1
|
Murcia-Belmonte V, Chauvin G, Coca Y, Escalante A, Klein R, Herrera E. EphA4 Mediates EphrinB1-Dependent Adhesion in Retinal Ganglion Cells. J Neurosci 2025; 45:e0043242024. [PMID: 39622649 PMCID: PMC11756631 DOI: 10.1523/jneurosci.0043-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025] Open
Abstract
Eph/ephrin signaling is crucial for organizing retinotopic maps in vertebrates. Unlike other EphAs, which are expressed in the embryonic ventral retina, EphA4 is found in the retinal ganglion cell (RGC) layer at perinatal stages, and its role in mammalian visual system development remains unclear. Using classic in vitro stripe assays, we demonstrate that, while RGC axons are repelled by ephrinB2, they grow on ephrinB1 stripes through EphA4-mediated adhesion. In vivo, retinal axons from EphA4-deficient mice from either sex show impaired arborization in the medial, but not lateral, regions of the superior colliculus that express ephrinB1. Gain-of-function experiments further reveal that ephrinB1-mediated adhesion depends on EphA4 tyrosine kinase activity but it is independent of its sterile alpha motif. Together, our findings suggest that EphA4/ephrinB1 forward signaling likely facilitates adhesion between retinal axon terminals and cells in the medial colliculus, contributing to the establishment of proper connectivity within the visual system.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Géraud Chauvin
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Augusto Escalante
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| | - Rüdiger Klein
- Department 'Molecules - Signals - Development', Max Planck Institute for Biological Intelligence, Martinsried 82152, Germany
| | - Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Alicante 03550, Spain
| |
Collapse
|
2
|
Vetrivel S, Truong DJJ, Wurst W, Graw J, Giesert F. Identification of ocular regulatory functions of core histone variant H3.2. Exp Eye Res 2023; 226:109346. [PMID: 36529279 DOI: 10.1016/j.exer.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany.
| |
Collapse
|
3
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124:1-16. [DOI: 10.1016/j.diff.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
4
|
Hoskens H, Liu D, Naqvi S, Lee MK, Eller RJ, Indencleef K, White JD, Li J, Larmuseau MHD, Hens G, Wysocka J, Walsh S, Richmond S, Shriver MD, Shaffer JR, Peeters H, Weinberg SM, Claes P. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet 2021; 17:e1009528. [PMID: 33983923 PMCID: PMC8118281 DOI: 10.1371/journal.pgen.1009528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.
Collapse
Affiliation(s)
- Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Karlijne Indencleef
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Julie D. White
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Jiarui Li
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Maarten H. D. Larmuseau
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Biology, Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
- Histories vzw, Mechelen, Belgium
| | - Greet Hens
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Mark D. Shriver
- Department of Anthropology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Niethamer TK, Teng T, Franco M, Du YX, Percival CJ, Bush JO. Aberrant cell segregation in the craniofacial primordium and the emergence of facial dysmorphology in craniofrontonasal syndrome. PLoS Genet 2020; 16:e1008300. [PMID: 32092051 PMCID: PMC7058351 DOI: 10.1371/journal.pgen.1008300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/05/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.
Collapse
Affiliation(s)
- Terren K. Niethamer
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng Teng
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Franco
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yu Xin Du
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (CJP); (JOB)
| | - Jeffrey O. Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (CJP); (JOB)
| |
Collapse
|
6
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Chen R, Guo S, Wang X, Mu Y, Duan E, Xu Y. Association of EPHA3 Gene Polymorphisms with Nonsyndromic Cleft Lip With or Without Cleft Palate. Genet Test Mol Biomarkers 2018; 22:420-424. [PMID: 29932736 DOI: 10.1089/gtmb.2017.0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Nonsyndromic cleft lip with or without palate (NSCL/P) represents a complex condition caused by genetic and environmental factors. The aim of this study was to investigate the relationship between the EPHA3 polymorphisms and NSCL/P. MATERIALS AND METHODS To investigate the relationship between five EPHA3 single nucleotide polymorphisms (SNPs) and NSCL/P, we selected 180 affected patients and 167 normal controls from the Chinese Han Population. EPHA3 SNPs (rs7650466, rs1398197, rs17801309, rs1054750, and rs7632427) were genotyped using the SNaPshot technique; bioinformatic analyses were performed to determine if any of them were potentially functional SNPs. RESULTS The rs7650466 T allele was associated with the incidence of NSCL/P (OR, 0.211; 95% CI, 0.131-0.338; adjusted p = 4.881 × 10-10) and cleft lip with or without palate (CL/P) (OR, 0.176; 95% CI, 0.104-0.297; adjusted p = 3.617 × 10-10), as well as with protective and dominant effects in both conditions. The rs7650466 T allele could be associated with reduced risk of the malformation. In a bioinformatics analysis, we found potential matching sites (miR-1255a, miR-125a-3p, miR-143, and miR-552) for rs7650466 and preliminarily analyzed its potential function. CONCLUSIONS Collectively, our data suggest that the EPHA3 rs7650466 polymorphism confers genetic risk for NSCL/P in the Chinese Han Population. Furthermore, rs7650466 is associated with CL/P incidence in stratified analyses, but not with cleft palate only.
Collapse
Affiliation(s)
- Renji Chen
- 1 Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital, Capital Medical University , Beijing, China
| | - Siyuan Guo
- 1 Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital, Capital Medical University , Beijing, China
| | - Xin Wang
- 2 Treatment Center of Cleft Lip and Palate, Beijing Smile Angel Children's Hospital , Beijing, China
| | - Yue Mu
- 1 Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital, Capital Medical University , Beijing, China
| | - Erling Duan
- 1 Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital, Capital Medical University , Beijing, China
| | - Yi Xu
- 1 Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
8
|
Lough KJ, Byrd KM, Spitzer DC, Williams SE. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis. J Dent Res 2017; 96:1210-1220. [PMID: 28817360 DOI: 10.1177/0022034517726284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Secondary palatogenesis occurs when the bilateral palatal shelves (PS), arising from maxillary prominences, fuse at the midline, forming the hard and soft palate. This embryonic phenomenon involves a complex array of morphogenetic events that require coordinated proliferation, apoptosis, migration, and adhesion in the PS epithelia and underlying mesenchyme. When the delicate process of craniofacial morphogenesis is disrupted, the result is orofacial clefting, including cleft lip and cleft palate (CL/P). Through human genetic and animal studies, there are now hundreds of known genetic alternations associated with orofacial clefts; so, it is not surprising that CL/P is among the most common of all birth defects. In recent years, in vitro cell-based assays, ex vivo palate cultures, and genetically engineered animal models have advanced our understanding of the developmental and cell biological pathways that contribute to palate closure. This is particularly true for the areas of PS patterning and growth as well as medial epithelial seam dissolution during palatal fusion. Here, we focus on epithelial cell-cell adhesion, a critical but understudied process in secondary palatogenesis, and provide a review of the available tools and mouse models to better understand this phenomenon.
Collapse
Affiliation(s)
- K J Lough
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K M Byrd
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D C Spitzer
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S E Williams
- 1 The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Xavier GM, Miletich I, Cobourne MT. Ephrin Ligands and Eph Receptors Show Regionally Restricted Expression in the Developing Palate and Tongue. Front Physiol 2016; 7:60. [PMID: 26941654 PMCID: PMC4763095 DOI: 10.3389/fphys.2016.00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
The Eph family receptor-interacting (ephrin) ligands and erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest known family of receptor tyrosine kinases. Ephrin ligands and their receptors form an important cell communication system with widespread roles in normal physiology and disease pathogenesis. In order to investigate potential roles of the ephrin-Eph system during palatogenesis and tongue development, we have characterized the cellular mRNA expression of family members EphrinA1-A3, EphA1–A8, and EphrinB2, EphB1, EphB4 during murine embryogenesis between embryonic day 13.5–16.5 using radioactive in situ hybridization. With the exception of EphA6 and ephrinA3, all genes were regionally expressed during the process of palatogenesis, with restricted and often overlapping domains. Transcripts were identified in the palate epithelium, localized at the tip of the palatal shelves, in the mesenchyme and also confined to the medial epithelium seam. Numerous Eph transcripts were also identified during tongue development. In particular, EphA1 and EphA2 demonstrated a highly restricted and specific expression in the tongue epithelium at all stages examined, whereas EphA3 was strongly expressed in the lateral tongue mesenchyme. These results suggest regulatory roles for ephrin-EphA signaling in development of the murine palate and tongue.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's HospitalLondon, UK; Department of Orthodontics, King's College London Dental Institute, Guy's HospitalLondon, UK
| | - Isabelle Miletich
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital London, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's HospitalLondon, UK; Department of Orthodontics, King's College London Dental Institute, Guy's HospitalLondon, UK
| |
Collapse
|
10
|
Maga AM, Navarro N, Cunningham ML, Cox TC. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico. Front Physiol 2015; 6:92. [PMID: 25859222 PMCID: PMC4374467 DOI: 10.3389/fphys.2015.00092] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/05/2015] [Indexed: 11/17/2022] Open
Abstract
We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest.
Collapse
Affiliation(s)
- A Murat Maga
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington Seattle, WA, USA ; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute Seattle, WA, USA
| | - Nicolas Navarro
- Laboratoire PALEVO, Ecole Pratique des Hautes Etudes Dijon, France ; UMR uB/CNRS 6282 - Biogéosciences, Université de Bourgogne Dijon, France
| | - Michael L Cunningham
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington Seattle, WA, USA ; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute Seattle, WA, USA
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington Seattle, WA, USA ; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute Seattle, WA, USA ; Department of Anatomy and Developmental Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
11
|
Lahtela J, Pradhan B, Närhi K, Hemmes A, Särkioja M, Kovanen PE, Brown A, Verschuren EW. The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. Dis Model Mech 2015; 8:393-401. [PMID: 25713296 PMCID: PMC4381338 DOI: 10.1242/dmm.019257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas. Our data shows that homozygous or heterozygous loss of EphA3 does not alter the progression of murine adenocarcinomas that result from Kras mutation or loss of Trp53, and we detected negligible postnatal expression of EphA3 in adult wild-type lungs. Yet, EphA3 was expressed in the distal mesenchyme of developing mouse lungs, neighboring the epithelial expression of its Efna1 ligand; this is consistent with the known roles of EPH receptors in embryonic development. However, the partial loss of EphA3 leads only to subtle changes in epithelial Nkx2-1, endothelial Cd31 and mesenchymal Fgf10 RNA expression levels, and no macroscopic phenotypic effects on lung epithelial branching, mesenchymal cell proliferation, or abundance and localization of CD31-positive endothelia. The lack of a discernible lung phenotype in EphA3-null mice might indicate lack of an overt role for EPHA3 in the murine lung, or imply functional redundancy between EPHA receptors. Our study shows how biological complexity can challenge in vivo functional validation of mutations identified in sequencing efforts, and provides an incentive for the design of knock-in or conditional models to assign the role of EPHA3 mutation during lung tumorigenesis.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Barun Pradhan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Katja Närhi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Merja Särkioja
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki FI-00014, Finland
| | - Arthur Brown
- Spinal Cord Injury Team, Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|