1
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross S, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. eLife 2025; 13:RP92635. [PMID: 39873665 PMCID: PMC11774516 DOI: 10.7554/elife.92635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- College of Health and Life Science, Hamad bin Khalifa UniversityDohaQatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
- Biological Sciences division, University of ChicagoChicagoUnited States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Steven Gross
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
2
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Donoso V, Whitson J, Lom B. Developmental exposure to the pesticide malathion enhances expression of Prdm12, a regulator of nociceptor development, in Xenopus laevis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000786. [PMID: 37033708 PMCID: PMC10074175 DOI: 10.17912/micropub.biology.000786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
The transcription factor Prdm12 exerts important influences on the development of nociceptors, peripheral touch and pain-sensing neurons, and has been implicated in human pain sensation disorders. We examined the consequences of exposing developing Xenopus laevis embryos to the commonly used pesticide malathion on Prdm12 expression. Using qPCR and western blot analysis we observed that malathion treatment for the first six days of tadpole development significantly increased both prdm12 mRNA levels and Prdm12 protein levels compared to controls. Consequently, early exposure to this pesticide has potential to alter nociceptor development.
Collapse
Affiliation(s)
- Valeria Donoso
- Biology, Davidson College, Davidson, North Carolina, United States
- Preventative Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jeremy Whitson
- Biology, Davidson College, Davidson, North Carolina, United States
- Biology, High Point University, High Point, North Carolina, United States
| | - Barbara Lom
- Biology, Davidson College, Davidson, North Carolina, United States
- Correspondence to: Barbara Lom (
)
| |
Collapse
|
4
|
Pires NS, Lascano CI, Ousset J, Ceschin DG, Venturino A. Hypothesis-driven dragging of transcriptomic data to analyze proven targeted pathways in Rhinella arenarum larvae exposed to organophosphorus pesticides. Sci Rep 2022; 12:17712. [PMID: 36271284 PMCID: PMC9587056 DOI: 10.1038/s41598-022-21748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
Transcriptional analysis of the network of transcription regulators and target pathways in exposed organisms may be a hard task when their genome remains unknown. The development of hundreds of qPCR assays, including primer design and normalization of the results with the appropriate housekeeping genes, seems an unreachable task. Alternatively, we took advantage of a whole transcriptome study on Rhinella arenarum larvae exposed to the organophosphorus pesticides azinphos-methyl and chlorpyrifos to evaluate the transcriptional effects on a priori selected groups of genes. This approach allowed us to evaluate the effects on hypothesis-selected pathways such as target esterases, detoxifying enzymes, polyamine metabolism and signaling, and regulatory pathways modulating them. We could then compare the responses at the transcriptional level with previously described effects at the enzymatic or metabolic levels to obtain global insight into toxicity-response mechanisms. The effects of both pesticides on the transcript levels of these pathways could be considered moderate, while chlorpyrifos-induced responses were more potent and earlier than those elicited by azinphos-methyl. Finally, we inferred a prevailing downregulation effect of pesticides on signaling pathways and transcription factor transcripts encoding products that modulate/control the polyamine and antioxidant response pathways. We also tested and selected potential housekeeping genes based on those reported for other species. These results allow us to conduct future confirmatory studies on pesticide modulation of gene expression in toad larvae.
Collapse
Affiliation(s)
- Natalia S. Pires
- grid.412234.20000 0001 2112 473XCentro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-CONICET, 8300 Buenos Aires 1400, Neuquén Argentina
| | - Cecilia I. Lascano
- grid.412234.20000 0001 2112 473XCentro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-CONICET, 8300 Buenos Aires 1400, Neuquén Argentina
| | - Julia Ousset
- grid.412234.20000 0001 2112 473XCentro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-CONICET, 8300 Buenos Aires 1400, Neuquén Argentina
| | - Danilo G. Ceschin
- grid.501824.a0000 0004 0638 0729Centro de Investigación en Medicina Traslacional “Severo R. Amuchástegui” (CIMETSA), Vinculado al Instituto de Investigación Médica Mercedes y Martín Ferreyra (CONICET-UNC), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Av. Naciones Unidas 420, X5016KEJ Córdoba, Argentina
| | - Andrés Venturino
- grid.412234.20000 0001 2112 473XCentro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Universidad Nacional del Comahue-CONICET, 8300 Buenos Aires 1400, Neuquén Argentina
| |
Collapse
|
5
|
Borkowska M, Białas W, Celińska E. A new set of reference genes for comparative gene expression analyses in Yarrowia lipolytica. FEMS Yeast Res 2020; 20:5986618. [PMID: 33201983 DOI: 10.1093/femsyr/foaa059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Accurate quantitation of gene expression levels require sensitive, precise and reproducible measurements of specific transcripts. Normalization to a reference gene is the most common practice to minimize the impact of the uncontrolled variation. The fundamental prerequisite for an accurate reference gene is to be stably expressed amongst all the samples included in the analysis. In the present study we aimed to assess the expression level and stability of a panel of 21 genes in Yarrowia lipolytica throughout varying conditions, covering composition of the culturing medium, growth phase and strain-wild type and recombinant burdened with heterologous protein overexpression. The panel of the selected candidate genes covered those essential for growth and maintenance of metabolism and homologs of commonly used internal references in RT-qPCR. The candidate genes expression level and stability were assessed and the data were processed using dedicated computational tools (geNorm and NormFinder). The results obtained here indicated genes unaffected by the burden of overexpression (TEF1, TPI1, UBC2, SRPN2, ALG9-like, RYL1) or by the culture medium used (ACT1, TPI1, UBC2, SEC61, ODC, CLA4, FKS1, TPS1), as well as those the least (SSDH, ODC, GPD) and the most (SEC62, TPI1, IPP1) suitable for normalization of RT-qPCR data in Y. lipolytica.
Collapse
Affiliation(s)
- Monika Borkowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-637 Poznań, Poland
| |
Collapse
|
6
|
Nader N, Dib M, Hodeify R, Courjaret R, Elmi A, Hammad AS, Dey R, Huang XY, Machaca K. Membrane progesterone receptor induces meiosis in Xenopus oocytes through endocytosis into signaling endosomes and interaction with APPL1 and Akt2. PLoS Biol 2020; 18:e3000901. [PMID: 33137110 PMCID: PMC7660923 DOI: 10.1371/journal.pbio.3000901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/12/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRβ is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRβ signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRβ into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1. The steroid hormone progesterone mediates many physiological processes through either nuclear receptors that modulate gene expression, or membrane progesterone receptors (mPRs) that mediate non-genomic signaling. This study shows that non-genomic mPRβ signaling progresses through clathrin-dependent endocytosis into signaling endosomes where it interacts with and activates APPL1 and Akt2 to induce oocyte meiosis.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Asha Elmi
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat S. Hammad
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Raja Dey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- * E-mail:
| |
Collapse
|
7
|
Zhu M, Li Y, Niu Y, Li J, Qin Z. Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: A novel signaling by which bisphenols disrupt vertebrate development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114443. [PMID: 32311622 DOI: 10.1016/j.envpol.2020.114443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
We previously found bisphenol A (BPA) alternative, bisphenol F (BPF) upregulated Notch-related gene expression in intestines of the African clawed frog Xenopus laevis, suggesting an agonistic action on Notch signaling, a crucial signaling in multiple biological processes during development. Here, we aimed to confirm the actions of BPA and BPF on Notch signaling and to reveal their effects on intestinal development. Using X. laevis, an excellent model for developmental biology, we found that 10-1000 nM BPA and BPF significantly elevated Notch-related gene expression in a concentration-dependent manner. Subsequently, exceptional cell proliferation as well as intestinal histological changes were observed in treated intestines. Importantly, Notch inhibitor markedly suppressed the effects of BPA and BPF described above. Furthermore, we employed rat intestinal epithelium cells (IEC-6), an ideal in vitro model of intestinal epithelial cell differentiation, to confirm the effects of bisphenols. As expected, BPA and BPF upregulated Notch-related gene expression and induced the translocation of the Notch intracellular domain to the nucleus, followed by exceptional cell proliferation and differentiation, whereas Notch inhibitor antagonized the effects caused by BPA and BPF. All results strongly demonstrate that both BPA and BPF activate Notch signaling and subsequently disrupt intestinal development in vertebrates. Given its fundamental roles in multiple developmental processes, we propose that Notch signaling is an important and general target signaling of bisphenols in many developing tissues of vertebrates including humans.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Transcriptome analysis of axolotl oropharyngeal explants during taste bud differentiation stages. Mech Dev 2020; 161:103597. [PMID: 32044293 DOI: 10.1016/j.mod.2020.103597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023]
Abstract
The Mexican salamander, Ambystoma mexicanum (Axolotl), is an excellent vertebrate model system to understand development and regeneration. Studies in axolotl embryos have provided important insights into taste bud development. Taste bud specification and determination occur in the oropharyngeal endoderm of axolotl embryos during gastrulation and neurulation, respectively, whereas taste bud innervation and taste cell differentiation occur later in development. Axolotl embryos are amenable to microsurgery, and tissue explants develop readily in vitro. We performed RNA-seq analysis to investigate the differential expression of genes in oropharyngeal explants at several stages of taste cell differentiation. Since the axolotl genome has only recently been sequenced, we used a Trinity pipeline to perform de novo assembly of sequencing reads. Linear models for RNA-seq data were used to identify differentially expressed genes. We found 1234 unique genes differentially expressed during taste cell differentiation stages. We validated four of these genes using RTqPCR and performed GO functional analysis. The differential expression of these genes suggests that they may play a role in taste cell differentiation in axolotls.
Collapse
|
9
|
Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates. Nat Commun 2020; 11:665. [PMID: 32005801 PMCID: PMC6994656 DOI: 10.1038/s41467-020-14385-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Injury, surgery, and disease often disrupt tissues and it is the process of regeneration that aids the restoration of architecture and function. Regeneration can occur through multiple strategies including stem cell expansion, transdifferentiation, or proliferation of differentiated cells. We have identified a case of regeneration in Xenopus embryonic aggregates that restores a mucociliated epithelium from mesenchymal cells. Following disruption of embryonic tissue architecture and assembly of a compact mesenchymal aggregate, regeneration first restores an epithelium, transitioning from mesenchymal cells at the surface of the aggregate. Cells establish apico-basal polarity within 5 hours and a mucociliated epithelium within 24 hours. Regeneration coincides with nuclear translocation of the putative mechanotransducer YAP1 and a sharp increase in aggregate stiffness, and regeneration can be controlled by altering stiffness. We propose that regeneration of a mucociliated epithelium occurs in response to biophysical cues sensed by newly exposed cells on the surface of a disrupted mesenchymal tissue.
Collapse
|
10
|
Carotenuto R, Capriello T, Cofone R, Galdiero G, Fogliano C, Ferrandino I. Impact of copper in Xenopus laevis liver: Histological damages and atp7b downregulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109940. [PMID: 31757510 DOI: 10.1016/j.ecoenv.2019.109940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Copper is an essential micronutrient but its excess in the dietary can be toxic. Both copper deficiency and abundance can occur in natural conditions and can lead to pathological dysfunctions. Many of the toxic effects of copper, such as increased lipid peroxidation in cell membranes and DNA damage, are due to its role in the generation of oxygen free radicals. Copper is released into the environment by both natural sources and human activities and it can damage organisms and ecosystems. In the present work the effects of copper has been studied on Xenopus laevis, an interesting model organism, after three weeks of exposure at 1 mg/L of CuCl, concentration allowed in the water for human use. The effects of this metal were analysed on the liver at light microscope by Hematoxylin-Eosin, Mallory, Pas and Perls stainings to evaluate the general histology, the glycogen metabolism and presence of hemosiderin. Moreover the number and area of melanomoacrophages, known as inflammation parameters, were assessment. Finally, we investigated the expression of atp7b gene and localization of respective ATP7B protein, the membrane protein involved in Cu detoxication. The achieved results showed that copper, even at a low concentration, causes serious histological alterations of liver. It induces an increase in the size and number of melanomacrophages and higher amount of hemosiderin in the treated than controls. Moreover, it alters the gene expression and localization of ATP7B protein. The data are indicative that an exposition at low and chronic concentration of copper in Xenopus laevis damages seriously the liver. For this reason it's important to consider this metal one of the pollutants involved in the decline of the amphibians and for its possible effects in other vertebrates including humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Rita Cofone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Galdiero
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
11
|
Verbrugghe E, Martel A, Pasmans F. Reference Gene Validation for Quantitative Real-time PCR Studies in Amphibian Kidney-derived A6 Epithelial Cells. Altern Lab Anim 2019; 47:63-70. [PMID: 31333044 DOI: 10.1177/0261192919862936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Quantitative real-time polymerase chain reaction is a widely used technique that relies on reference genes for the normalisation of gene expression. These reference genes are constitutively expressed and must remain stable across all samples and treatments. Stability of housekeeping genes may vary and must be optimised for a specific tissue, sample or cell line. Here we present a study screening for possible reference gene candidates, eef1a1, rpl8, sub1.L, clta, H4 and odc1, in the Xenopus laevis (A6) kidney cell line. Quantification cycle results were analysed using geNorm to calculate the average expression stability and the coefficient of variation (CV) for each candidate reference gene. All of the tested genes met the guidelines for stable reference genes, namely an average expression stability of < 0.5 and a CV value of < 0.2, with eef1a1 > sub1.L > rpl8 > clta > odc1 > H4. By using pairwise variation analysis, the optimal number of reference targets was determined to be 2. As such, we report that the reference genes eef1a1 and sub1.L should be used to achieve optimal normalisation in A6 cells.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Reference gene identification and validation for quantitative real-time PCR studies in developing Xenopus laevis. Sci Rep 2018; 8:496. [PMID: 29323148 PMCID: PMC5764961 DOI: 10.1038/s41598-017-18684-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Reference genes are essential for gene expression analysis when using real-time quantitative PCR (RT-qPCR). Xenopus laevis is a popular amphibian model for studying vertebrate embryogenesis and development. Further, X. laevis is ideal for studying thyroid signaling due to its thyroid dependent metamorphosis, a stage comparable to birth in humans. When using PCR based studies, a primary concern is the choice of reference genes. Commonly used references are eef1a1, odc1, rpl8, and actnB, although there is a lack of ad hoc reference genes for X. laevis. Here, we used previously published RNA-seq data on different X. laevis stages and identified the top 14 candidate genes with respect to their expression levels as a function of developmental stage and degree of variation. We further evaluated the stability of these and other candidate genes using RT-qPCR on various stages including the unfertilised eggs, whole embryos during early development and brains during late development. We used four different statistical software packages: deltaCT, geNorm, NormFinder and BestKeeper. We report optimized reference gene pair combinations for studying development (early whole embryos), brains at later stages (metamorphosis and adult), and thyroid signalling. These reference gene pairs are suitable for studying different aspects of X. laevis development and organogenesis.
Collapse
|
13
|
Nader N, Dib M, Courjaret R, Hodeify R, Machaca R, Graumann J, Machaca K. VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling. J Cell Sci 2018; 131:jcs.212522. [DOI: 10.1242/jcs.212522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Progesterone mediates its physiological functions through activation of both transcription-coupled nuclear receptors and 7-transmembrane progesterone receptors (mPRs) that transduce progesterone's rapid non-genomic actions by coupling to various signaling modules. However, the immediate mechanisms of action downstream of mPRs remain in question. Herein we use an untargeted quantitative proteomics approach to identify mPR interactors to better define progesterone non-genomic signaling. Surprisingly, we identify the VLDL Receptor (VLDLR) as an mPR partner required for its plasma membrane localization. Knocking down VLDLR abolishes non-genomic progesterone signaling, a phenotype that is rescued by overexpressing VLDLR. Mechanistically, we show that the VLDLR is required for mPR trafficking from the ER to the Golgi. Taken together, our data define a novel function for the VLDLR as a trafficking chaperone required for the mPR subcellular localization and as such non-genomic progesterone-dependent signaling.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Raya Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Johannes Graumann
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| |
Collapse
|
14
|
Cohen KL, Piacentino ML, Warkentin KM. The hatching process and mechanisms of adaptive hatching acceleration in hourglass treefrogs, Dendropsophus ebraccatus. Comp Biochem Physiol A Mol Integr Physiol 2017; 217:63-74. [PMID: 29056480 DOI: 10.1016/j.cbpa.2017.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/25/2023]
Abstract
Environmentally cued hatching is well documented in anurans, enabling embryos to escape diverse threats. However, knowledge of anuran hatching mechanisms is limited and based largely on aquatic-breeding species without known plasticity in hatching timing. Generally, hatching gland cells produce a hatching enzyme that degrades the vitelline membrane. We investigated hatching and its regulation in terrestrial embryos of hourglass treefrogs, Dendropsophus ebraccatus, which accelerate hatching to escape dehydration. We specifically tested if changes in hatching gland cell development or hatching enzyme gene expression are associated with accelerated hatching. We measured perivitelline chamber size of well-hydrated eggs over development as an indicator of breakdown of the vitelline membrane and found that the size of the perivitelline chamber increased steadily until hatching, suggesting gradual hatching enzyme release and vitelline membrane degradation. Hatching gland cells peaked in abundance and began regression substantially prior to hatching, but we found no developmental differences in the abundance or surface area of hatching gland cells between dry and well-hydrated embryos. Hatching enzyme gene expression also peaked early in development then declined, with no difference between hydration treatments. In D. ebraccatus breakdown of the vitelline membrane appears gradual, mediated by hatching enzyme release starting long before hatching. However, hatching acceleration is not associated with ontogenetic changes in hatching gland cell development or hatching enzyme gene expression. This hatching process contrasts with that of red-eyed treefrogs, Agalychnis callidryas, which appear to release enzyme acutely at hatching, yet both species are capable of hatching to escape acute threats.
Collapse
Affiliation(s)
- Kristina L Cohen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| | - Michael L Piacentino
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Karen M Warkentin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA; Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá
| |
Collapse
|
15
|
Schietroma C, Parain K, Estivalet A, Aghaie A, Boutet de Monvel J, Picaud S, Sahel JA, Perron M, El-Amraoui A, Petit C. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment. J Cell Biol 2017; 216:1849-1864. [PMID: 28495838 PMCID: PMC5461027 DOI: 10.1083/jcb.201612030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/21/2017] [Indexed: 01/19/2023] Open
Abstract
Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but USH1 protein function in the retina is unclear. Schietroma et al. use Xenopus to model the deficiency in two USH1 proteins—protocadherin-15 and cadherin-23—and identify crucial roles for these molecules in shaping the photoreceptor outer segment. Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal.
Collapse
Affiliation(s)
- Cataldo Schietroma
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Amrit Estivalet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Asadollah Aghaie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
| | - Jacques Boutet de Monvel
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, 75012 Paris, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, 94405 Orsay, France
| | - Aziz El-Amraoui
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France.,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France
| | - Christine Petit
- Institut Pasteur, Génétique et Physiologie de l'Audition, 75015 Paris, France .,Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-UMRS 1120, France.,Sorbonne Universités, UPMC University Paris, Complexité du Vivant, 75005 Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France.,Collège de France, 75005 Paris, France
| |
Collapse
|
16
|
Sharapov MG, Novoselov VI, Ravin VK. Xenopus laevis peroxiredoxins: Gene expression during development and characterization of the enzymes. Mol Biol 2016. [DOI: 10.1134/s0026893316020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Jansson E, Mattsson A, Goldstone J, Berg C. Sex-dependent expression of anti-Müllerian hormone (amh) and amh receptor 2 during sex organ differentiation and characterization of the Müllerian duct development in Xenopus tropicalis. Gen Comp Endocrinol 2016; 229:132-44. [PMID: 26987287 DOI: 10.1016/j.ygcen.2016.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/12/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
Amphibian gonadal differentiation involves the action of sex steroids. Recent research indicates that the anti-Müllerian hormone (AMH) is involved in testicular development in some lower vertebrate species. For amphibians there is a lack of data on ontogenetic expression of the AMH receptor AMHR2/amhr2 and of progesterone receptors (PGRS/pgrs). Here we expand the knowledge on amphibian sex differentiation by characterizing ontogenetic mRNA levels of amh, amhr2, intracellular and membrane pgrs (ipgr and mpgr beta) and cytochrome P450 19a1 (cyp19a1) (ovarian marker) in the urogenital complex of the model species Xenopus (Silurana) tropicalis. Furthermore, we characterized the ontogenetic development of the Müllerian ducts (precursors of the female reproductive tract) histologically. The developmental period investigated spanned from beginning of gonadal differentiation, Nieuwkoop and Faber (NF) stage 51, to 4weeks post-metamorphosis. The Müllerian ducts were first observed at NF 64 in both sexes. Male-enhanced amh mRNA levels from NF 53/54 to 6days post-metamorphosis and female-enhanced cyp19a1 levels from NF 53 to 4weeks post-metamorphosis were noted. The sexually dimorphic mRNA level profile was more distinct for amh than for cyp19a1. The pgrs mRNA levels increased over the studied period and showed no sex differences. At later developmental stages, the amhr2 mRNA level was increased in putative females compared with males. Our findings suggest that AMH has a role in gonadal differentiation in X. tropicalis. We propose relative gonadal amh mRNA level as a testicular marker during early gonadal development in amphibians.
Collapse
Affiliation(s)
- Erika Jansson
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| | - Jared Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
18
|
Poulsen R, Luong X, Hansen M, Styrishave B, Hayes T. Tebuconazole disrupts steroidogenesis in Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:28-37. [PMID: 26432166 DOI: 10.1016/j.aquatox.2015.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 05/24/2023]
Abstract
A 27-day controlled exposure study of adult male African clawed frogs (Xenopus laevis) was conducted to examine the mechanism by which tebuconazole may disrupt steroidogenesis. The fungicide was measured by LC-MS/MS in tank water and in target tissues (adipose, kidney, liver, and brain), and we observed tissue-specific bioconcentration with BCF up to 238. Up to 10 different steroid hormones were quantified in gonads using LC-MS/MS and in plasma using GC-MS/MS and a radioimmunoassay was performed for further measurement of androgens. In order to assess whether effects increased with exposure or animals adapted to the xenobiotic, blood samples were collected 12 days into the study and at termination (day 27). After 12 days of exposure to 100 and 500μgL(-1) tebuconazole, plasma levels of testosterone (T) and dihydrotestosterone (DHT) were increased, while plasma 17β-estradiol (E2) concentrations were greatly reduced. Exposure to 0.1μgL(-1), on the other hand, resulted in decreased levels of T and DHT, with no effects observed for E2. After 27 days of exposure, effects were no longer observed in circulating androgen levels while the suppressive effect on E2 persisted in the two high-exposure groups (100 and 500μgL(-1)). Furthermore, tebuconazole increased gonadal concentrations of T and DHT as well as expression of the enzyme CYP17 (500μgL(-1), 27 days). These results suggest that tebuconazole exposure may supress the action of CYP17 at the lowest exposure (0.1μgL(-1)), while CYP19 suppression dominates at higher exposure concentrations (increased androgens and decreased E2). Increased androgen levels in plasma half-way into the study and in gonads at termination may thus be explained by compensatory mechanisms, mediated through increased enzymatic expression, as prolonged exposure had no effect on circulating androgen levels.
Collapse
Affiliation(s)
- Rikke Poulsen
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Xuan Luong
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Martin Hansen
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA; Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Tyrone Hayes
- Laboratory for Integrative Studies in Amphibian Biology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Choi J, Moskalik CL, Ng A, Matter SF, Buchholz DR. Regulation of thyroid hormone-induced development in vivo by thyroid hormone transporters and cytosolic binding proteins. Gen Comp Endocrinol 2015; 222:69-80. [PMID: 26188717 DOI: 10.1016/j.ygcen.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
Abstract
Differential tissue sensitivity/responsivity to hormones can explain developmental asynchrony among hormone-dependent events despite equivalent exposure of each tissue to circulating hormone levels. A dramatic vertebrate example is during frog metamorphosis, where transformation of the hind limb, brain, intestine, liver, and tail are completely dependent on thyroid hormone (TH) but occurs asynchronously during development. TH transporters (THTs) and cytosolic TH binding proteins (CTHBPs) have been proposed to affect the timing of tissue transformation based on expression profiles and in vitro studies, but they have not been previously tested in vivo. We used a combination of expression pattern, relative expression level, and in vivo functional analysis to evaluate the potential for THTs (LAT1, OATP1c1, and MCT8) and CTHBPs (PKM2, CRYM, and ALDH1) to control the timing of TH-dependent development. Quantitative PCR analysis revealed complex expression profiles of THTs and CTHBPs with respect to developmental stage, tissue, and TH receptor β (TRβ) expression. For some tissues, the timing of tissue transformation was associated with a peak in the expression of some THTs or CTHBPs. An in vivo overexpression assay by tail muscle injection showed LAT1, PKM2, and CRYM increased TH-dependent tail muscle cell disappearance. Co-overexpression of MCT8 and CRYM had a synergistic effect on cell disappearance. Our data show that each tissue examined has a unique developmental expression profile of THTs and CTHBPs and provide direct in vivo evidence that the ones tested are capable of affecting the timing of developmental responses to TH.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Christine L Moskalik
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Allison Ng
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA.
| |
Collapse
|
20
|
Lou Q, Cao S, Xu W, Zhang Y, Qin Z, Wei W. Molecular characterization and mRNA expression of ribosomal protein L8 in Rana nigromaculata during development and under exposure to hormones. J Environ Sci (China) 2014; 26:2331-2339. [PMID: 25458689 DOI: 10.1016/j.jes.2014.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/22/2014] [Accepted: 02/24/2014] [Indexed: 06/04/2023]
Abstract
Like Xenopus laevis, some species of the Rana genus are also used to study endocrine disrupting chemicals (EDCs). Although ribosomal protein L8 (rpl8) is the most-used reference gene for analyzing gene expression by quantitative reverse transcription polymerase chain reaction in Rana, its suitability as the reference gene has never been validated in any species of the Rana genus. We characterized rpl8 cDNA in Rana nigromaculata, a promising native species in East Asia for assaying endocrine disrupting effects. We found that the rpl8 cDNA consisted of 919bp and encoded 257 amino acids, exhibiting high identities of amino acid sequence with known rpl8 in other Rana species. Then, we examined the stability of mRNA expression during development. Compared with elongation factor 1 alpha 1, another common housekeeping gene, neither stage-specific nor tissue-specific expression of the rpl8 gene was found in all tissues examined (brain, liver, intestine, tail, testis and ovary) during R. nigromaculata development. Finally, we investigated rpl8 expression under exposure to hormones. No change in rpl8 mRNA expression was found under exposure to thyroid hormone (T4) and estrogen (estradiol), whereas expression of the corresponding biomarker genes was induced. Our results show that rpl8 is an appropriate reference gene for analyzing gene expression by quantitative reverse transcription polymerase chain reaction for assaying EDCs using R. nigromaculata, and might also provide support for using rpl8 as a reference gene in other Rana species due to the high conservation of rpl8 among the Rana genus.
Collapse
Affiliation(s)
- Qinqin Lou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Nanjing University of Technology, Nanjing 210009, China.
| | - Shan Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Nanjing University of Technology, Nanjing 210009, China
| | - Wei Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Nanjing University of Technology, Nanjing 210009, China
| | - Yinfeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wuji Wei
- College of Environment, Nanjing University of Technology, Nanjing 210009, China
| |
Collapse
|
21
|
Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf M, Grapin-Botton A. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 2013; 140:4452-62. [PMID: 24130330 DOI: 10.1242/dev.096628] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. The in vitro maintenance and expansion of pancreatic progenitors require active Notch and FGF signaling, thus recapitulating in vivo niche signaling interactions. Our experiments reveal new aspects of pancreas development, such as a community effect by which small groups of cells better maintain progenitor properties and expand more efficiently than isolated cells, as well as the requirement for three-dimensionality. Finally, growth conditions in chemically defined biomaterials pave the way for testing the biophysical and biochemical properties of the niche that sustains pancreatic progenitors.
Collapse
Affiliation(s)
- Chiara Greggio
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS One 2013; 8:e69734. [PMID: 23940528 PMCID: PMC3734191 DOI: 10.1371/journal.pone.0069734] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K+ and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10–50 days of postnatal development (P10–P50). The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20) was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50). Within 14 days after ischemia (D3, D7, D14), additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3), transcriptionally active early reactive glia (mainly from D7) and permanent reactive glia (solely from D14). Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.
Collapse
|
23
|
Dhorne-Pollet S, Thélie A, Pollet N. Validation of novel reference genes for RT-qPCR studies of gene expression in Xenopus tropicalis during embryonic and post-embryonic development. Dev Dyn 2013; 242:709-17. [PMID: 23559567 DOI: 10.1002/dvdy.23972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/04/2013] [Accepted: 03/26/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Accurate interpretation of transcriptome profiling by quantitative PCR requires the establishment of species-specific standards. However, the selection of reference genes for assessing RNA expression profiles in Xenopus laevis and Xenopus tropicalis was mostly based on historical reasons and they often only reflect the traditions of a laboratory. RESULTS We investigated the expression stability of 10 genes (dicer1, drosha, eef1a1, elavl3, gsc, h4, odc1, rpl8, smn2, tbp), 8 of which are commonly used as internal controls in published RT-qPCR experiments. We defined specific primer pairs and evaluated their suitability as reference genes by performing RT-qPCR expression profiling in Xenopus tropicalis. Gene expression stability was assayed in a set of 15 developmental stages from the egg to the froglet, and in dissected embryos. CONCLUSIONS Overall, we determined a set of qualified reference genes for distinct developmental periods. We recommend the use of dicer1, drosha, eef1a1, and smn2 from early embryonic development up to the end of metamorphosis. During early embryogenesis drosha, eef1a1, smn2 are suitable. For the whole post-embryonic development and for metamorphic stages including pro-metamorphosis and metamorphic climax, we recommend the use of drosha and smn2. These reference genes should prove their usefulness for data comparison across studies.
Collapse
|
24
|
Melling MA, Friendship CRC, Shepherd TG, Drysdale TA. Expression of Ski can act as a negative feedback mechanism on retinoic acid signaling. Dev Dyn 2013; 242:604-13. [PMID: 23441061 DOI: 10.1002/dvdy.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 02/08/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Retinoic acid signaling is essential for many aspects of early development in vertebrates. To control the levels of signaling, several retinoic acid target genes have been identified that act to suppress retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied for its ability to suppress transforming growth factor-beta (TGF-β) signaling but has also been implicated in the repression of retinoic acid signaling. RESULTS We demonstrate that ski expression is up-regulated in response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA. Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target of retinoic acid signaling. CONCLUSIONS Our results, coupled with the known ability of Ski to repress retinoic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on retinoic acid signaling.
Collapse
|
25
|
Abrouk-Vérot L, Brun C, Exbrayat JM. Expression Patterns of CAPN1 and CAPN8b Genes during Embryogenesis in Xenopus laevis. Cell 2013. [DOI: 10.4236/cellbio.2013.24024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
26
|
Rocha-Martins M, Njaine B, Silveira MS. Avoiding pitfalls of internal controls: validation of reference genes for analysis by qRT-PCR and Western blot throughout rat retinal development. PLoS One 2012; 7:e43028. [PMID: 22916200 PMCID: PMC3423434 DOI: 10.1371/journal.pone.0043028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/16/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Housekeeping genes have been commonly used as reference to normalize gene expression and protein content data because of its presumed constitutive expression. In this paper, we challenge the consensual idea that housekeeping genes are reliable controls for expression studies in the retina through the investigation of a panel of reference genes potentially suitable for analysis of different stages of retinal development. METHODOLOGY/PRINCIPAL FINDINGS We applied statistical tools on combinations of retinal developmental stages to assess the most stable internal controls for quantitative RT-PCR (qRT-PCR). The stability of expression of seven putative reference genes (Actb, B2m, Gapdh, Hprt1, Mapk1, Ppia and Rn18s) was analyzed using geNorm, BestKeeper and Normfinder software. In addition, several housekeeping genes were tested as loading controls for Western blot in the same sample panel, using Image J. Overall, for qRT-PCR the combination of Gapdh and Mapk1 showed the highest stability for most experimental sets. Actb was downregulated in more mature stages, while Rn18s and Hprt1 showed the highest variability. We normalized the expression of cyclin D1 using various reference genes and demonstrated that spurious results may result from blind selection of internal controls. For Western blot significant variation could be seen among four putative internal controls (β-actin, cyclophilin b, α-tubulin and lamin A/C), while MAPK1 was stably expressed. CONCLUSION Putative housekeeping genes exhibit significant variation in both mRNA and protein content during retinal development. Our results showed that distinct combinations of internal controls fit for each experimental set in the case of qRT-PCR and that MAPK1 is a reliable loading control for Western blot. The results indicate that biased study outcomes may follow the use of reference genes without prior validation for qRT-PCR and Western blot.
Collapse
Affiliation(s)
- Maurício Rocha-Martins
- Neurobiology Department, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brian Njaine
- Cell Therapy and Bioengeneering Department, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S. Silveira
- Neurobiology Department, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
27
|
Rezende-Teixeira P, Palomino NB, Machado-Santelli GM. Rananos expression pattern during oogenesis and early embryonic development in Rhynchosciara americana. Dev Genes Evol 2012; 222:153-64. [PMID: 22526873 DOI: 10.1007/s00427-012-0398-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 03/26/2012] [Indexed: 01/01/2023]
Abstract
The Dipteran Rhynchosciara americana, a native Brazilian insect that has become a valuable model system for developmental biology research because it provides an interesting opportunity to study a different type of insect oogenesis. Sequences from a cDNA library that was constructed with poly A+RNA from the ovaries of R. americana larvae at different ages were analyzed. Molecular characterization confirmed interesting findings, such as the presence of Rananos. The nanos gene encodes a conserved RNA-binding protein that is required during early development for the maintenance and division of the primordial germ cells of Diptera. nanos plays an important role in specifying the posterior regions of insect embryos and is important for abdomen formation. In the present work, we showed the spatial and temporal expression profiles of this important gene, which is involved in oogenesis and early development. Data mining techniques were used to obtain the complete sequence of Rananos. Bioinformatic tools were used to determine the following: (1) the secondary structure of the 3'-untranslated region of the Rananos mRNA, (2) the encoded protein of the isolated Rananos gene, (3) the conserved zinc-finger domains of the RaNanos protein, and (4) phylogenetic analyses. Furthermore, RNA in situ hybridization and immunolocalization were used to determine mRNA and protein expression in the tissues that were studied and to define Rananos as a germ cell molecular marker.
Collapse
Affiliation(s)
- Paula Rezende-Teixeira
- Departamento de Biologia Celular e Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo 05508-900, SP, Brazil.
| | | | | |
Collapse
|
28
|
Sinzelle L, Thuret R, Hwang HY, Herszberg B, Paillard E, Bronchain OJ, Stemple DL, Dhorne-Pollet S, Pollet N. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 2011; 50:316-24. [PMID: 22083648 PMCID: PMC3503257 DOI: 10.1002/dvg.20822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/21/2011] [Accepted: 10/26/2011] [Indexed: 11/08/2022]
Abstract
Cell lines are useful tools to facilitate in vitro studies of many biological and molecular processes. We describe a new permanent fibroblast-type cell line obtained from disaggregated Xenopus tropicalis limb bud. The cell line population doubling time was ∼ 24 h. Its karyotype was genetically stable with a chromosome number of 2n = 21 and a chromosome 10 trisomy. These cells could be readily transfected and expressed transgenes faithfully. We obtained stable transformants using transposon-based gene transfer technology. These cells responded to thyroid hormone and thus can provide a complementary research tool to study thyroid hormone signaling events. In conclusion, this cell line baptized “Speedy” should prove useful to couple in vitro and in vivo biological studies in the X. tropicalisfrog model. genesis 50:316–324, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ludivine Sinzelle
- Institute of Systems and Synthetic Biology, Genopole, CNRS, Université d'Evry Val d'Essonne, Genavenir 3-Genopole campus 3, 1 rue Pierre Fontaine, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Preconceptional paternal glycidamide exposure affects embryonic gene expression: Single embryo gene expression study following in vitro fertilization. Reprod Toxicol 2011; 32:463-71. [DOI: 10.1016/j.reprotox.2011.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/10/2011] [Accepted: 09/17/2011] [Indexed: 11/18/2022]
|
30
|
Yamada A, Koyanagi KO, Watanabe H. In silico and in vivo identification of the intermediate filament vimentin that is downregulated downstream of Brachyury during Xenopus embryogenesis. Gene 2011; 491:232-6. [PMID: 21963995 DOI: 10.1016/j.gene.2011.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Brachyury, a member of the T-box transcription family, has been suggested to be essential for morphogenetic movements in various processes of animal development. However, little is known about its critical transcriptional targets. In order to identify targets of Brachyury and understand the molecular mechanisms underlying morphogenetic movements, we first searched the genome sequence of Xenopus tropicalis, the only amphibian genomic sequence available, for Brachyury-binding sequences known as T-half sites, and then screened for the ones conserved between vertebrate genomes. We found three genes that have evolutionarily conserved T-half sites in the promoter regions and examined these genes experimentally to determine whether their expressions were regulated by Brachyury, using the animal cap system of Xenopus laevis embryos. Eventually, we obtained evidence that vimentin, encoding an intermediate filament protein, was a potential target of Brachyury. This is the first report to demonstrate that Brachyury might affect the cytoskeletal structure through regulating the expression of an intermediate filament protein, vimentin.
Collapse
Affiliation(s)
- Atsuko Yamada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | | | | |
Collapse
|
31
|
Hollar AR, Choi J, Grimm AT, Buchholz DR. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate. Gen Comp Endocrinol 2011; 173:190-8. [PMID: 21651912 PMCID: PMC3152253 DOI: 10.1016/j.ygcen.2011.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/02/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Spadefoot toad species display extreme variation in larval period duration, due in part to evolution of thyroid hormone (TH) physiology. Specifically, desert species with short larval periods have higher tail tissue content of TH and exhibit increased responsiveness to TH. To address the molecular basis of larval period differences, we examined TH receptor (TR) expression across species. Based on the dual function model for the role of TR in development, we hypothesized that desert spadefoot species with short larval periods would have (1) late onset of TR expression prior to the production of endogenous TH and (2) higher TR levels when endogenous TH becomes available. To test these hypotheses, we cloned fragments of TRα and TRβ genes from the desert spadefoot toads Scaphiopus couchii and Spea multiplicata and their non-desert relative Pelobates cultripes and measured their mRNA levels in tails using quantitative PCR in the absence (premetamorphosis) or presence (natural metamorphosis) of TH. All species express TRα and TRβ from the earliest stages measured (from just after hatching), but S. couchii, which has the shortest larval period, had more TRα throughout development compared to P. cultripes, which has the longest larval period. TRβ mRNA levels were similar across species. Exogenous T3 treatment induced faster TH-response gene expression kinetics in S. couchii compared to the other species, consistent with its higher TRα mRNA expression and indicative of a functional consequence of more TRα activity at the molecular level. To directly test whether higher TRα expression may contribute to shorter larval periods, we overexpressed TRα via plasmid injection into tail muscle cells of the model frog Xenopus laevis and found an increased rate of muscle cell death in response to TH. These results suggest that increased TRα expression evolved in S. couchii and contribute to its higher metamorphic rates.
Collapse
Affiliation(s)
- Amy R. Hollar
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Jinyoung Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Adam T. Grimm
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| |
Collapse
|
32
|
Nair M, Belak ZR, Ovsenek N. Effects of fluoride on expression of bone-specific genes in developing Xenopus laevis larvae. Biochem Cell Biol 2011; 89:377-86. [PMID: 21790307 DOI: 10.1139/o11-034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effect of fluoride treatment on the expression of a panel of osteogenic and stress markers in Stage 55 premetamorphic Xenopus larvae was examined at the precise onset of replacement of the larval cartilaginous skeleton with bone. A dosing regimen of 10 mmol/L sodium fluoride over 8 days was followed, during which time larvae developed to Stage 58, when the process of progressive ossification takes place in the vertebral column and membranous bones of the skull, pelvic, and pectoral girdles and portions of the appendicular skeleton. Markers of bone formation, including COL1A1, the transcription factors Osterix, RUNX2-II, and matrix metalloproteinases MMP1 and MMP13, decreased relative to age-matched controls, though the osteoblast marker BGLAP was not significantly altered. Expression of the pro-osteoclastogenic factor RANKL decreased, whereas expression of the anti-osteoclastogenic factor osteoprotegerin increased. Altered expression of oxidative stress markers, with the exception of superoxide dismutase, was generally not observed. These data demonstrate the potent effects of fluoride on the expression of factors required for osteoblast and osteoclast differentiation, as well as on the expression of osteoblast products, including MMP1 and collagen. Importantly, these effects were observed in the absence of significant changes in the expression of oxidative stress markers. The results provide the first molecular insights into the mechanisms underlying skeletal fluorosis in a whole organism developmental model.
Collapse
Affiliation(s)
- Manoj Nair
- College of Medicine, University of Saskatchewan, Health Sciences Building, Saskatoon, Canada
| | | | | |
Collapse
|
33
|
Skjærven KH, Olsvik PA, Finn RN, Holen E, Hamre K. Ontogenetic expression of maternal and zygotic genes in Atlantic cod embryos under ambient and thermally stressed conditions. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:196-205. [DOI: 10.1016/j.cbpa.2011.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022]
|
34
|
A review of the evolution of viviparity in squamate reptiles: the past, present and future role of molecular biology and genomics. J Comp Physiol B 2011; 181:575-94. [DOI: 10.1007/s00360-011-0584-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/06/2022]
|
35
|
Characterization of a Xenopus tropicalis endogenous retrovirus with developmental and stress-dependent expression. J Virol 2010; 85:2167-79. [PMID: 21159866 DOI: 10.1128/jvi.01979-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the identification and characterization of XTERV1, a full-length endogenous retrovirus (ERV) within the genome of the western clawed frog (Xenopus tropicalis). XTERV1 contains all the basic genetic elements common to ERVs, including the classical 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR architecture, as well as conserved functional motifs inherent to each retroviral protein. Using phylogenetic analysis, we show that XTERV1 is related to the Epsilonretrovirus genus. The X. tropicalis genome harbors a single full-length copy with intact gag and pol open reading frames that localizes to the centromeric region of chromosome 5. About 10 full-length defective copies of XTERV1 are found interspersed in the genome, and 2 of them could be assigned to chromosomes 1 and 3. We find that XTERV1 genes are zygotically transcribed in a regulated spatiotemporal manner during frog development, including metamorphosis. Moreover, XTERV1 transcription is upregulated under certain cellular stress conditions, including cytotoxic and metabolic stresses. Interestingly, XTERV1 Env is found to be homologous to FR47, a protein upregulated following cold exposure in the freeze-tolerant wood frog (Rana sylvatica). In addition, we find that R. sylvatica FR47 mRNA originated from a retroviral element. We discuss the potential role(s) of ERVs in physiological processes in vertebrates.
Collapse
|
36
|
de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, Fett-Neto AG. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol Biol 2010; 11:73. [PMID: 20854682 PMCID: PMC2955024 DOI: 10.1186/1471-2199-11-73] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/20/2010] [Indexed: 01/10/2023] Open
Abstract
Background Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation.
Collapse
Affiliation(s)
- Márcia R de Almeida
- Center for Biotechnology, Federal University of Rio Grande do Sul, P,O, Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Sindelka R, Sidova M, Svec D, Kubista M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods 2010; 51:87-91. [DOI: 10.1016/j.ymeth.2009.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 11/27/2022] Open
|
38
|
Langlois VS, Duarte-Guterman P, Ing S, Pauli BD, Cooke GM, Trudeau VL. Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development. Gen Comp Endocrinol 2010; 166:417-27. [PMID: 19917284 DOI: 10.1016/j.ygcen.2009.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 11/19/2022]
Abstract
Steroidogenic enzymes and their steroid products play critical roles during gonadal differentiation in amphibians; however their roles during embryogenesis remain unclear. The objective of this study was to investigate the expression and activity of aromatase (cyp19; estrogen synthase) and 5 beta-reductase (srd5 beta; 5 beta-dihydrotestosterone synthase) during amphibian embryogenesis. Expression and activity profiles of cyp19 and srd5 beta were first established during Silurana (Xenopus) tropicalis embryogenesis from Nieuwkoop-Faber (NF) stage 2 (2-cell stage; 1h post-fertilization) to NF stage 46 (beginning of feeding; 72 h post-fertilization). Exposures to fadrozole (an aromatase inhibitor; 0.5, 1.0 and 2.0 microM) and finasteride (a putative 5-reductase inhibitor; 25, 50 and 100 microM) were designed to assess the consequences of inhibiting these enzymes on gene expression in early amphibian larval development. Exposed embryos showed changes in both enzyme activities and sex steroid- and thyroid hormone-related gene expression. Fadrozole treatment inhibited cyp19 activity and increased androgen receptor and thyroid hormone receptor (alpha and beta) mRNAs. Finasteride treatment inhibited srd5 beta (activity and mRNA), decreased cyp19 mRNA and activity levels and increased estrogen receptor alpha mRNA. Both treatments altered the expression of deiodinases (thyroid hormone metabolizing enzymes). We conclude that cyp19 and srd5 beta are active in early embryogenesis and larval development in Silurana tropicalis and their inhibition affected transcription of genes associated with the thyroid and reproductive axes.
Collapse
Affiliation(s)
- Valérie S Langlois
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Duarte-Guterman P, Langlois VS, Pauli BD, Trudeau VL. Expression and T3 regulation of thyroid hormone- and sex steroid-related genes during Silurana (Xenopus) tropicalis early development. Gen Comp Endocrinol 2010; 166:428-35. [PMID: 20015451 DOI: 10.1016/j.ygcen.2009.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 11/26/2022]
Abstract
In amphibians, thyroid hormones (THs) are the primary regulators of metamorphosis; however, their physiological role during embryogenesis remains unclear. First, we established complete developmental profiles for TH receptors (tr alpha and tr beta), deiodinases (dio; types 1, 2, 3), estrogen receptors (er alpha and er beta) and androgen receptor (ar) mRNA levels during embryogenesis and early larval stages in Silurana (Xenopus) tropicalis (from Nieuwkoop and Faber (NF) stage 2 until NF 46). Real-time RT-PCR analyses in whole embryos and larvae revealed that all transcripts except tr alpha were detected throughout development; tr alpha only appears after gastrulation. The first significant increase in the expression of tralpha and tr beta was observed before hatching, between NF 21 and NF 27 (2.5- and 11-fold, respectively). In order to test if these genes could be regulated by THs during early larval development, embryos were exposed to triiodothyronine (T3; 0.5, 5.0, 50 nM) from NF 27 to NF 46. T3 exposure caused a dose-dependent increase relative to control in the expression of tr alpha, tr beta, dio (types 2 and 3), ar, and 5 alpha-reductase type 1 in whole larvae. These results indicate that in S. tropicalis, tr and dio can be induced by T3 as early as NF 46, a response that had only been characterized later during frog metamorphosis. In addition, T3 also affected androgen-related gene expression, supporting our hypothesis that THs are involved in male development in frogs.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 2010; 30:685-93. [PMID: 20071533 DOI: 10.1523/jneurosci.4165-09.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.
Collapse
|
41
|
Bergkvist A, Rusnakova V, Sindelka R, Garda JMA, Sjögreen B, Lindh D, Forootan A, Kubista M. Gene expression profiling--Clusters of possibilities. Methods 2010; 50:323-35. [PMID: 20079843 DOI: 10.1016/j.ymeth.2010.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/22/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022] Open
Abstract
Advances in qPCR technology allow studies of increasingly large systems comprising many genes and samples. The increasing data sizes allow expression profiling both in the gene and the samples dimension while also putting higher demands on sound statistical analysis and expertise to handle and interpret its results. We distinguish between exploratory and confirmatory statistical studies. In this paper we demonstrate several techniques available for exploratory studies on a system of Xenopus laevis development from egg to tadpole. Techniques include hierarchical clustering, heatmap, principal component analysis and self-organizing maps. We stress that even though exploratory studies are excellent for generating hypotheses, results have not been proven statistically significant until an independent confirmatory study has been performed. An exploratory study may certainly be valuable in its own right, and there are often not enough resources to report both an exploratory and a confirmatory study at the same time. However, exploratory and confirmatory studies are intimately connected and we would like to raise that awareness among qPCR practitioners. We suggest that scientific reports should always have a hypothesis focus. Reports are either hypothesis generating, from an exploratory study, or hypothesis validating, from a confirmatory study, or both. In either case, we suggest the generated or validated hypotheses be specifically stated.
Collapse
|
42
|
Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC PLANT BIOLOGY 2010; 10:4. [PMID: 20056000 PMCID: PMC2827423 DOI: 10.1186/1471-2229-10-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 01/07/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis. RESULTS In an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1alpha in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines. CONCLUSIONS The least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development.
Collapse
Affiliation(s)
- Izaskun Mallona
- Genetics, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (UPCT), 30203 Cartagena, Spain
| | - Sandra Lischewski
- Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, PO Box 110432, D-06120 Halle (Saale), Germany
| | - Julia Weiss
- Genetics, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (UPCT), 30203 Cartagena, Spain
| | - Bettina Hause
- Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, PO Box 110432, D-06120 Halle (Saale), Germany
| | - Marcos Egea-Cortines
- Genetics, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (UPCT), 30203 Cartagena, Spain
| |
Collapse
|
43
|
de Andrade A, Siviero F, Rezende-Teixeira P, Santelli RV, Machado-Santelli GM. Molecular characterization of a putative heat shock protein cognate gene in Rhynchosciara americana. Chromosome Res 2009; 17:935-45. [PMID: 19768564 DOI: 10.1007/s10577-009-9081-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 09/02/2009] [Indexed: 11/24/2022]
Abstract
An hsc70 homologue gene (Rahsc70) of the diptera Rhynchosciara americana was isolated and characterized. We were able to determine the mRNA sequence from an EST of salivary gland cDNA library, and a Rahsc70 cDNA cassette was used as a probe to isolate the genomic region from a genomic library. The mRNA expression of this gene parallels the 2B puff expansion, suggesting its involvement in protein processing, since this larval period corresponds to a high synthetic activity period. During heat shock stress conditions, hsc70 expression decreased. In situ hybridization of polytene chromosomes showed that the Rahsc70 gene is located near the C3 DNA puff. The cellular localization of Hsc70 protein showed this protein in the cytoplasm and in the nucleus.
Collapse
Affiliation(s)
- Alexandre de Andrade
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil
| | | | | | | | | |
Collapse
|
44
|
Santos ARA, Duarte CB. Validation of internal control genes for expression studies: Effects of the neurotrophin BDNF on hippocampal neurons. J Neurosci Res 2008; 86:3684-92. [DOI: 10.1002/jnr.21796] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Cold stress and light signals induce the expression of cold-inducible RNA binding protein (cirp) in the brain and eye of the Japanese treefrog (Hyla japonica). Comp Biochem Physiol A Mol Integr Physiol 2008; 151:628-36. [DOI: 10.1016/j.cbpa.2008.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 02/02/2023]
|
46
|
Ananthakrishnan L, Szaro BG. Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Res 2008; 1250:27-40. [PMID: 19027722 DOI: 10.1016/j.brainres.2008.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 10/24/2008] [Accepted: 11/01/2008] [Indexed: 12/01/2022]
Abstract
Neurofilaments (NFs), which comprise one of three cytoskeletal polymers of vertebrate axons, are heteropolymers of multiple NF subunit proteins. During Xenopus laevis optic nerve regeneration, NF subunit composition undergoes progressive changes that correlate with regenerative success. Understanding the relative contributions of transcriptional and post-transcriptional gene regulatory mechanisms to these changes should therefore provide insights into the control of the axonal growth program. Previously, we examined this issue with respect to the medium neurofilament protein (NF-M). Because the integrity of NF heteropolymers depends upon maintaining properly balanced expression among multiple subunits, we have now extended this analysis to include the four light NF subunits - peripherin, the light NF triplet protein (NF-L), and two additional alpha-internexin-like proteins. Within 3 days after an optic nerve crush injury to one eye, primary transcript levels of NF subunits increased in both eyes. Levels of mRNA, however, increased in only the operated eye and did so later than did increases in primary transcript, indicating that mRNA levels are under significant post-transcriptional regulation. As measured by polysome profiling, the translational efficiencies of individual NF subunit mRNAs also shifted throughout regeneration, with operated eye mRNAs being generally more translationally active than those of unoperated eyes. Also, in operated eyes, the precise mix of efficiently and poorly translated messages throughout regeneration varied independently for each subunit, indicating that their translations are fine-tuned separately. These results suggest a model whereby traumatic disruption of visual circuitry leads to increased expression of NF primary transcripts in both eyes. These increases are subsequently modulated post-transcriptionally to accommodate shifting demands at each phase of regeneration for NF heteropolymers of differing composition in regrowing axons.
Collapse
|
47
|
Paskewitz SM, Andreev O. Silencing the genes for dopa decarboxylase or dopachrome conversion enzyme reduces melanization of foreign targets in Anopheles gambiae. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:403-8. [PMID: 18534885 PMCID: PMC2497335 DOI: 10.1016/j.cbpb.2008.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/16/2022]
Abstract
The production of melanin is a complex biochemical process in which several enzymes may play a role. Although phenoloxidase and serine proteases are clearly key components, the activity of other enzymes, including dopa decarboxylase and dopachrome conversion enzyme may also be required. We tested the effect of knockdown of gene expression for these two enzymes on melanization of abiotic targets in the mosquito, Anopheles gambiae. Knockdown of dopa decarboxylase and dopachrome conversion enzyme resulted in a significant reduction of melanization of Sephadex beads at 24 h after injection. Knockdown of a third enzyme, phenylalanine hydroxylase, which is involved in endogenous production of tyrosine, had no effect on bead melanization. Quantitative analysis of gene expression demonstrated significant upregulation of phenylalanine hydroxylase, but not the other two genes, following injection.
Collapse
Affiliation(s)
- Susan M Paskewitz
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
48
|
Rezende-Teixeira P, Siviero F, Brandão AS, Santelli RV, Machado-Santelli GM. Molecular characterization of a retrotransposon in the Rhynchosciara americana genome and its association with telomere. Chromosome Res 2008; 16:729-42. [PMID: 18528768 DOI: 10.1007/s10577-008-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 12/29/2022]
Abstract
Non-LTR retrotransposons, also known as long interspersed nuclear elements (LINEs), are transposable elements that encode a reverse transcriptase and insert into genomic locations via RNA intermediates. The sequence analysis of a cDNA library constructed from mRNA of the salivary glands of R. americana showed the presence of putative class I elements. The cDNA clone with homology to a reverse transcriptase was the starting point for the present study. Genomic phage was isolated and sequenced and the molecular structure of the element was characterized as being a non-LTR retrotransposable element. Southern blot analysis indicated that this transposable element is represented by repeat sequences in the genome of R. americana. Chromosome tips were consistently positive when this element was used as probe in in-situ hybridization. Real-time RT-PCR showed that this retrotransposon is transcribed at different periods of larval development. Most interesting, the silencing of this retrotransposon in R. americana by RNA interference resulted in reduced transcript levels and in accelerated larval development.
Collapse
Affiliation(s)
- Paula Rezende-Teixeira
- Departamento de Biologia Celular e do Desenvolvimento, Avenida Professor Lineu Prestes, 1524 Y ICBI Y sala 307, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Zhong Q, Zhang Q, Wang Z, Qi J, Chen Y, Li S, Sun Y, Li C, Lan X. Expression profiling and validation of potential reference genes during Paralichthys olivaceus embryogenesis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:310-318. [PMID: 18214610 DOI: 10.1007/s10126-007-9064-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/28/2007] [Accepted: 11/01/2007] [Indexed: 05/25/2023]
Abstract
Differential expression of genes is crucial to embryogenesis. The analysis of gene expression requires appropriate references that should be minimally regulated during the embryonic development. To select the most stable genes for gene normalization, the expression profiles of eight commonly used reference genes (ACTB, GAPDH, rpL17, alpha-Tub, EF1-alpha, UbcE, B2M, and 18S rRNA) were examined during Japanese flounder (Paralichthys olivaceus) embryonic development using quantitative real-time polymerase chain reaction. It was found that all seven mRNA genes appeared to be developmentally regulated and exhibited significant variation of expression. However, further analyses revealed the stage-specific expression stability. Hence when normalization using these mRNA genes, the differential and stage-related expression should be considered. 18S rRNA gene, on the other hand, showed the most stable expression and could be recommended as a suitable reference gene during all embryonic developmental stages in P. olivaceus. In summary, our results provided not only the appropriate reference gene for embryonic development research in P. olivaceus, but also possible guidance to reference gene selection for embryonic gene expression analyses in other fish species.
Collapse
Affiliation(s)
- Qiwang Zhong
- Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, No.5 Yushan Road, Qingdao 266003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bertolesi GE, Michaiel G, McFarlane S. Two heparanase splicing variants with distinct properties are necessary in early Xenopus development. J Biol Chem 2008; 283:16004-16. [PMID: 18397881 DOI: 10.1074/jbc.m708525200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase is an endoglycosidase that cleaves heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs) present in extracellular matrix and cell membranes. Although HSPGs have many functions during development, little is known of the role of the enzyme that degrades HS, heparanase. We cloned and characterized the expression of two heparanase splicing variants from Xenopus laevis and studied their function in early embryonic development. The heparanase gene (termed xHpa) spans over 15 kb and consists of at least 12 exons. The long heparanase (XHpaL) cDNA encodes a 531-amino acid protein, whereas the short splicing variant (XHpaS) results in a protein with the same open reading frame but missing 58 amino acids as a consequence of a skipped exon 4. Comparative studies of both isoforms using heterologous expression systems showed: 1) XHpaL is enzymatically active, whereas XHpaS is not; 2) XHpaL and XHpaS interact with heparin and HS; 3) both proteins traffic through the endoplasmic reticulum and Golgi apparatus, but XHpaL is secreted into the medium, whereas XHpaS remains associated with the membrane as a consequence of the loss of three glycosylation sites; 4) overexpression of XHpaS but not XHpaL increases cell adhesion of glioma cells to HS-coated surfaces; 5) XHpaL and XHpaS mRNA and protein levels vary as development progresses; 6) specific antisense knock-down of both XHpaL and XHpaS, but not XHpaL alone, results in failure of embryogenesis to proceed. Interestingly, rescue experiments suggest that the two heparanases regulate the same developmental processes, but via different mechanisms.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|