1
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Petry SF, Kandula ND, Günther S, Helker C, Schagdarsurengin U, Linn T. Valproic Acid Initiates Transdifferentiation of the Human Ductal Adenocarcinoma Cell-line Panc-1 Into α-Like Cells. Exp Clin Endocrinol Diabetes 2022; 130:638-651. [PMID: 35451037 DOI: 10.1055/a-1750-9190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Non-mesenchymal pancreatic cells are a potential source for cell replacement. Their transdifferentiation can be achieved by triggering epigenetic remodeling through e. g. post-translational modification of histones. Valproic acid, a branched-chain saturated fatty acid with histone deacetylase inhibitor activity, was linked to the expression of key transcription factors of pancreatic lineage in epithelial cells and insulin transcription. However, the potential of valproic acid to cause cellular reprogramming is not fully understood. To shed further light on it we employed next-generation RNA sequencing, real-time PCR, and protein analyses by ELISA and western blot, to assess the impact of valproic acid on transcriptome and function of Panc-1-cells. Our results indicate that valproic acid has a significant impact on the cell cycle, cell adhesion, histone H3 acetylation, and metabolic pathways as well as the initiation of epithelial-mesenchymal transition through acetylation of histone H3 resulting in α-cell-like characteristics. We conclude that human epithelial pancreatic cells can be transdifferentiated into cells with endocrine properties through epigenetic regulation by valproic acid favoring an α-cell-like phenotype.
Collapse
Affiliation(s)
- Sebastian Friedrich Petry
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Naga Deepa Kandula
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| | - Stefan Günther
- Bioinformatics and deep sequencing platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Helker
- Cell Signaling and Dynamics, Department of Biology, Philipps University, Marburg, Germany
| | - Undraga Schagdarsurengin
- Epigenetics of Urogenital System, Clinic and Polyclinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Medical Clinic and Polyclinic III, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Waters BJ, Blum B. Axon Guidance Molecules in the Islets of Langerhans. Front Endocrinol (Lausanne) 2022; 13:869780. [PMID: 35498433 PMCID: PMC9048200 DOI: 10.3389/fendo.2022.869780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
The islets of Langerhans, responsible for regulating blood glucose in vertebrates, are clusters of endocrine cells distributed throughout the exocrine pancreas. The spatial architecture of the different cell types within the islets controls cell-cell communication and impacts their ability to collectively regulate glucose. Islets rely on a range of chemotactic and adhesive cues to establish and manage intercellular relationships. Growing evidence indicates that axon guidance molecules such as Slit-Robo, Semaphorin-Neuropilin, Ephrin-Eph, and Netrins, influence endocrine progenitors' cell migration to establish correct architecture during islet morphogenesis, as well as directly regulating physical cell-cell communication in the mature islet to coordinate hormone secretion. In this mini-review, we discuss what is known and not yet known about how axon guidance molecules contribute to islet morphogenesis and function.
Collapse
Affiliation(s)
| | - Barak Blum
- *Correspondence: Bayley J. Waters, ; Barak Blum,
| |
Collapse
|
4
|
Kamath RAD, Benson MD. EphB3 as a Potential Mediator of Developmental and Reparative Osteogenesis. Cells Tissues Organs 2021; 212:125-137. [PMID: 34695818 PMCID: PMC9397499 DOI: 10.1159/000520369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
The ephrin-B family of membrane-bound ligands is involved in skeletal patterning, osteogenesis, and bone homeostasis. Yet, despite the increasing collection of data affirming their importance in bone, the Eph tyrosine kinases that serve as the receptors for these ephrins in osteoblast stem cell niches remain unidentified. Here we report the expression of EphB3 at sites of bone growth in the embryo, especially at the calvaria suture fronts, periosteum, chondrocytes, and trabeculae of developing long bones. Strong EphB3 expression persisted in the adult calvarial sutures and in the proliferative chondrocytes of long bones, both of which are documented niches for osteoblastic stem cells. We observed EphB3-positive cells in the tissue filling a created calvarial injury, further implying EphB3 involvement in bone healing. Genetic knockout of EphB3 caused an increase in the bone tissue volume as a fraction of total volume in 6-week-old calvaria and in femoral trabecular density, compared to wild type controls. This difference resolved by 12 weeks of age, when we instead observed an increase in the bone volume of femoral trabeculae and in trabecular thickness. Our data identify EphB3 as a candidate regulator of osteogenesis either alone or in combination with other bone-expressed Ephs, and indicate that it appears to function as a limiter of bone growth.
Collapse
Affiliation(s)
- Rajay A. D. Kamath
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas TX 75246, USA
| | - M. Douglas Benson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas TX 75246, USA
| |
Collapse
|
5
|
Hill W, Zaragkoulias A, Salvador-Barbero B, Parfitt GJ, Alatsatianos M, Padilha A, Porazinski S, Woolley TE, Morton JP, Sansom OJ, Hogan C. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol 2021; 31:2550-2560.e5. [PMID: 33891893 PMCID: PMC8231095 DOI: 10.1016/j.cub.2021.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
As we age, our tissues are repeatedly challenged by mutational insult, yet cancer occurrence is a relatively rare event. Cells carrying cancer-causing genetic mutations compete with normal neighbors for space and survival in tissues. However, the mechanisms underlying mutant-normal competition in adult tissues and the relevance of this process to cancer remain incompletely understood. Here, we investigate how the adult pancreas maintains tissue health in vivo following sporadic expression of oncogenic Kras (KrasG12D), the key driver mutation in human pancreatic cancer. We find that when present in tissues in low numbers, KrasG12D mutant cells are outcompeted and cleared from exocrine and endocrine compartments in vivo. Using quantitative 3D tissue imaging, we show that before being cleared, KrasG12D cells lose cell volume, pack into round clusters, and E-cadherin-based cell-cell adhesions decrease at boundaries with normal neighbors. We identify EphA2 receptor as an essential signal in the clearance of KrasG12D cells from exocrine and endocrine tissues in vivo. In the absence of functional EphA2, KrasG12D cells do not alter cell volume or shape, E-cadherin-based cell-cell adhesions increase and KrasG12D cells are retained in tissues. The retention of KRasG12D cells leads to the early appearance of premalignant pancreatic intraepithelial neoplasia (PanINs) in tissues. Our data show that adult pancreas tissues remodel to clear KrasG12D cells and maintain tissue health. This study provides evidence to support a conserved functional role of EphA2 in Ras-driven cell competition in epithelial tissues and suggests that EphA2 is a novel tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- William Hill
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Andreas Zaragkoulias
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Geraint J Parfitt
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Markella Alatsatianos
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Ana Padilha
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Sean Porazinski
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Thomas E Woolley
- School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
6
|
Wu Y, Aegerter P, Nipper M, Ramjit L, Liu J, Wang P. Hippo Signaling Pathway in Pancreas Development. Front Cell Dev Biol 2021; 9:663906. [PMID: 34079799 PMCID: PMC8165189 DOI: 10.3389/fcell.2021.663906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is a vital regulator of pancreatic development and homeostasis, directing cell fate decisions, morphogenesis, and adult pancreatic cellular plasticity. Through loss-of-function research, Hippo signaling has been found to play key roles in maintaining the proper balance between progenitor cell renewal, proliferation, and differentiation in pancreatic organogenesis. Other studies suggest that overactivation of YAP, a downstream effector of the pathway, promotes ductal cell development and suppresses endocrine cell fate specification via repression of Ngn3. After birth, disruptions in Hippo signaling have been found to lead to de-differentiation of acinar cells and pancreatitis-like phenotype. Further, Hippo signaling directs pancreatic morphogenesis by ensuring proper cell polarization and branching. Despite these findings, the mechanisms through which Hippo governs cell differentiation and pancreatic architecture are yet to be fully understood. Here, we review recent studies of Hippo functions in pancreatic development, including its crosstalk with NOTCH, WNT/β-catenin, and PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pauline Aegerter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Michael Nipper
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Logan Ramjit
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jun Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pei Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
7
|
Lammert E, Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol 2019; 432:1407-1418. [PMID: 31711959 DOI: 10.1016/j.jmb.2019.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The islets of Langerhans or pancreatic islets are pivotal in the control of blood glucose and are complex microorgans embedded within the larger volume of the exocrine pancreas. Humans can have ~3.2 million islets [1] which, to our current knowledge, function in a similar manner to sense circulating blood glucose levels and respond with the secretion of a mix of different hormones that act to maintain glucose concentrations around a specific set point [2]. At a cellular level, the control of hormone secretion by glucose and other secretagogues is well-understood [3]. The key signal cascades have been identified and many details of the secretory process are known. However, if we shift focus from single cells and consider cells within intact islets, we do not have a comprehensive model as to how the islet environment influences cell function and how the islets work as a whole. This is important because there is overwhelming evidence that the structure and function of the individual endocrine cells are dramatically affected by the islet environment [4,5]. Uncovering the influence of this islet niche might drive future progress in treatments for Type 2 diabetes [6] and cell replacement therapies for Type 1 diabetes [7]. In this review, we focus on the insulin secreting beta cells and their interactions with the immediate environment that surrounds them including endocrine-endocrine interactions and contacts with capillaries.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Thorn
- Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
8
|
Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn LJ, Rosenthal B, Gürtler M, Estanboulieh RR, Shvartsman D, Gifford DK, Trapnell C, Melton D. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell 2019; 176:790-804.e13. [PMID: 30661759 PMCID: PMC6705176 DOI: 10.1016/j.cell.2018.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing β cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just β cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and β cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.
Collapse
Affiliation(s)
- Nadav Sharon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Raghav Chawla
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonas Mueller
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Jordan Vanderhooft
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Benjamin Rosenthal
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Mads Gürtler
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Dmitry Shvartsman
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02412, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Molecular & Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| | - Doug Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kowalska M, Rupik W. Development of endocrine pancreatic islets in embryos of the grass snake Natrix natrix
(Lepidosauria, Serpentes). J Morphol 2018; 280:103-118. [DOI: 10.1002/jmor.20921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology; University of Silesia in Katowice; Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology; University of Silesia in Katowice; Poland
| |
Collapse
|
11
|
Zhao K, He J, Wang YF, Jin SD, Fan Y, Fang N, Qian J, Xu TP, Guo RH. EZH2-mediated epigenetic suppression of EphB3 inhibits gastric cancer proliferation and metastasis by affecting E-cadherin and vimentin expression. Gene 2018; 686:118-124. [PMID: 30408551 DOI: 10.1016/j.gene.2018.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 12/16/2022]
Abstract
EphB3 is a member of the EPH family of receptors and has been found to play a role in the carcinogenesis of some human cancers. However, its expression and clinical significance in gastric cancer (GC) have not been well documented. In the present study, we detected the expression of EphB3 in GC and adjacent noncancerous tissues and explored its relationships with the clinicopathological features and prognosis of GC patients. It was found that EphB3 silenced GC cells epigenetically by direct transcriptional repression of GC cells via polycomb group protein EZH2 mediation. EphB3 was downregulated in GC cells and tissues, and EphB3 depletion promoted GC cell growth and invasion, while ectopic overexpression of EphB3 produced a significant anti-tumor effect. EphB3 was found to be involved in epithelial-mesenchymal transition by regulating E-cadherin and vimentin expression. In addition, patients with reduced EphB3 expression had shorter disease-free survival (DFS), indicating that EphB3 may prove to be a biomarker for prognosis of GC. These results demonstrated that EphB3 functioned as a tumor-suppressor and prognostic biomarker in GC.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Jing He
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Yan-Fen Wang
- Department of Pathology, The First People's Hospital of Yangzhou/The Second Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Shi-Dai Jin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Yu Fan
- Cancer Institute, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Na Fang
- Cancer Institute, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Jun Qian
- Department of Oncology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Cancer Medical Center, Suzhou, Jiangsu 215001, People's Republic of China.
| | - Tong-Peng Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
| | - Ren-Hua Guo
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Adams MT, Gilbert JM, Hinojosa Paiz J, Bowman FM, Blum B. Endocrine cell type sorting and mature architecture in the islets of Langerhans require expression of Roundabout receptors in β cells. Sci Rep 2018; 8:10876. [PMID: 30022126 PMCID: PMC6052079 DOI: 10.1038/s41598-018-29118-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 01/04/2023] Open
Abstract
Pancreatic islets of Langerhans display characteristic spatial architecture of their endocrine cell types. This architecture is critical for cell-cell communication and coordinated hormone secretion. Islet architecture is disrupted in type-2 diabetes. Moreover, the generation of architecturally correct islets in vitro remains a challenge in regenerative approaches to type-1 diabetes. Although the characteristic islet architecture is well documented, the mechanisms controlling its formation remain obscure. Here, we report that correct endocrine cell type sorting and the formation of mature islet architecture require the expression of Roundabout (Robo) receptors in β cells. Mice with whole-body deletion of Robo1 and conditional deletion of Robo2 either in all endocrine cells or selectively in β cells show complete loss of endocrine cell type sorting, highlighting the importance of β cells as the primary organizer of islet architecture. Conditional deletion of Robo in mature β cells subsequent to islet formation results in a similar phenotype. Finally, we provide evidence to suggest that the loss of islet architecture in Robo KO mice is not due to β cell transdifferentiation, cell death or loss of β cell differentiation or maturation.
Collapse
Affiliation(s)
- Melissa T Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Jennifer M Gilbert
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Jesus Hinojosa Paiz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Faith M Bowman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
14
|
Modeling coexistence of oscillation and Delta/Notch-mediated lateral inhibition in pancreas development and neurogenesis. J Theor Biol 2017; 430:32-44. [PMID: 28652000 DOI: 10.1016/j.jtbi.2017.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022]
Abstract
During pancreas development, Neurog3 positive endocrine progenitors are specified by Delta/Notch (D/N) mediated lateral inhibition in the growing ducts. During neurogenesis, genes that determine the transition from the proneural state to neuronal or glial lineages are oscillating before their expression is sustained. Although the basic gene regulatory network is very similar, cycling gene expression in pancreatic development was not investigated yet, and previous simulations of lateral inhibition in pancreas development excluded by design the possibility of oscillations. To explore this possibility, we developed a dynamic model of a growing duct that results in an oscillatory phase before the determination of endocrine progenitors by lateral inhibition. The basic network (D/N + Hes1 + Neurog3) shows scattered, stable Neurog3 expression after displaying transient expression. Furthermore, we included the Hes1 negative feedback as previously discussed in neurogenesis and show the consequences for Neurog3 expression in pancreatic duct development. Interestingly, a weakened HES1 action on the Hes1 promoter allows the coexistence of stable patterning and oscillations. In conclusion, cycling gene expression and lateral inhibition are not mutually exclusive. In this way, we argue for a unified mode of D/N mediated lateral inhibition in neurogenic and pancreatic progenitor specification.
Collapse
|
15
|
Bollard J, Massoma P, Vercherat C, Blanc M, Lepinasse F, Gadot N, Couderc C, Poncet G, Walter T, Joly MO, Hervieu V, Scoazec JY, Roche C. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors. Oncotarget 2017; 6:36731-45. [PMID: 26447612 PMCID: PMC4742207 DOI: 10.18632/oncotarget.5481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy.
Collapse
Affiliation(s)
- Julien Bollard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Patrick Massoma
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Cécile Vercherat
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Martine Blanc
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Florian Lepinasse
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France
| | - Nicolas Gadot
- Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, F-69372 Lyon, France
| | - Christophe Couderc
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Gilles Poncet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, F-69437 Lyon, France
| | - Thomas Walter
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, F-69437 Lyon, France
| | - Marie-Odile Joly
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Valérie Hervieu
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Jean-Yves Scoazec
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, F-69372 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Colette Roche
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| |
Collapse
|
16
|
Gao W, Zhang Q, Wang Y, Wang J, Zhang S. EphB3 protein is associated with histological grade and FIGO stage in ovarian serous carcinomas. APMIS 2017; 125:122-127. [PMID: 28120491 DOI: 10.1111/apm.12646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022]
Abstract
Eph (Erythropoietin-producing human hepatocellular carcinoma cell) is the largest subfamily of receptor tyrosine kinases. Eph receptors and their ephrin ligands are involved in embryonic development and physiological processes. Aberrant expression of Eph/ephrin may contribute to a variety of diseases including cancer. EphB3 is a member of Eph receptors and has been found to play roles in carcinogenesis of some types of human cancer. But, its expression and clinical significance in ovarian serous carcinoma have not been well investigated and are unknown. In this study, a set of ovarian tissues including normal fallopian tube, serous borderline tumor, and serous carcinoma were subjected to immunohistochemistry using a specific polyclonal antibody for EphB3. The relationship between EphB3 expression and clinicopathological parameters was statistically analyzed. EphB3 was strongly expressed in all fallopian tube specimens (19/19, 100%). EphB3 was negatively or weekly expressed in 1 of 17 (5.8%) in borderline tumors and 26 of 50 (52.0%) in serous carcinomas, moderately expressed in 7 of 17 (41.2%) in borderline tumors and 14 of 50 (28%) in serous carcinomas, and strongly expressed in 9 17 (52.9%) in borderline tumors and 10 of 50 (20%) in serous carcinomas. EphB3 expression is significantly reduced in serous carcinomas compared with normal fallopian tubes and borderline tumors (p < 0.001). EphB3 expression is negatively associated with histological grade (p < 0.001, rs = -0.613) and FIGO stage (p = 0.001, rs = -0.464) of serous carcinomas. Our results show EphB3 protein lost in ovarian serous carcinoma and is associated with tumor grade and FIGO stage, which indicate EphB3 protein may play a role in carcinogenesis of ovarian serous carcinoma and may be used as a molecular marker for prognosis.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qin Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
17
|
El-Gohary Y, Wiersch J, Tulachan S, Xiao X, Guo P, Rymer C, Fischbach S, Prasadan K, Shiota C, Gaffar I, Song Z, Galambos C, Esni F, Gittes GK. Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells. Endocrinology 2016; 157:166-75. [PMID: 26505114 PMCID: PMC4701882 DOI: 10.1210/en.2015-1175] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 10/23/2015] [Indexed: 01/31/2023]
Abstract
A key question in diabetes research is whether new β-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into β-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-β receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new β-cells in normal young developing mice as well as in adult TGF-β signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to β-cells in the postnatal pancreas but also importantly implicates TGF-β signaling in this process.
Collapse
Affiliation(s)
- Yousef El-Gohary
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - John Wiersch
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Sidhartha Tulachan
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Xiangwei Xiao
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Ping Guo
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Christopher Rymer
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Shane Fischbach
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Krishna Prasadan
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Chiyo Shiota
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Iljana Gaffar
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Zewen Song
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Csaba Galambos
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - Farzad Esni
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| | - George K Gittes
- Departments of Surgery (Y.E.-G., J.W., X.X., P.G., K.P., C.S., I.G., Z.S., F.E., G.K.G.) and Pediatrics (C.R.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Surgery (Y.E.-G.), Stony Brook University Medical Center, Stony Brook, New York 11794; Department of Surgery (J.W.), University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Section of Gastroenterology/Hepatology (S.T.), Georgia Regents University, Augusta, Georgia 30912; Division of Biology and Medicine (S.F.), Brown University, Providence, Rhode Island 02912; Department of General Surgery (Z.S.), The Third Xiangya Hospital of Central South University, Yuelu, Changsha, Hunan 410013, China; and Department of Pathology and Laboratory Medicine (C.G.), Children's Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
18
|
Abstract
In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.
Collapse
|
19
|
Toyoda T, Mae SI, Tanaka H, Kondo Y, Funato M, Hosokawa Y, Sudo T, Kawaguchi Y, Osafune K. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 2015; 14:185-97. [DOI: 10.1016/j.scr.2015.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/28/2014] [Accepted: 01/19/2015] [Indexed: 01/22/2023] Open
|
20
|
Bouchi R, Foo KS, Hua H, Tsuchiya K, Ohmura Y, Sandoval PR, Ratner LE, Egli D, Leibel RL, Accili D. FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat Commun 2014; 5:4242. [PMID: 24979718 PMCID: PMC4083475 DOI: 10.1038/ncomms5242] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/28/2014] [Indexed: 01/12/2023] Open
Abstract
Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors, we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive, insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells, we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded shRNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells, release C-peptide in response to secretagogues, and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.
Collapse
Affiliation(s)
- Ryotaro Bouchi
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Kylie S Foo
- 1] New York Stem Cell Foundation Research Institute, New York, New York 10032, USA [2] Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Haiqing Hua
- 1] New York Stem Cell Foundation Research Institute, New York, New York 10032, USA [2] Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | - Yoshiaki Ohmura
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - P Rodrigo Sandoval
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Lloyd E Ratner
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Dieter Egli
- 1] New York Stem Cell Foundation Research Institute, New York, New York 10032, USA [2] Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Rudolph L Leibel
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Domenico Accili
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| |
Collapse
|
21
|
Schiesser JV, Micallef SJ, Hawes S, Elefanty AG, Stanley EG. Derivation of insulin-producing beta-cells from human pluripotent stem cells. Rev Diabet Stud 2014; 11:6-18. [PMID: 25148364 DOI: 10.1900/rds.2014.11.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with those that seek to develop fully functional hormone expressing cells in vitro. Overall, our survey of the literature highlights the significant progress already made in the field and identifies remaining deficiencies in developing a pluripotent stem cell based treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Suzanne J Micallef
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Susan Hawes
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew G Elefanty
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Edouard G Stanley
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
22
|
Schiesser JV, Wells JM. Generation of β cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci 2014; 1311:124-37. [PMID: 24611778 DOI: 10.1111/nyas.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1998, the landmark paper describing the isolation and culture of human embryonic stem cells (ESCs) was published. Since that time, the main goal of many diabetes researchers has been to derive β cells from ESCs as a renewable cell-based therapy for the treatment of patients with diabetes. In working toward this goal, numerous protocols that attempt to recapitulate normal pancreatic development have been published that result in the formation of pancreatic cell types from human pluripotent cells. This review examines stem cell differentiation methods and places them within the context of pancreatic development. We additionally compare strategies that are currently being used to generate pancreatic cell types and contrast them with approaches that have been used to generate functional cell types in different lineages. In doing this, we aim to identify how new approaches might be used to improve yield and functionality of in vitro-derived pancreatic β cells as an eventual cell-based therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
23
|
Krautkramer KA, Linnemann AK, Fontaine DA, Whillock AL, Harris TW, Schleis GJ, Truchan NA, Marty-Santos L, Lavine JA, Cleaver O, Kimple ME, Davis DB. Tcf19 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line. Am J Physiol Endocrinol Metab 2013; 305:E600-10. [PMID: 23860123 PMCID: PMC3761170 DOI: 10.1152/ajpendo.00147.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recently, a novel type 1 diabetes association locus was identified at human chromosome 6p31.3, and transcription factor 19 (TCF19) is a likely causal gene. Little is known about Tcf19, and we now show that it plays a role in both proliferation and apoptosis in insulinoma cells. Tcf19 is expressed in mouse and human islets, with increasing mRNA expression in nondiabetic obesity. The expression of Tcf19 is correlated with β-cell mass expansion, suggesting that it may be a transcriptional regulator of β-cell mass. Increasing proliferation and decreasing apoptotic cell death are two strategies to increase pancreatic β-cell mass and prevent or delay diabetes. siRNA-mediated knockdown of Tcf19 in the INS-1 insulinoma cell line, a β-cell model, results in a decrease in proliferation and an increase in apoptosis. There was a significant reduction in the expression of numerous cell cycle genes from the late G1 phase through the M phase, and cells were arrested at the G1/S checkpoint. We also observed increased apoptosis and susceptibility to endoplasmic reticulum (ER) stress after Tcf19 knockdown. There was a reduction in expression of genes important for the maintenance of ER homeostasis (Bip, p58(IPK), Edem1, and calreticulin) and an increase in proapoptotic genes (Bim, Bid, Nix, Gadd34, and Pdia2). Therefore, Tcf19 is necessary for both proliferation and survival and is a novel regulator of these pathways.
Collapse
Affiliation(s)
- Kimberly A Krautkramer
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|