1
|
Rahman F, Johnson JL, Ait Kbaich M, Meneses-Salas E, Shukla A, Chen D, Kiosses WB, Gavathiotis E, Cuervo AM, Cherqui S, Catz SD. Reconstitution of Rab11-FIP4 Expression Rescues Cellular Homeostasis in Cystinosis. Mol Cell Biol 2024; 44:577-589. [PMID: 39434668 PMCID: PMC11583627 DOI: 10.1080/10985549.2024.2410814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Rab11 family interacting protein 4 (Rab11-FIP4) regulates endocytic trafficking. A possible role for Rab11-FIP4 in the regulation of lysosomal function has been proposed, but its precise function in the regulation of cellular homeostasis is unknown. By mRNA array and protein analysis, we found that Rab11-FIP4 is downregulated in the lysosomal storage disease cystinosis, which is caused by genetic defects in the lysosomal cystine transporter, cystinosin. Rescue of Rab11-FIP4 expression in Ctns-/- fibroblasts re-established normal autophagosome levels and decreased LC3B-II expression in cystinotic cells. Furthermore, Rab11-FIP4 reconstitution increased the localization of the chaperone-mediated autophagy receptor LAMP2A at the lysosomal membrane. Treatment with genistein, a phytoestrogen that upregulates macroautophagy, or the CMA activator QX77 (CA77) restored Rab11-FIP4 expression levels in cystinotic cells supporting a cross-regulation between two independent autophagic mechanisms, lysosomal function and Rab11-FIP4. Improved cellular homeostasis in cystinotic cells rescued by Rab11-FIP4 expression correlated with decreased endoplasmic reticulum stress, an effect that was potentiated by Rab11 and partially blocked by expression of a dominant negative Rab11. Restoring Rab11-FIP4 expression in cystinotic proximal tubule cells increased the localization of the endocytic receptor megalin at the plasma membrane, suggesting that Rab11-FIP4 reconstitution has the potential to improve cellular homeostasis and function in cystinosis.
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jennifer L. Johnson
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Mouad Ait Kbaich
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danni Chen
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - William B. Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sergio D. Catz
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
2
|
Song F, Zhang Q, Lu X, Xu T, Hu Q, Hu X, Fan W, Zhang Y, Huang P. Rab11-FIP4 interacts with ARF5 to promote cancer stemness in hepatocellular carcinoma. J Physiol Biochem 2023; 79:757-770. [PMID: 37458957 DOI: 10.1007/s13105-023-00972-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 11/10/2023]
Abstract
Recent studies suggest that Rab11-family interacting proteins (Rab11-FIPs) play an important role in tumorigenesis and progression. Among the Rab11-FIPs, Rab11-FIP4 has been reported to be significantly upregulated in various cancers, including hepatocellular carcinoma (HCC). However, the possible effect on HCC stemness and the underlying mechanism has never been characterized. Here, we found that Rab11-FIP4 was dramatically increased in HCC cell lines and tissues, and had a positive correlation with cancer stemness. Functional studies revealed that elevated expression of Rab11-FIP4 in HCC cells significantly promoted sphere formation, and enhanced the mRNA and protein levels of stemness-associated markers, ALDH1A1, CD133, NANOG, and OCT4. Conversely, the knockdown of Rab11-FIP4 suppressed the cancer stem cell (CSC)-like characteristics of HCC cells. Moreover, silencing of Rab11-FIP4 obviously increased the sensitivity of HCC cells to sorafenib. Mechanistically, Rab11-FIP4 was shown to interact with ADP-ribosylation factor 5 (ARF5) to influence cell cycle-related proteins, CDK1/cyclin B, thereby promoting HCC stemness. Taken together, our results uncovered an essential role for Rab11-FIP4 in regulating CSC-like features of HCC cells and identified Rab11-FIP4 as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Qi Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qing Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weijiao Fan
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Rathan-Kumar S, Roland JT, Momoh M, Goldstein A, Lapierre LA, Manning E, Mitchell L, Norman J, Kaji I, Goldenring JR. Rab11FIP1-deficient mice develop spontaneous inflammation and show increased susceptibility to colon damage. Am J Physiol Gastrointest Liver Physiol 2022; 323:G239-G254. [PMID: 35819177 PMCID: PMC9423785 DOI: 10.1152/ajpgi.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.
Collapse
Affiliation(s)
- Sudiksha Rathan-Kumar
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph T Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Momoh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Manning
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
4
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Royo M, Gutiérrez Y, Fernández-Monreal M, Gutiérrez-Eisman S, Jiménez R, Jurado S, Esteban JA. A retention-release mechanism based on RAB11FIP2 for AMPA receptor synaptic delivery during long-term potentiation. J Cell Sci 2019; 132:jcs.234237. [PMID: 31757887 DOI: 10.1242/jcs.234237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
It is well--established that Rab11-dependent recycling endosomes drive the activity-dependent delivery of AMPA receptors (AMPARs) into synapses during long-term potentiation (LTP). Nevertheless, the molecular basis for this specialized function of recycling endosomes is still unknown. Here, we have investigated RAB11FIP2 (FIP2 hereafter) as a potential effector of Rab11-dependent trafficking during LTP in rat hippocampal slices. Surprisingly, we found that FIP2 operates independently from Rab11 proteins, and acts as a negative regulator of AMPAR synaptic trafficking. Under basal conditions, FIP2 associates with AMPARs at immobile compartments, separately from recycling endosomes. Using shRNA-mediated knockdown, we found that FIP2 prevents GluA1 (encoded by the Gria1 gene) AMPARs from reaching the surface of dendritic spines in the absence of neuronal stimulation. Upon induction of LTP, FIP2 is rapidly mobilized, dissociates from AMPARs and undergoes dephosphorylation. Interestingly, this dissociation of the FIP2-AMPAR complex, together with FIP2 dephosphorylation, is required for LTP, but the interaction between FIP2 and Rab11 proteins is not. Based on these results, we propose a retention-release mechanism, where FIP2 acts as a gate that restricts the trafficking of AMPARs, until LTP induction triggers their release and allows synaptic delivery.
Collapse
Affiliation(s)
- María Royo
- Department of Neurobiology, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| | - Yolanda Gutiérrez
- Department of Neurobiology, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| | - Mónica Fernández-Monreal
- Department of Neurobiology, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| | - Silvia Gutiérrez-Eisman
- Department of Neurobiology, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| | - Raquel Jiménez
- Department of Neurobiology, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| | - Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - José A Esteban
- Department of Neurobiology, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
6
|
Hara Y, Fukaya M, Sugawara T, Sakagami H. FIP4/Arfophilin-2 plays overlapping but distinct roles from FIP3/Arfophilin-1 in neuronal migration during cortical layer formation. Eur J Neurosci 2018; 48:3082-3096. [PMID: 30295969 DOI: 10.1111/ejn.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/29/2022]
Abstract
The class II Rab11 family-interacting proteins, FIP3 and FIP4, also termed Arfophilin-1 and Arfophilin-2, respectively, are endosomal proteins that function as dual effector proteins for Rab11 and ADP ribosylation factor (Arf) small GTPases. In the present study, we examined the expression and role of FIP4 in neuronal migration during cerebral layer formation. FIP4 mRNA was first weakly detected in post-mitotic migrating neurons in the upper intermediate zone, and expression was markedly increased in the cortical layer. Exogenously expressed FIP4 protein was localized to subpopulations of EEA1- and syntaxin 12-positive endosomes in migrating neurons, and was partially colocalized with FIP3. Knockdown of FIP4 by in utero electroporation significantly stalled transfected neurons in the lower cortical layer and decreased the speed of neuronal migration in the upper intermediate zone and in the cortical plate compared with control small hairpin RNA (shRNA)-transfected neurons. Furthermore, co-transfection of shRNA-resistant wild-type FIP4, but not wild type FIP3 or FIP4 mutants lacking the binding region for Rab11 or Arf, significantly improved the disturbed cortical layer formation caused by FIP4 knockdown. Collectively, our findings suggest that FIP4 and FIP3 play overlapping but distinct roles in neuronal migration downstream of Arf and Rab11 during cortical layer formation.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
7
|
Zhou YY, Chun RKM, Wang JC, Zuo B, Li KK, Lam TC, Liu Q, To CH. Proteomic analysis of chick retina during early recovery from lens‑induced myopia. Mol Med Rep 2018; 18:59-66. [PMID: 29749514 PMCID: PMC6059693 DOI: 10.3892/mmr.2018.8954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Myopia development has been extensively studied from different perspectives. Myopia recovery is also considered important for understanding the development of myopia. However, despite several previous studies, retinal proteomics during recovery from myopia is still relatively unknown. Therefore, the aim of the present study was to investigate the changes in protein profiles of chicken retinas during early recovery from lens-induced myopia to evaluate the signals involved in the adjustment of this refractive disorder. Three-day old chickens wore glasses for 7 days (−10D lens over the right eye and a plano lens as control over the left eye), followed by 24 h without lenses. Protein expression in the retina was measured by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Pro-Q Diamond phosphoprotein staining 2D gel electrophoresis was used to analyze phosphoprotein profiles. Protein spots with significant differences (P<0.05) were analyzed by mass spectrometry. The minus lens-treated eye became myopic, however following 24 h recovery, less myopia was observed. 2D-DIGE proteomic analysis demonstrated that three identified protein spots were upregulated at least 1.2-fold in myopic recovery retinas compared with those of the controls, Ras related protein Rab-11B, S-antigen retina and pineal gland and 26S proteasome non-ATPase regulatory subunit 14. Pro-Q Diamond images further revealed three protein spots with significant changes (at least 1.8-fold): β-tubulin was downregulated, while peroxiredoxin 4 and ubiquitin carboxyl-terminal hydrolase-L1 were upregulated in the recovery retinas compared with the control eye retinas. The present study detected previously unreported protein changes in recovering eyes, therefore revealing their potential involvement in retinal remodeling during eye ball reforge.
Collapse
Affiliation(s)
- Yun Yun Zhou
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Rachel Ka Man Chun
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Jian Chao Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Bing Zuo
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - King Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Quan Liu
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chi-Ho To
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
8
|
Wang JZ, Yang SX, Ye F, Xia XP, Shao XX, Xia SL, Zheng B, Xu CL. Hypoxia-induced Rab11-family interacting protein 4 expression promotes migration and invasion of colon cancer and correlates with poor prognosis. Mol Med Rep 2017; 17:3797-3806. [PMID: 29257314 DOI: 10.3892/mmr.2017.8283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Abstract
Rab11-family interacting proteins (Rab11‑FIPs) are associated with the progression of various tumors; however, their expression and clinical significance in colorectal cancer (CRC) remains largely undetermined. In this study, the clinical implications, functions and underlying mechanisms of Rab11‑FIP4 in CRC were investigated. Immunohistochemical analysis revealed that expression of Rab11‑FIP4 was significantly increased in human CRC tissues and correlated with poor prognosis of patients with CRC. Overexpression of Rab11‑FIP4 in the CRC cell line significantly promoted cell proliferation, migration and invasion in vitro and tumor metastasis in vivo. Furthermore, the results of a co‑immunoprecipitation assay and western blot analysis demonstrated that Rab11‑FIP4 interacted with Rab11 and insulin‑like growth factor 1 receptor, and increased the phosphorylation of extracellular signal‑regulated kinase 1/2 and AKT serine/threonine kinase. In addition, hypoxia contributed to the upregulation of Rab11‑FIP4 expression via hypoxia‑inducible factor‑1α activation of the Rab11‑FIP4 promoter. In conclusion, the results of the present study suggest that Rab11‑FIP4 may act as an oncogene in CRC, and may be a potential therapeutic target for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Jian-Zhang Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shou-Xing Yang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Fangpeng Ye
- Department of Gastroenterology, Ruian People's Hospital, Wenzhou, Zhejiang 325200, P.R. China
| | - Xuan-Ping Xia
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiao-Xiao Shao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Sheng-Long Xia
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Bo Zheng
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chang-Long Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
9
|
He Y, Ye M, Zhou L, Shan Y, Lu G, Zhou Y, Zhong J, Zheng J, Xue Z, Cai Z. High Rab11-FIP4 expression predicts poor prognosis and exhibits tumor promotion in pancreatic cancer. Int J Oncol 2017; 50:396-404. [PMID: 28035375 PMCID: PMC5238782 DOI: 10.3892/ijo.2016.3828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
Some studies have demonstrated that Rab11-family interacting proteins (Rab11-FIPs) are connected with the tumorigenesis, and they may act as tumor promoters in some cancers. The clinicopathological significance of Rab11-family interacting protein 4 (Rab11-FIP4 ) expression and its possible effects on pancreatic cancer (PC) are still undiscovered. In this study, Rab11-FIP4 protein expression level in 60 PC specimens and pair-matched non-cancerous samples were detected by immunohistochemistry analysis. The results were analysed and compared with each patients' clinical data. Rab11-FIP4 expression in PC tissues increased significantly more than that of adjacent non-cancerous tissues (P=0.0001). Overexpression of Rab11-FIP4 in the PC tissues was significantly related to tumor size (P=0.0001), histological grade (P=0.028), metastasis (P=0.001) and TNM stage (P=0.004) but not with age (P=0.832), gender (P=0.228) or tumor site (P=0.875). Kaplan-Meier survival analysis showed that overexpression of Rab11-FIP4 was significantly related to overall survival time (P=0.0036). In addition, Rab11-FIP4 in PANC-1 pancreatic cancer cells were successfully knocked-out using the CRISPR/Cas9 system. Rab11-FIP4 knockout in PANC-1 cells inhibited cell growth, invasion and metastasis, and arrested cell cycle progression, but did not alter apoptosis. Our findings suggest that overexpression of Rab11-FIP4 predicts poor clinical outcomes for pancreatic cancer and contributes to pancreatic tumor progression.
Collapse
Affiliation(s)
- Yun He
- Department of Gastroenterology
| | | | - Lingling Zhou
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
| | - Yunfeng Shan
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | | | | | | | - Jihang Zheng
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | | | | |
Collapse
|
10
|
Gentile G, Ceccarelli M, Micheli L, Tirone F, Cavallaro S. Functional Genomics Identifies Tis21-Dependent Mechanisms and Putative Cancer Drug Targets Underlying Medulloblastoma Shh-Type Development. Front Pharmacol 2016; 7:449. [PMID: 27965576 PMCID: PMC5127835 DOI: 10.3389/fphar.2016.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently generated a novel medulloblastoma (MB) mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+/-/Tis21KO ). Its main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs). By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+/-/Tis21 wild-type vs. Ptch1+/-/Tis21 knockout), among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets. The data analysis using bioinformatic tools revealed: (i) a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; (ii) a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype, i.e., the neural cell type involved in group 3 MB; (iii) the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.
Collapse
Affiliation(s)
- Giulia Gentile
- Institute of Neurological Sciences, National Research Council Catania, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia Rome, Italy
| | | |
Collapse
|
11
|
Hu F, Deng X, Yang X, Jin H, Gu D, Lv X, Wang C, Zhang Y, Huo X, Shen Q, Luo Q, Zhao F, Ge T, Zhao F, Chu W, Shu H, Yao M, Fan J, Qin W. Hypoxia upregulates Rab11-family interacting protein 4 through HIF-1α to promote the metastasis of hepatocellular carcinoma. Oncogene 2015; 34:6007-6017. [PMID: 25745995 DOI: 10.1038/onc.2015.49] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
Hypoxic microenvironment is a powerful driving force for the invasion and metastasis of hepatocellular carcinoma (HCC). Hypoxia-inducible factor 1α (HIF-1α), as a crucial regulator of transcriptional responses to hypoxia, induces the expression of multiple target genes involved in different steps of HCC metastatic process. It is critical to find target genes associated with metastasis under hypoxia for shedding new light on molecular mechanism of HCC metastasis. In this study, we uncovered that hypoxia could induce the upregulation of Rab11-family interacting protein 4 (Rab11-FIP4) and activation of Rab11-FIP4 promoter by HIF-1α. The overexpression of Rab11-FIP4 significantly enhanced the mobility and invasiveness of HCC cells in vitro, also contributed to distant lung metastasis in vivo, whereas silencing of Rab11-FIP4 decreased the ability of migration and invasion in HCC cells in vitro and suppressed lung metastasis in vivo. Rab11-FIP4 facilitated HCC metastasis through the phosphorylation of PRAS40, which was regulated by mTOR. Furthermore, the expression level of Rab11-FIP4 was significantly increased in HCC tissues and high expression of Rab11-FIP4 was closely correlated with vascular invasion and poor prognosis in HCC patients. A markedly positive correlation between the expression of Rab11-FIP4 and HIF-1α was observed in HCC tissues and combination of Rab11-FIP4 and HIF-1α was a more valuable predictor of poor prognosis for HCC patients. In conclusion, Rab11-FIP4 is a target gene of HIF-1α and has a pro-metastatic role in HCC, suggesting that Rab11-FIP4 may be a promising candidate target for HCC treatment.
Collapse
Affiliation(s)
- F Hu
- Shanghai Medical College of Fudan University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Deng
- Shanghai Medical College of Fudan University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Yang
- Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical College, Fudan University, Shanghai, China
| | - H Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - D Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Guangdong Medical College, Dongguan, China
| | - X Lv
- Basic Medical Research Centre, Medical College of Nantong University, Nantong, China
| | - C Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Huo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Q Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Q Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Zhao
- Basic Medical Research Centre, Medical College of Nantong University, Nantong, China
| | - T Ge
- Shanghai Medical College of Fudan University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Chu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Shu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical College, Fudan University, Shanghai, China
| | - W Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Cheung VCK, DeBoer C, Hanson E, Tunesi M, D'Onofrio M, Arisi I, Brandi R, Cattaneo A, Goosens KA. Gene expression changes in the motor cortex mediating motor skill learning. PLoS One 2013; 8:e61496. [PMID: 23637843 PMCID: PMC3634858 DOI: 10.1371/journal.pone.0061496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/08/2013] [Indexed: 12/11/2022] Open
Abstract
The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation.
Collapse
Affiliation(s)
- Vincent C. K. Cheung
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VCKC); (KAG)
| | - Caroline DeBoer
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hanson
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Mara D'Onofrio
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute ‘Rita Levi-Montalcini’, Rome, Italy
| | - Ki A. Goosens
- McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (VCKC); (KAG)
| |
Collapse
|
13
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
14
|
Horgan CP, Hanscom SR, Kelly EE, McCaffrey MW. Tumor susceptibility gene 101 (TSG101) is a novel binding-partner for the class II Rab11-FIPs. PLoS One 2012; 7:e32030. [PMID: 22348143 PMCID: PMC3279423 DOI: 10.1371/journal.pone.0032030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/18/2012] [Indexed: 12/21/2022] Open
Abstract
The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway.
Collapse
Affiliation(s)
- Conor P. Horgan
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Sara R. Hanscom
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Eoin E. Kelly
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Mary W. McCaffrey
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
15
|
Krzyzaniak MA, Mach M, Britt WJ. HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 2010; 10:1439-57. [PMID: 19761540 DOI: 10.1111/j.1600-0854.2009.00967.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The envelope of human cytomegalovirus (HCMV) consists of a large number of glycoproteins. The most abundant glycoprotein in the HCMV envelope is the glycoprotein M (UL100), which together with glycoprotein N (UL73) form the gM/gN protein complex. Using yeast two-hybrid screening, we found that the gM carboxy-terminal cytoplasmic tail (gM-CT) interacts with FIP4, a Rab11-GTPase effector protein. Depletion of FIP4 expression in HCMV-infected cells resulted in a decrease in infectious virus production that was also associated with an alteration of the HCMV assembly compartment (AC) phenotype. A similar phenotype was also observed in HCMV-infected cells that expressed dominant negative Rab11(S25N). Recently, it has been shown that FIP4 interactions with Rab11 and additionally with Arf6/Arf5 are important for the vesicular transport of proteins in the endosomal recycling compartment (ERC) and during cytokinesis. Surprisingly, FIP4 interaction with gM-CT limited binding of FIP4 with Arf5/Arf6; however, FIP4 interaction with gM-CT did not prevent recruitment of Rab11 into the ternary complex. These data argued for a contribution of the ERC during cytoplasmic envelopment of HCMV and showed a novel FIP4 function independent of Arf5 or Arf6 activity.
Collapse
Affiliation(s)
- Magdalena A Krzyzaniak
- Department of Microbiology, University of Alabama at Birmingham, CHB160, Birmingham, AL 35233, USA
| | | | | |
Collapse
|
16
|
Abstract
The Rab11-FIPs (Rab11-family interacting proteins; also known as FIPs) constitute an evolutionarily conserved protein family that act as effector molecules for multiple Rab and Arf (ADP-ribosylation factor) GTPases. They were initially characterized by their ability to bind Rab11 subfamily members via a highly-conserved C-terminal RBD (Rab11-binding domain). Resolution of the crystal structure of Rab11 in complex with FIPs revealed that the RBD mediates homodimerization of the FIP molecules, creating two symmetrical interfaces for Rab11 binding and leading to the formation of a heterotetrameric complex between two FIP and two Rab11 molecules. The FIP proteins are encoded by five genes and alternative splicing has been reported. Based on primary structure, the FIPs were subcategorized into two classes: class I [Rip11, FIP2 and RCP (Rab-coupling protein)] and class II (FIP3 and FIP4). Recent studies have identified the FIPs as key players in the regulation of multiple distinct membrane trafficking events. In this mini-review, we summarize the Rab11-FIP field and discuss, at molecular and cellular levels, the recent findings on FIP function.
Collapse
|
17
|
Muto A, Iida A, Satoh S, Watanabe S. The group E Sox genes Sox8 and Sox9 are regulated by Notch signaling and are required for Müller glial cell development in mouse retina. Exp Eye Res 2009; 89:549-58. [PMID: 19490914 DOI: 10.1016/j.exer.2009.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/02/2009] [Accepted: 05/21/2009] [Indexed: 12/23/2022]
Abstract
Although Müller glial cells play pivotal roles in the vertebrate retina, the regulation of their development is poorly understood. While Notch-Hes5 signaling has been shown to be involved in this developmental process, the presence of Müller glial cells in Hes5-deficient mice suggests the involvement of other molecules. We found that two group E Sox genes, Sox8 and Sox9, are expressed in proliferating progenitors and then exclusively in Müller glial cells in mouse retina. Knocking-down Sox8 and Sox9 by shRNA significantly reduced the population of Müller glial cells and relatively increased the proportion of rod photoreceptors, suggesting that the Sox genes play roles in the specification of Müller glial cells. Using an activated form of Notch and the gamma-secretase inhibitor DAPT, we also found that Notch signaling regulates the transcription of Sox8 and Sox9. This is the first evidence that group E Sox genes play important roles in the developing vertebrate retina.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
18
|
Ng EL, Tang BL. Rab GTPases and their roles in brain neurons and glia. ACTA ACUST UNITED AC 2008; 58:236-46. [PMID: 18485483 DOI: 10.1016/j.brainresrev.2008.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/29/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|