1
|
Fleihan T, Nader ME, Dickman JD. Cisplatin vestibulotoxicity: a current review. Front Surg 2024; 11:1437468. [PMID: 39421409 PMCID: PMC11484025 DOI: 10.3389/fsurg.2024.1437468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cisplatin, a commonly used chemotherapy drug, is well-established for its ototoxic effects, primarily attributed to the damage it inflicts on cochlear hair cells. However, its impact on the vestibular system remains inadequately understood. Here, we provide a comprehensive review of existing literature concerning cisplatin-induced vestibulotoxicity. Animal studies have shown that cisplatin induces a vestibular hair cell loss that is dose-dependent, with the severity of damage also varying according to the route of administration. Notably, intratympanic and systemic injections in animal models have manifested significant damage primarily to utricular hair cells, with a lesser degree of damage observed for the other vestibular end organs. The underlying mechanisms of cisplatin induced vestibular hair cell loss include apoptosis, oxidative stress, and inflammatory cytokines. Several protective agents, such as Pifithrin-α, DAPT, Ginkgolide B, and heat shock proteins, have demonstrated efficacy in inhibiting cisplatin-induced vestibular damage in preclinical studies. Human clinical findings indicate that cisplatin treatment can cause vestibular dysfunction, characterized by symptoms ranging from transient dizziness to persistent vertigo. Challenges in diagnosis, including the limited utilization of comprehensive vestibular testing for many patients, contribute to the variability in reported outcomes. Cisplatin-induced vestibulotoxicity is a significant complication of chemotherapy, necessitating further research to understand its mechanisms and to improve diagnosis and management, ultimately aiming to enhance the quality of life for cancer patients undergoing cisplatin therapy.
Collapse
Affiliation(s)
- Tamara Fleihan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Marc Elie Nader
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J. David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Wei S, Wu F, Liu J, Ji W, He X, Liu R, Yu P, Mao L. Direct Quantification of Nanoplastics Neurotoxicity by Single-Vesicle Electrochemistry. Angew Chem Int Ed Engl 2023; 62:e202315681. [PMID: 37950108 DOI: 10.1002/anie.202315681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Nanoplastics are recently recognized as neurotoxic factors for the nervous systems. However, whether and how they affect vesicle chemistry (i.e., vesicular catecholamine content and exocytosis) remains unclear. This study offers the first direct evidence for the nanoplastics-induced neurotoxicity by single-vesicle electrochemistry. We observe the cellular uptake of polystyrene (PS) nanoplastics into model neuronal cells and mouse primary neurons, leading to cell viability loss depending on nanoplastics exposure time and concentration. By using single-vesicle electrochemistry, we find the reductions in the vesicular catecholamine content, the frequency of stimulated exocytotic spikes, the neurotransmitter release amount of single exocytotic event, and the membrane-vesicle fusion pore opening-closing speed. Mechanistic investigations suggest that PS nanoplastics can cause disruption of filamentous actin (F-actin) assemblies at cytomembrane zones and change the kinetic patterns of vesicle exocytosis. Our finding shapes the first quantitative picture of neurotoxicity induced by high-concentration nanoplastics exposure at a single-cell level.
Collapse
Affiliation(s)
- Shiyi Wei
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, No.27, West 3rd Ring North Rd, Beijing, 100089, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| | - Xiulan He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North 1st St, Beijing, 100190, China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai St, Beijing, 100875, China
| |
Collapse
|
3
|
Freyer DR, Orgel E, Knight K, Krailo M. Special considerations in the design and implementation of pediatric otoprotection trials. J Cancer Surviv 2023; 17:4-16. [PMID: 36637630 DOI: 10.1007/s11764-022-01312-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Cisplatin-induced hearing loss (CIHL) is a common late effect after childhood cancer treatment having profound, lifelong consequences that lower quality of life. The recent identification of intravenous sodium thiosulfate (STS) as an effective agent for preventing pediatric CIHL represents a paradigm shift that has created new opportunities for expanding STS usage and developing additional otoprotectants. The purpose of this paper is to discuss key considerations and recommendations for the design and implementation of future pediatric otoprotection trials. METHODS An approach synthesizing published data and collective experience was used. RESULTS Key issues were identified in the categories of translational research, trial designs for systemic and intratympanic agents, measurement of ototoxicity, and biostatistical challenges. CONCLUSIONS Future pediatric otoprotection trials should emphasize (1) deep integration of preclinical and early-phase studies; (2) an embedded or free-standing design for systemic agents based on mechanistic considerations; (3) use of suitable audiologic testing batteries for children, SIOP grading criteria, and submission of raw audiologic data for central review; and (4) novel endpoints and innovative study designs that maximize trial efficiency for limited sample sizes. Additional recommendations include routine collection of DNA specimens for assessing modifying effects of genetic susceptibility and meaningful inclusion of patient/family advocates for informing trial development. IMPLICATIONS FOR CANCER SURVIVORS Changing the historical paradigm from acceptance to prevention of pediatric CIHL through expanded research with existing and emerging otoprotectants will dramatically improve quality of life for future childhood cancer survivors exposed to cisplatin.
Collapse
Affiliation(s)
- David R Freyer
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics, Medicine, and Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Etan Orgel
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kristin Knight
- Department of Audiology, Doernbecher Children's Hospital, Portland, OR, USA
- Oregon Health and Science University, Portland, OR, USA
| | - Mark Krailo
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Melatonin Attenuates Cisplatin-Induced Ototoxicity via Regulating the Cell Apoptosis of the Inner Ear. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7160816. [PMID: 36092781 PMCID: PMC9458396 DOI: 10.1155/2022/7160816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Objective The mechanism of ototoxicity caused by cisplatin is currently unclear, and the induced apoptosis may play an important role in inner ear injury. Melatonin has high antioxidant and antiapoptotic effects. This study is aimed at clarifying the protective effect on the inner ear and the underlying mechanism of melatonin. Design The mice and HEI-OC1 cells were randomly separated into four groups: control group, cisplatin group, melatonin group, and cisplatin exposure after melatonin pretreatment group. Place and Duration of the Study. From September 2018 to September 2021, all experiments were completed at the Second Hospital of Shandong University. And the study was approved by the Ethics Committee of the Second Hospital of Shandong University (KYLL-2020 (KJ) A-0191). Methodology. Mice were pretreated with peritoneal injection of melatonin prior to the application of cisplatin. Auditory Brainstem Response (ABR) test was performed before and after treatment, then the temporal bones were collected for histology investigation. HEI-OC1 cells were pretreated with melatonin before adding cisplatin. The apoptosis of HEI-OC1 cells was observed by MTS, TUNEL, and flow cytometry, respectively. Moreover, the mRNA expression of apoptosis-related factors was detected by qRT-PCR. Results ABR and morphological analysis showed that cisplatin caused damage to the function and structure of the inner ear. MTS, TUNEL, and flow cytometry showed that the application of cisplatin caused a significant increase in the apoptosis level of HEI-OC1 cells, and melatonin pretreatment reduced this damage. Moreover, melatonin pretreatment reversed the mRNA expression changes of apoptosis-related factors induced by cisplatin. Conclusions Apoptosis is involved in the inner ear dysfunction caused by cisplatin. Melatonin reduces the ototoxicity of cisplatin by regulating the induced apoptosis response.
Collapse
|
5
|
Wang W, Chen E, Ding X, Lu P, Chen J, Ma P, Lu L. N-acetylcysteine protect inner hair cells from cisplatin by alleviated celluar oxidative stress and apoptosis. Toxicol In Vitro 2022; 81:105354. [PMID: 35346799 DOI: 10.1016/j.tiv.2022.105354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Cisplatin is a well-known platinum-based chemotherapy drug widely used to treat a variety of malignant tumors. However, cisplatin has serious side-effects include nephrotoxicity and ototoxicity, Cisplatin chemotherapy causes permanent hearing loss at least 40% of treated patients. Our results showed that 20 mM N-acetylcysteine (NAC) can completely protect 50 μM cisplatin-induced hair cell loss in rat cochlear culture and protects against cisplatin-induced hair cell loss in zebrafish in vivo. The fluorescence intensity of mitochondrial ROS significantly increased after the cultures were treated with 15 μM cisplatin for 48 h and was decreased in the group treated with 15 μM cisplatin add 20 mM NAC. In addition, the number of TUNEL positive hair cells was increased after the cultures were treated with 15 μM cisplatin for 48 h and there are null in cisplatin and NAC co-treated group.
Collapse
Affiliation(s)
- Weilong Wang
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Erfang Chen
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xuerui Ding
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Peiheng Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jiawei Chen
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Pengwei Ma
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lianjun Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
6
|
Domarecka E, Skarzynska M, Szczepek AJ, Hatzopoulos S. Use of zebrafish larvae lateral line to study protection against cisplatin-induced ototoxicity: A scoping review. Int J Immunopathol Pharmacol 2020; 34:2058738420959554. [PMID: 33084473 PMCID: PMC7786420 DOI: 10.1177/2058738420959554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The present review aimed to consolidate and analyze the recent information about the use of zebrafish in studies concerning cisplatin-induced ototoxicity and otoprotection. MATERIAL AND METHODS The PubMed, Web of Science, and Scopus databanks were searched using the following MESH terms: zebrafish, cisplatin, ototoxicity. The identified publications were screened according to inclusion and exclusion criteria and the 26 qualifying manuscripts were included in the full-text analysis. The experimental protocols, including cisplatin concentrations, the exposure duration and the outcome measurements used in zebrafish larvae studies, were evaluated and the reported knowledge was summarized. RESULTS Twenty-six substances protecting from cisplatin-induced toxicity were identified with the use of zebrafish larvae. These substances include quinine, salvianolic acid B, berbamine 6, benzamil, quercetin, dexmedetomidine, dexamethsanone, quinoxaline, edaravone, apocynin, dimethyl sulfoxide, KR-22335, SRT1720, ORC-13661, 3-MA, D-methionine, mdivi-1, FUT-175, rapamycin, Z-LLF-CHO, ATX, NAC, CYM-5478, CHCP1, CHCP2 and leupeptin. The otoprotective effects of compounds were attributed to their anti-ROS, anti-apoptotic and cisplatin uptake-blocking properties. The broadest range of protection was achieved when the experimental flow used preconditioning with an otoprotective compound and later a co-incubation with cisplatin. Protection against a high concentration of cisplatin was observed only in protocols using short exposure times (4 and 6 h). CONCLUSIONS The data extracted from the selected papers confirm that despite the differences between the human and the zebra fish hearing thresholds (as affected by cisplatin), the sensory cells of zebrafish and larval zebrafish are a valuable tool which could be used: (i) for the discovery of novel otoprotective substances and compounds; (ii) to screen their side effects and (iii) to extend the knowledge on the mechanisms of cisplatin-induced inner ear damage. For future studies, the development of a consensus experimental protocol is highly recommended.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Skarzynska
- Institute of Sensory Organs, Kajetany, Poland
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
8
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
9
|
Williams AD, Bird ML, Hardcastle SG, Kirschbaum M, Ogden KJ, Walters JA. Exercise for reducing falls in people living with and beyond cancer. Cochrane Database Syst Rev 2018; 10:CD011687. [PMID: 30320433 PMCID: PMC6517115 DOI: 10.1002/14651858.cd011687.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Current treatment modalities for cancer have been successful in achieving improved survivorship; however, they come with a number of long-term adverse effects. Accidental falls are a common and clinically significant adverse event in people living with and beyond cancer and rates are higher than in the rest of the population. OBJECTIVES To assess the effects of prescribed or provided exercise for reducing accidental falls, and falls risk factors of strength, flexibility and balance, in people living with and beyond cancer. SEARCH METHODS We searched the following electronic databases from inception to 10 July 2018, with no restrictions: CENTRAL, MEDLINE, Embase, and seven other databases. We searched clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform (ICTRP) for ongoing trials, and reference lists of reviews and retrieved articles for additional studies. SELECTION CRITERIA We included all randomised controlled trials investigating exercise interventions versus no treatment, usual care or non-exercise interventions on falls incidence or falls risk factors in adults living with and beyond cancer (18 years of age or older at diagnosis). We excluded cross-over studies and studies in acute or inpatient hospice care. DATA COLLECTION AND ANALYSIS At least two review authors independently completed data extraction for included papers. We used Covidence software to manage screening, data collection and extraction. We assessed evidence using GRADE and presented results in a 'Summary of findings' table. MAIN RESULTS Eleven studies (835 participants) compared exercise to usual care. No studies compared exercise with no treatment or non-exercise interventions. The quality of the evidence was very low for the primary outcome rates of falls, and very low to low for the secondary outcomes. We downgraded the evidence due to study limitations (risk of bias), and issues of imprecision due to small sample sizes, inconsistency and indirectness. All studies were at high risk of bias for blinding of participants and personnel due to inability to blind participants to an exercise intervention. Risk of bias was generally low or unclear for other categories.There was generally little information on the important outcomes comparing exercise to usual care.Rates of falls and number of fallers: one study (223 participants) measured accidental falls, but reported neither the rate of falls or the number of fallers; there was no difference in the number of falls between exercise and usual care (very low-quality evidence).Strength: 10 studies (813 participants) reported on strength outcomes. Two analyses favoured exercise over usual care: quadriceps strength (2 studies, 72 participants; mean difference (MD) 8.99 kg, 95% confidence interval (CI) 1.29 to 16.70; low-quality evidence), and leg press (4 studies, 388 participants; MD 21.1 kg, 95% CI 8.47 to 33.74; low-quality evidence). In one analysis of the Sit-to-Stand Test, there was no difference between exercise and usual care (4 studies, 214 participants; standardised mean difference (SMD) -0.45, 95% CI -1.05 to 0.14; very low-quality evidence).Flexibility: one study (21 participants) reported on flexibility for Sit-and-Reach Distance (MD 2.05 cm, 95% CI 0.59 to 3.51; very low-quality evidence).Balance: five studies (350 participants) measured three different balance outcomes. Two analyses favoured exercise over usual care: postural balance (4 studies, 127 participants; standardised mean difference (SMD) 0.44, 95% CI 0.08 to 0.79; very low-quality evidence), and Backward Walk Test (2 studies, 280 participants; SMD -0.24, 95% CI -0.48 to -0.01; low-quality evidence). There was no difference between exercise and usual care for the Timed Up-and-Go Test (1 study, 15 participants; MD -0.35 seconds, 95% CI -1.47 to 0.77; low-quality evidence).Number of people sustaining a fall-related fracture: the quality of the evidence for exercise reducing fall-related fractures was very low.Adverse events: a single study (223 participants) noted some temporary muscle soreness on initiation of exercise or when there was an increase in the weight lifted. As no occurrence data were reported, we could not assess this variable further. No studies reported musculoskeletal injury. Analysis indicated that there was very low-quality evidence that exercise did not increase fatigue. AUTHORS' CONCLUSIONS There is a paucity of evidence for exercise training to reduce fall rates in people living with and beyond cancer. Exercise training may improve strength, flexibility and balance for people in this population, but the evidence is very low quality.
Collapse
Affiliation(s)
- Andrew D Williams
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Minasian LM, Frazier AL, Sung L, O’Mara A, Kelaghan J, Chang KW, Krailo M, Pollock BH, Reaman G, Freyer DR. Prevention of cisplatin-induced hearing loss in children: Informing the design of future clinical trials. Cancer Med 2018; 7:2951-2959. [PMID: 29846043 PMCID: PMC6051159 DOI: 10.1002/cam4.1563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 11/23/2022] Open
Abstract
Cisplatin is an essential chemotherapeutic agent in the treatment of many pediatric cancers. Unfortunately, cisplatin-induced hearing loss (CIHL) is a common, clinically significant side effect with life-long ramifications, particularly for young children. ACCL05C1 and ACCL0431 are two recently completed Children's Oncology Group studies focused on the measurement and prevention of CIHL. The purpose of this paper was to gain insights from ACCL05C1 and ACCL0431, the first published cooperative group studies dedicated solely to CIHL, to inform the design of future pediatric otoprotection trials. Use of otoprotective agents is an attractive strategy for preventing CIHL, but their successful development must overcome a unique constellation of methodological challenges related to translating preclinical research into clinical trials that are feasible, evaluate practical interventions, and limit risk. Issues particularly important for children include use of appropriate methods for hearing assessment and CIHL severity grading, and use of trial designs that are well-informed by preclinical models and suitable for relatively small sample sizes. Increasing interest has made available new funding opportunities for expanding this urgently needed research.
Collapse
Affiliation(s)
| | - A. Lindsay Frazier
- Dana‐Farber Cancer Institute/Boston Children’s Hospital Cancer CenterBostonMAUSA
| | | | | | | | - Kay W. Chang
- Department of OtolaryngologyStanford UniversityPalo AltoCAUSA
| | - Mark Krailo
- Department of Preventive MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Brad H. Pollock
- Department of Public Health SciencesUniversity of CaliforniaDavisCAUSA
| | | | - David R. Freyer
- Division of Hematology, Oncology, and Blood and Bone Marrow TransplantationChildren’s Hospital Los AngelesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
11
|
Borse V, Al Aameri RFH, Sheehan K, Sheth S, Kaur T, Mukherjea D, Tupal S, Lowy M, Ghosh S, Dhukhwa A, Bhatta P, Rybak LP, Ramkumar V. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis 2017; 8:e2921. [PMID: 28703809 PMCID: PMC5550861 DOI: 10.1038/cddis.2017.314] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 12/23/2022]
Abstract
Cisplatin-induced ototoxicity is one of the major factors limiting cisplatin chemotherapy. Ototoxicity results from damage to outer hair cells (OHCs) and other regions of the cochlea. At the cellular level, cisplatin increases reactive oxygen species (ROS) leading to cochlear inflammation and apoptosis. Thus, ideal otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin's chemotherapeutic efficacy. In this study, we show that epigallocatechin-3-gallate (EGCG) is a prototypic agent exhibiting these properties of an effect otoprotective agent. Rats administered oral EGCG demonstrate reduced cisplatin-induced hearing loss, reduced loss of OHCs in the basal region of the cochlea and reduced oxidative stress and apoptotic markers. EGCG also protected against the loss of ribbon synapses associated with inner hair cells and Na+/K+ ATPase α1 in the stria vascularis and spiral ligament. In vitro studies showed that EGCG reduced cisplatin-induced ROS generation and ERK1/2 and signal transducer and activator of transcription-1 (STAT1) activity, but preserved the activity of STAT3 and Bcl-xL. The increase in STAT3/STAT1 ratio appears critical for mediating its otoprotection. EGCG did not alter cisplatin-induced apoptosis of human-derived cancer cells or cisplatin antitumor efficacy in a xenograft tumor model in mice because of its inability to rescue the downregulation of STAT3 in these cells. These data suggest that EGCG is an ideal otoprotective agent for treating cisplatin-induced hearing loss without compromising its antitumor efficacy.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Kelly Sheehan
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Sandeep Sheth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Debashree Mukherjea
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Srinivasan Tupal
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Michelle Lowy
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Sumana Ghosh
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Puspanjali Bhatta
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| | - Leonard P Rybak
- Department of Surgery (Otolaryngology), Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA
| |
Collapse
|
12
|
Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice. J Neurosci 2017; 36:4758-70. [PMID: 27122034 DOI: 10.1523/jneurosci.3890-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/16/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa(-/-)) and group B (Csb(-/-)) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc(-/-) mice, both in vitro and in vivo We show that sensory hair cells in Csa(-/-) and Csb(-/-) mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc(-/-) mice, Csa(-/-) and Csb(-/-) mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity. SIGNIFICANCE STATEMENT The utility of cisplatin in chemotherapy remains limited due to serious side effects, including sensorineural hearing loss. We show that mouse models of Cockayne syndrome, a progeroid disorder resulting from a defect in the transcription-coupled DNA repair (TCR) branch of nucleotide excision repair, are hypersensitive to cisplatin-induced hearing loss and sensory hair cell death in the organ of Corti, the mammalian auditory sensory epithelium. Our work indicates that Csa and Csb, two genes involved in TCR, are preferentially required to protect against cisplatin ototoxicity, relative to global genome repair-specific elements of nucleotide excision repair, and suggests that TCR is a major force maintaining DNA integrity in the cochlea. The Cockayne syndrome mice thus represent a model for testing the contribution of DNA repair mechanisms to cisplatin ototoxicity.
Collapse
|
13
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
14
|
Li X, Dunevall J, Ewing AG. Using Single-Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xianchan Li
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology; University of Gothenburg; Kemivägen 10 41296 Gothenburg Sweden
- Department of Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
15
|
Li X, Dunevall J, Ewing AG. Using Single-Cell Amperometry To Reveal How Cisplatin Treatment Modulates the Release of Catecholamine Transmitters during Exocytosis. Angew Chem Int Ed Engl 2016; 55:9041-4. [PMID: 27239950 DOI: 10.1002/anie.201602977] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/08/2022]
Abstract
The pretreatment of cultured pheochromocytoma (PC12) cells with cis-diamminedichloroplatinum (cisplatin), an anti-cancer drug, influences the exocytotic ability of the cells in a dose-dependent manner. Low concentrations of cisplatin stimulate catecholamine release whereas high concentrations inhibit it. Single-cell amperometry reflects that 2 μm cisplatin treatment increases the frequency of exocytotic events and reduces their duration, whereas 100 μm cisplatin treatment decreases the frequency of exocytotic events and increases their duration. Furthermore, the stability of the initial fusion pore that is formed in the lipid membrane during exocytosis is also regulated differentially by different cisplatin concentrations. This study thus suggests that cisplatin influences exocytosis by multiple mechanisms.
Collapse
Affiliation(s)
- Xianchan Li
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden. , .,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden. ,
| |
Collapse
|
16
|
Li W, You D, Chen Y, Chai R, Li H. Regeneration of hair cells in the mammalian vestibular system. Front Med 2016; 10:143-51. [DOI: 10.1007/s11684-016-0451-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
17
|
Santabarbara G, Maione P, Rossi A, Gridelli C. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin Pharmacother 2015; 17:561-70. [DOI: 10.1517/14656566.2016.1122757] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Monzack EL, May LA, Roy S, Gale JE, Cunningham LL. Live imaging the phagocytic activity of inner ear supporting cells in response to hair cell death. Cell Death Differ 2015; 22:1995-2005. [PMID: 25929858 PMCID: PMC4816108 DOI: 10.1038/cdd.2015.48] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023] Open
Abstract
Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear.
Collapse
Affiliation(s)
- E L Monzack
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - L A May
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - S Roy
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - J E Gale
- UCL Ear Institute, University College, London WC1X 8EE, UK
| | - L L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett 2015; 237:219-27. [PMID: 26101797 DOI: 10.1016/j.toxlet.2015.06.012] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/06/2015] [Accepted: 06/14/2015] [Indexed: 12/20/2022]
Abstract
Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations.
Collapse
Affiliation(s)
- Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
20
|
Williams AD, Bird ML, King SGK, Kirschbaum M, Ogden KJ. Exercise for preventing falls in people with cancer living in the community. Hippokratia 2015. [DOI: 10.1002/14651858.cd011687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew D Williams
- University of Tasmania; School of Health Sciences; Launceston Australia
| | - Marie-Louise Bird
- University of Tasmania; School of Health Sciences; Launceston Australia
| | - Sibella G K King
- University of Tasmania; School of Health Sciences; Launceston Australia
| | - Mark Kirschbaum
- University of Tasmania; Centre for Rural Health, School of Health Sciences; Launceston Australia
| | - Kathryn J Ogden
- University of Tasmania; Launceston Clinical School; Locked Bag 1377 Launceston Tasmania Australia 7250
| |
Collapse
|
21
|
Hayashi L, Sheth M, Young A, Kruger M, Wayman GA, Coffin AB. The effect of the aquatic contaminants bisphenol-A and PCB-95 on the zebrafish lateral line. Neurotoxicology 2014; 46:125-36. [PMID: 25556122 DOI: 10.1016/j.neuro.2014.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023]
Abstract
Environmental toxicants such as bisphenol-A (BPA) and polychlorinated biphenyls (PCBs) are prevalent in our water supply, soil, and many food products and can profoundly affect the central nervous system. Both BPA and PCBs can disrupt endocrine signaling, which is important for auditory development and function, but the effect of these toxicants on the auditory periphery is not understood. In this study we investigated the effect of PCB-95 and BPA on lateral line development, function, and regeneration in larval zebrafish. The lateral line is a system of mechanosensory hair cells on the exterior of the fish that are homologous to the hair cells located in the mammalian inner ear. We found that PCB-95 had no effect on lateral line development or hair cell survival. BPA also did not affect lateral line development, but instead had a significant effect on both hair cell survival and regeneration. BPA-induced hair cell loss is both dose- and time-dependent, with concentrations of 1 μM or higher killing lateral line hair cells during a 24h exposure period. Pharmacologic manipulation experiments suggest that BPA kills hair cells via activation of oxidative stress pathways, similar to prior reports of BPA toxicity in other tissues. We also observed that hair cells killed with neomycin, a known ototoxin, failed to regenerate normally when BPA was present, suggesting that BPA in aquatic environments could impede innate regenerative responses in fishes. Collectively, these data demonstrate that BPA can have detrimental effects on sensory systems, both in aquatic life and perhaps in terrestrial organisms, including humans.
Collapse
Affiliation(s)
- Lauren Hayashi
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Meghal Sheth
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Alexander Young
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Matthew Kruger
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Gary A Wayman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| |
Collapse
|