enormous scientific significance, this discovery failed to trigger much public concern, possibly because the donor cells were derived from pre-implantation stage embryos. The major breakthrough in terms of public recognition has happened when Ian Wilmut et al. [Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., Campbell, K.H., 1997. Viable offspring derived from fetal és adult mammalian cells. Nature 385, 810-813] described the successful application of almost exactly the same method, but using the nuclei of somatic cells from an adult mammal, to create Dolly the sheep. It has become theoretically possible to produce an unlimited number of genetic replicates from an adult animal or a post-implantation foetus. Since 1997 a number of different species including pigs, goats, horses, cats, etc. have been cloned with the somatic cell nuclear transfer technique. Although the technology still has relatively low success rates and there seems to be substantial problems with the welfare of some of the cloned animals, cloning is used both within basic research and the biomedical sector. The next step seems to be to implement cloning in the agricultural production system and several animals have been developed in this direction. This article reviews the current state of the art of farm animal cloning from a scientific and technological perspective, describes the animal welfare problems and critically assess different applications of farm animal cloning. The scope is confined to animal biotechnologies in which the use of cell nuclear transfer is an essential part and extends to both biomedical and agricultural applications of farm animal cloning. These applications include the production of genetically identical animals for research purposes, and also the creation of genetically modified animals. In the agricultural sector, cloning can be used as a tool within farm animal breeding. We do not intend to give an exhaustive review of the all the literature available; instead we pinpoint issues and events pivotal to the development of current farm animal cloning practices and their possible applications.
Collapse
Affiliation(s)
- Gábor Vajta
- Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, Research Centre Foulum, DK-8830 Tjele, Denmark.
| | | |
Collapse
|
40
|
Shi W, Krella A, Orth A, Yu Y, Fundele R. Widespread disruption of genomic imprinting in adult interspecies mouse (Mus) hybrids. Genesis 2006; 43:100-8. [PMID: 16145677 DOI: 10.1002/gene.20161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammalian interspecies hybrids exhibit parent-of-origin effects in that offspring of reciprocal matings, even though genetically identical, frequently exhibit opposite phenotypes, especially in growth. This was also observed in hybridization with the genus Mus. These parent-of-origin effects suggested that imbalance in the expression of imprinted genes, which are expressed differentially, depending on their transmission through the maternal or paternal germline, and/or differential loss-of-imprinting (LOI) could underlie these opposite growth phenotypes in reciprocal mammalian hybrids. Here we report that tissue-specific LOI occurs in adult Mus hybrids. Contrary to expectations, LOI patterns were not consistent with a direct influence of altered expression levels of imprinted genes on growth. Bisulfite sequencing revealed that reactivation of maternal alleles of Peg3 and Snrpn in specific tissues was accompanied by partial demethylation at their potential imprinting control regions. We propose that abnormal reprogramming after fertilization and during preimplantation development is in part responsible for hybrid dysgenesis, for which a strong epigenetic basis has been demonstrated.
Collapse
Affiliation(s)
- Wei Shi
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
41
|
Cross JC. Placental function in development and disease. Reprod Fertil Dev 2006; 18:71-6. [PMID: 16478604 DOI: 10.1071/rd05121] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 01/23/2023] Open
Abstract
The placenta is an organ that clinicians and embryologists would all agree is important for pregnancy success. Unfortunately, however, they too often ignore it when they are exploring causes for embryonic, fetal and perinatal complications. The core function of the placenta is to mediate the transport of nutrients between the maternal and fetal circulation, but it also has critical endocrine functions that alter different maternal physiological systems in order to sustain pregnancy. Both its development and ongoing functions can be dynamically regulated by environmental factors, including nutrient status and tissue oxygenation. In recent years, mainstream attention has begun to shift onto the placenta and it is now becoming clear that placental pathology is associated with several complications in human and animal pregnancies, including embryonic lethality, fetal growth restriction, pre-eclampsia and the high rates of fetal deaths observed after nuclear transfer (cloning).
Collapse
Affiliation(s)
- James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
42
|
Kohda T, Inoue K, Ogonuki N, Miki H, Naruse M, Kaneko-Ishino T, Ogura A, Ishino F. Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biol Reprod 2005; 73:1302-11. [PMID: 16120825 DOI: 10.1095/biolreprod.105.044958] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
DNA microarray analysis was used to determine the precise genome-wide gene expression profiles of somatic cloned mice derived from Sertoli and cumulus cells. It demonstrated unexpectedly large epigenetic diversity in neonatal cloned mice, despite their normal appearance and genetic identity. In three neonatal tissues of the cloned mice, the expression of 9-40% of the genes examined was more than two times higher or lower in donor cell-dependent or -independent manners compared with normal controls. Relatively few (0.4-4%) of the genes exhibited up- or downregulation in the same manner in both types of clone. A cluster analysis of the variation in gene expression led to the identification of several chromosome regions in which gene expression was aberrantly controlled in the somatic clones. These results provide a more complete understanding of how somatic clones differ from each other and from normal individuals produced by sexual reproduction and indicate the significant difficulties that face the application of somatic cloning in regenerative medicine.
Collapse
Affiliation(s)
- Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Figueiredo ALS, Salles MGF, Albano RM, Porto LC. Molecular and morphologic analyses of expression of ESX1L in different stages of human placental development. J Cell Mol Med 2005; 8:545-50. [PMID: 15601583 PMCID: PMC6740265 DOI: 10.1111/j.1582-4934.2004.tb00479.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The mRNA expression of the ESX1L gene was analyzed by RT-PCR and in situ hybridization in human normal cytogenetically placentas, of different gestational ages. Our RT-PCR analysis showed that ESX1L mRNA is expressed from 5 weeks of gestation until term, suggesting a role not only in trophoblast differentiation but also in the maintenance of the villi and microvasculature. We also observed, by in situ hybridization, that ESX1L mRNA is expressed by cytotrophoblast from chorionic plate, syncytiotrophoblast and stromal cells of all terminal, intermediate and stem villi of term placentas. ESX1L mRNA expression was more pronounced in trophoblast cells of terminal villi than in intermediate and stem villi. In conclusion, ESX1L is expressed during all stages of placental development and is localized to sparse areas of trophoblast in terminal villi in association with cytotrophoblastic cells.
Collapse
Affiliation(s)
- A L S Figueiredo
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, CEP: 20551-170 - Vila Isabel, Rio de Janeiro - RJ, Brasil
| | | | | | | |
Collapse
|
44
|
Sakai RR, Tamashiro KLK, Yamazaki Y, Yanagimachi R. Cloning and assisted reproductive techniques: Influence on early development and adult phenotype. ACTA ACUST UNITED AC 2005; 75:151-62. [PMID: 16035042 DOI: 10.1002/bdrc.20042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the past 40 years, our increased understanding and development of cell and molecular biology has allowed even greater advances in reproductive biology. This is most evident by the development of various aspects of assisted reproductive techniques (ART), generation of transgenic animals, and most recently generation of mammals through somatic cell cloning. To date, cloning from adult somatic cells has been successful in at least 10 mammalian species. Although generating viable cloned mammals from adult cells is technically feasible and the list of successes will only continue to grow with time, prenatal and perinatal mortality is high and live cloned offspring have not been without health problems. The success of many of the proposed applications of the cloning technique obviously depends upon the health and survival of founder animals generated by nuclear transfer. This article summarizes the health consequences of cloning in mice, and discusses possible mechanisms through which these conditions may arise. In addition, we discuss the effects of ART in animal models and in humans. ART also involves some of the same procedures used in cloning, and there are reports that offspring generated by ART sometimes display aberrant phenotypes as well. It is important to point out that although these techniques do sometimes produce abnormalities, the majority of offspring are born apparently normal and survive to adulthood. Additionally, we must emphasize that the effects of ART and cloning observed in animal models do not necessarily indicate that they will occur in humans. In this article, we review studies examining the phenotype of animals generated by cloning and various ART, and discuss clinical implications of these findings.
Collapse
Affiliation(s)
- Randall R Sakai
- Department of Psychiatry, University of Cincinnati Medical Center, 2170 E. Galbraith Road E-212, Cincinnati, OH 45237, USA.
| | | | | | | |
Collapse
|
45
|
Yeh YC, Yang VC, Huang SC, Lo NW. Stage-dependent expression of extra-embryonic tissue-spermatogenesis-homeobox gene 1 (ESX1) protein, a candidate marker for X chromosome-bearing sperm. Reprod Fertil Dev 2005; 17:447-55. [PMID: 15899157 DOI: 10.1071/rd04077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 01/27/2005] [Indexed: 12/26/2022] Open
Abstract
Extra-embryonic tissue-spermatogenesis-homeobox gene 1 (Esx1) encodes an X-linked homeobox protein. Despite the fact that the temporal and spatial mRNA expression pattern of the protein has been studied extensively in the testis, specific localisation of ESX1 in the testis remains to be determined. In the present study, we generated ESX1 antiserum to investigate the stage- and tissue-specific expression of ESX1 in the mouse. Western blotting and immunofluorescent analyses revealed that general localisations of ESX1 were consistent with its RNA expression patterns; that is, it was restricted mainly to the placenta and testis. Immunofluorescent studies demonstrated that ESX1 existed in the testes after 3 weeks of age, coincident with the appearance of round spermatids in the seminiferous tubules. Moreover, ESX1 expression became more abundant in the luminal regions of the seminiferous tubules as the development of round spermatids progressed into spermatozoa. In contrast, reduced expression of ESX1 was observed in experimentally induced cryptorchid testes. The later expression of ESX1 suggests a role in post-meiotic germ cell development. To further understand ESX1 expression in sperm with respect to X chromosome-bearing sperm, we used ESX1 antiserum to immunostain sperm by confocal laser microscopy. Approximately half the sperm population was recognised by the ESX1 antiserum. On the basis of results of the present study, we suggest that ESX1 could be used as a protein marker for X chromosome-bearing sperm.
Collapse
Affiliation(s)
- Yueh-Chiao Yeh
- Department of Life Science, Tunghai University, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|