1
|
Chen YC, Martins TA, Marchica V, Panula P. Angiopoietin 1 and integrin beta 1b are vital for zebrafish brain development. Front Cell Neurosci 2024; 17:1289794. [PMID: 38235293 PMCID: PMC10792015 DOI: 10.3389/fncel.2023.1289794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Angiopoietin 1 (angpt1) is essential for angiogenesis. However, its role in neurogenesis is largely undiscovered. This study aimed to identify the role of angpt1 in brain development, the mode of action of angpt1, and its prime targets in the zebrafish brain. Methods We investigated the effects of embryonic brain angiogenesis and neural development using qPCR, in situ hybridization, microangiography, retrograde labeling, and immunostaining in the angpt1sa14264, itgb1bmi371, tekhu1667 mutant fish and transgenic overexpression of angpt1 in the zebrafish larval brains. Results We showed the co-localization of angpt1 with notch, delta, and nestin in the proliferation zone in the larval brain. Additionally, lack of angpt1 was associated with downregulation of TEK tyrosine kinase, endothelial (tek), and several neurogenic factors despite upregulation of integrin beta 1b (itgb1b), angpt2a, vascular endothelial growth factor aa (vegfaa), and glial markers. We further demonstrated that the targeted angpt1sa14264 and itgb1bmi371 mutant fish showed severely irregular cerebrovascular development, aberrant hindbrain patterning, expansion of the radial glial progenitors, downregulation of cell proliferation, deficiencies of dopaminergic, histaminergic, and GABAergic populations in the caudal hypothalamus. In contrast to angpt1sa14264 and itgb1bmi371 mutants, the tekhu1667 mutant fish regularly grew with no apparent phenotypes. Notably, the neural-specific angpt1 overexpression driven by the elavl3 (HuC) promoter significantly increased cell proliferation and neuronal progenitor cells but decreased GABAergic neurons, and this neurogenic activity was independent of its typical receptor tek. Discussion Our results prove that angpt1 and itgb1b, besides regulating vascular development, act as a neurogenic factor via notch and wnt signaling pathways in the neural proliferation zone in the developing brain, indicating a novel role of dual regulation of angpt1 in embryonic neurogenesis that supports the concept of angiopoietin-based therapeutics in neurological disorders.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Tomás A. Martins
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Valentina Marchica
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|
2
|
Marczenke M, Sunaga-Franze DY, Popp O, Althaus IW, Sauer S, Mertins P, Christ A, Allen BL, Willnow TE. GAS1 is required for NOTCH-dependent facilitation of SHH signaling in the ventral forebrain neuroepithelium. Development 2021; 148:272617. [PMID: 34698766 PMCID: PMC8627604 DOI: 10.1242/dev.200080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Collapse
Affiliation(s)
- Maike Marczenke
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany
| | | | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Irene W Althaus
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sascha Sauer
- Genomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Annabel Christ
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas E Willnow
- Molecular Physiology, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Hamdi-Rozé H, Ware M, Guyodo H, Rizzo A, Ratié L, Rupin M, Carré W, Kim A, Odent S, Dubourg C, David V, de Tayrac M, Dupé V. Disrupted Hypothalamo-Pituitary Axis in Association With Reduced SHH Underlies the Pathogenesis of NOTCH-Deficiency. J Clin Endocrinol Metab 2020; 105:5836893. [PMID: 32403133 DOI: 10.1210/clinem/dgaa249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT In human, Sonic hedgehog (SHH) haploinsufficiency is the predominant cause of holoprosencephaly, a structural malformation of the forebrain midline characterized by phenotypic heterogeneity and incomplete penetrance. The NOTCH signaling pathway has recently been associated with holoprosencephaly in humans, but the precise mechanism involving NOTCH signaling during early brain development remains unknown. OBJECTIVE The aim of this study was to evaluate the relationship between SHH and NOTCH signaling to determine the mechanism by which NOTCH dysfunction could cause midline malformations of the forebrain. DESIGN In this study, we have used a chemical inhibition approach in the chick model and a genetic approach in the mouse model. We also reported results obtained from the clinical diagnosis of a cohort composed of 141 holoprosencephaly patients. RESULTS We demonstrated that inhibition of NOTCH signaling in chick embryos as well as in mouse embryos induced a specific downregulation of SHH in the anterior hypothalamus. Our data in the mouse also revealed that the pituitary gland was the most sensitive tissue to Shh insufficiency and that haploinsufficiency of the SHH and NOTCH signaling pathways synergized to produce a malformed pituitary gland. Analysis of a large holoprosencephaly cohort revealed that some patients possessed multiple heterozygous mutations in several regulators of both pathways. CONCLUSIONS These results provided new insights into molecular mechanisms underlying the extreme phenotypic variability observed in human holoprosencephaly. They showed how haploinsufficiency of the SHH and NOTCH activity could contribute to specific congenital hypopituitarism that was associated with a sella turcica defect.
Collapse
Affiliation(s)
- Houda Hamdi-Rozé
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Michelle Ware
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Hélène Guyodo
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Aurélie Rizzo
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Leslie Ratié
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Maïlys Rupin
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Wilfrid Carré
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Clinique, CHU, Rennes, France
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| |
Collapse
|
4
|
Kaylan KB, Berg IC, Biehl MJ, Brougham-Cook A, Jain I, Jamil SM, Sargeant LH, Cornell NJ, Raetzman LT, Underhill GH. Spatial patterning of liver progenitor cell differentiation mediated by cellular contractility and Notch signaling. eLife 2018; 7:e38536. [PMID: 30589410 PMCID: PMC6342520 DOI: 10.7554/elife.38536] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFβ and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation. In these defined circular geometries, we observed biliary differentiation at the periphery and hepatocytic differentiation in the center. Parallel measurements obtained by traction force microscopy showed substantial stresses at the periphery, coincident with maximal biliary differentiation. We investigated the impact of downstream signaling, showing that peripheral biliary differentiation is dependent not only on Notch and TGFβ but also E-cadherin, myosin-mediated cell contractility, and ERK. We have therefore identified distinct combinations of microenvironmental cues which guide fate specification of mouse liver progenitors toward both hepatocyte and biliary fates.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ian C Berg
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Matthew J Biehl
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Aidan Brougham-Cook
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | | | | | - Lori T Raetzman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | |
Collapse
|
5
|
Stallings CE, Ellsworth BS. Premature Expression of FOXO1 in Developing Mouse Pituitary Results in Anterior Lobe Hypoplasia. Endocrinology 2018; 159:2891-2904. [PMID: 29796621 PMCID: PMC6456930 DOI: 10.1210/en.2018-00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
The process by which the somatotrope lineage emerges in the developing pituitary is regulated by the activity of specific signaling and transcription factors expressed during development. We set out to understand the contribution of FOXO1 to that process by using a mouse model in which FOXO1 is prematurely expressed in the pituitary primordium. Expression of FOXO1 in the oral ectoderm as early as embryonic day (e)9.5 resulted in pituitary gland hypoplasia and reduced expression of anterior lobe hormone transcripts at e18.5. Of note, the relative numbers of somatotropes and thyrotropes were also decreased at e18.5. LHX3 and PITX2, markers of pituitary identity, were present in a reduced number of cells during the formation of the Rathke pouch. Thus, premature expression of FOXO1 may affect adoption of pituitary identity during differentiation. Our results demonstrate that the timing of FOXO1 activation affects its role in pituitary gland organogenesis and somatotrope differentiation.
Collapse
Affiliation(s)
- Caitlin E Stallings
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| |
Collapse
|
6
|
Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 2018; 442:87-100. [PMID: 29885287 DOI: 10.1016/j.ydbio.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023]
Abstract
The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.
Collapse
|
7
|
Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 2018; 375:23-39. [PMID: 29869716 DOI: 10.1007/s00441-018-2859-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The neuroendocrine system consists of a heterogeneous collection of (mostly) neuropeptidergic neurons found in four hypothalamic nuclei and sharing the ability to secrete neurohormones (all of them neuropeptides except dopamine) into the bloodstream. There are, however, abundant hypothalamic non-neuroendocrine neuropeptidergic neurons developing in parallel with the neuroendocrine system, so that both cannot be entirely disentangled. This heterogeneity results from the workings of a network of transcription factors many of which are already known. Olig2 and Fezf2 expressed in the progenitors, acting through mantle-expressed Otp and Sim1, Sim2 and Pou3f2 (Brn2), regulate production of magnocellular and anterior parvocellular neurons. Nkx2-1, Rax, Ascl1, Neurog3 and Dbx1 expressed in the progenitors, acting through mantle-expressed Isl1, Dlx1, Gsx1, Bsx, Hmx2/3, Ikzf1, Nr5a2 (LH-1) and Nr5a1 (SF-1) are responsible for tuberal parvocellular (arcuate nucleus) and other neuropeptidergic neurons. The existence of multiple progenitor domains whose progeny undergoes intricate tangential migrations as one source of complexity in the neuropeptidergic hypothalamus is the focus of much attention. How neurosecretory cells target axons to the medial eminence and posterior hypophysis is gradually becoming clear and exciting progress has been made on the mechanisms underlying neurovascular interface formation. While rat neuroanatomy and targeted mutations in mice have yielded fundamental knowledge about the neuroendocrine system in mammals, experiments on chick and zebrafish are providing key information about cellular and molecular mechanisms. Looking forward, data from every source will be necessary to unravel the ways in which the environment affects neuroendocrine development with consequences for adult health and disease.
Collapse
|
8
|
Notch signaling-mediated cell-to-cell interaction is dependent on E-cadherin adhesion in adult rat anterior pituitary. Cell Tissue Res 2016; 368:125-133. [DOI: 10.1007/s00441-016-2540-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023]
|
9
|
Kapali J, Kabat BE, Schmidt KL, Stallings CE, Tippy M, Jung DO, Edwards BS, Nantie LB, Raeztman LT, Navratil AM, Ellsworth BS. Foxo1 Is Required for Normal Somatotrope Differentiation. Endocrinology 2016; 157:4351-4363. [PMID: 27631552 PMCID: PMC5086538 DOI: 10.1210/en.2016-1372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The etiology for half of congenital hypopituitarism cases is unknown. Our long-term goal is to expand the molecular diagnoses for congenital hypopituitarism by identifying genes that contribute to this condition. We have previously shown that the forkhead box transcription factor, FOXO1, is present in approximately half of somatotropes at embryonic day (e) 18.5, suggesting it may have a role in somatotrope differentiation or function. To elucidate the role of FOXO1 in somatotrope differentiation and function, Foxo1 was conditionally deleted from the anterior pituitary (Foxo1Δpit). Uncommitted progenitor cells are maintained and able to commit to the somatotrope lineage normally based on the expression patterns of Sox2, a marker of uncommitted pituitary progenitors, and Pou1f1 (also known as Pit1), which marks committed progenitors. Interestingly, Foxo1Δpit embryonic mice exhibit delayed somatotrope differentiation as evidenced by an almost complete absence of GH immunoreactivity at e16.5 and reduced expression of Gh at e18.5 and postnatal day (P) 3. Consistent with this conclusion, expression of GHRH receptor, a marker of terminally differentiated somatotropes, is significantly reduced at e18.5 and P3 in the absence of FOXO1. The mechanism of FOXO1 regulation of somatotrope differentiation may involve the basic helix-loop-helix transcription factor, Neurod4, which has been implicated in somatotrope differentiation and is significantly reduced in Foxo1Δpit mice. Foxo1Δpit mice do not exhibit growth defects, and at P21 their pituitary glands exhibit a normal distribution of somatotropes. These studies demonstrate that FOXO1 is important for initial somatotrope specification embryonically but is dispensable for postnatal somatotrope expansion and growth.
Collapse
Affiliation(s)
- Jyoti Kapali
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Brock E Kabat
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kelly L Schmidt
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Caitlin E Stallings
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Mason Tippy
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Deborah O Jung
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Brian S Edwards
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Leah B Nantie
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Lori T Raeztman
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Amy M Navratil
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Buffy S Ellsworth
- Department of Physiology (J.K., B.E.K., K.L.S., C.E.S., M.T., D.O.J., B.S.El.), Southern Illinois University, Carbondale, Illinois 62901-6523; Department of Zoology and Physiology (B.S.Ed., A.M.N.), University of Wyoming, Laramie, Wyoming 82071; and Department of Molecular and Integrative Physiology (L.B.N., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
β-catenin is required in the neural crest and mesencephalon for pituitary gland organogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:16. [PMID: 27184910 PMCID: PMC4868042 DOI: 10.1186/s12861-016-0118-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Background The pituitary gland is a highly vascularized tissue that requires coordinated interactions between the neural ectoderm, oral ectoderm, and head mesenchyme during development for proper physiological function. The interactions between the neural ectoderm and oral ectoderm, especially the role of the pituitary organizer in shaping the pituitary precursor, Rathke’s pouch, are well described. However, less is known about the role of head mesenchyme in pituitary organogenesis. The head mesenchyme is derived from definitive mesoderm and neural crest, but the relative contributions of these tissues to the mesenchyme adjacent to the pituitary are not known. Results We carried out lineage tracing experiments using two neural crest-specific mouse cre lines, Wnt1-cre and P0-cre, and determined that the head mesenchyme rostral to the pituitary gland is neural crest derived. To assess the role of the neural crest in pituitary development we ablated it, using Wnt1-cre to delete Ctnnb1 (β-catenin), which is required for neural crest development. The Wnt1-cre is active in the neural ectoderm, principally in the mesencephalon, but also in the posterior diencephalon. Loss of β-catenin in this domain causes a rostral shift in the ventral diencephalon, including the pituitary organizer, resulting in pituitary dysmorphology. The neural crest deficient embryos have abnormally dilated pituitary vasculature due to a loss of neural crest derived pericytes. Conclusions β-catenin in the Wnt1 expression domain, including the neural crest, plays a critical role in regulation of pituitary gland growth, development, and vascularization. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0118-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Liu C, Gao H, Cao L, Gui S, Liu Q, Li C, Li D, Gong L, Zhang Y. The role of FSCN1 in migration and invasion of pituitary adenomas. Mol Cell Endocrinol 2016; 419:217-24. [PMID: 26522130 DOI: 10.1016/j.mce.2015.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/27/2022]
Abstract
The prediction of invasion or malignant behavior in PAs remains challenging. FSCN1, an actin-bundling protein, is associated with increased risk of mortality and metastasis in various cancer types. The objective of the study was to evaluate the expression of FSCN1 in 312 PAs cases, and to analyze its association with clinicopathologic features and invasion of PAs, thus serving as a promoter of cancer invasion. In non-function PAs (NFPA), FSCN1 nuclear-positive cases were 53/97 in the invasive group (IPA), and 21/115 in the noninvasive group (nIPA) (ⅹ(2) = 30.65, p = 0.004). FSCN1 cytoplasm-positive cases were 36/97 in IPA, and 8/107 in nIPA (ⅹ(2) = 29.09, p = 0.000). In growth hormone adenomas (GHomas), FSCN1 nuclear-positive were 10/13 in IPA, and 3/37 in nIPA (ⅹ(2) = 23.67, p = 0.000). FSCN1 cytoplasm-positive were 8/13 in IPA, and 2/37 in nIPA (Table 3 ⅹ(2) = 18.94, p = 0.000). Overall, a significant difference was found between FSCN1 expression and tumor size (ⅹ(2) = 46.21, p = 0.000), not age (ⅹ(2) = 2.09, p = 0.148). In the high FSCN1 expression group, 27/137 cases (19.7%) had tumor recurrence, and 10/175 cases (5.7%) in low FSCN1 level (ⅹ(2) = 14.40 p = 0.000). Reduction of FSCN1 suppressed the invasion level of GH3 cells through transwells test. In addition, reduction of FSCN1 can obviously down-regulate the level of Notch1 and DLL3. Our data may help in deciding whether FSCN1 can be a predictor for invasion and recurrence of PAs.
Collapse
Affiliation(s)
- Chunhui Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Cao
- Neurosurgical Department of Beijing Tiantan Hospital, Beijing, China
| | - Songbai Gui
- Neurosurgical Department of Beijing Tiantan Hospital, Beijing, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Gong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Goto M, Hojo M, Ando M, Kita A, Kitagawa M, Ohtsuka T, Kageyama R, Miyamoto S. Hes1 and Hes5 are required for differentiation of pituicytes and formation of the neurohypophysis in pituitary development. Brain Res 2015; 1625:206-17. [PMID: 26348989 DOI: 10.1016/j.brainres.2015.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
The pituitary gland is a critical endocrine organ regulating diverse physiological functions, including homeostasis, metabolism, reproduction, and growth. It is composed of two distinct entities: the adenohypophysis, including the anterior and intermediate lobes, and the neurohypophysis known as the posterior lobe. The neurohypophysis is composed of pituicytes (glial cells) and axons projected from hypothalamic neurons. The adenohypophysis derives from Rathke's pouch, whereas the neurohypophysis derives from the infundibulum, an evagination of the ventral diencephalon. Molecular mechanisms of adenohypophysis development are much better understood, but little is known about mechanisms that regulate neurohypophysis development. Hes genes, known as Notch effectors, play a crucial role in specifying cellular fates during the development of various tissues and organs. Here, we report that the ventral diencephalon fails to evaginate resulting in complete loss of the posterior pituitary lobe in Hes1(-/-); Hes5(+/-) mutant embryos. In these mutant mice, progenitor cells are differentiated into neurons at the expense of pituicytes in the ventral diencephalon. In the developing neurohypophysis, the proliferative zone is located at the base of the infundibulum. Thus, Hes1 and Hes5 modulate not only maintenance of progenitor cells but also pituicyte versus neuron fate specification during neurohypophysis development.
Collapse
Affiliation(s)
- Masanori Goto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masato Hojo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Neurosurgery, Shiga Medical Center for Adults, 5-4-30 Moriyama, Moriyama, Shiga 524-8524, Japan.
| | - Mitsushige Ando
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aya Kita
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masashi Kitagawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiyuki Ohtsuka
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015; 406:235-46. [PMID: 26318021 DOI: 10.1016/j.ydbio.2015.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023]
Abstract
The mammalian arcuate nucleus (ARC) houses neurons critical for energy homeostasis and sexual maturation. Proopiomelanocortin (POMC) and Neuropeptide Y (NPY) neurons function to balance energy intake and Kisspeptin neurons are critical for the onset of puberty and reproductive function. While the physiological roles of these neurons have been well established, their development remains unclear. We have previously shown that Notch signaling plays an important role in cell fate within the ARC of mice. Active Notch signaling prevented neural progenitors from differentiating into feeding circuit neurons, whereas conditional loss of Notch signaling lead to a premature differentiation of these neurons. Presently, we hypothesized that Kisspeptin neurons would similarly be affected by Notch manipulation. To address this, we utilized mice with a conditional deletion of the Notch signaling co-factor Rbpj-κ (Rbpj cKO), or mice persistently expressing the Notch1 intracellular domain (NICD tg) within Nkx2.1 expressing cells of the developing hypothalamus. Interestingly, we found that in both models, a lack of Kisspeptin neurons are observed. This suggests that Notch signaling must be properly titrated for formation of Kisspeptin neurons. These results led us to hypothesize that Kisspeptin neurons of the ARC may arise from a different lineage of intermediate progenitors than NPY neurons and that Notch was responsible for the fate choice between these neurons. To determine if Kisspeptin neurons of the ARC differentiate similarly through a Pomc intermediate, we utilized a genetic model expressing the tdTomato fluorescent protein in all cells that have ever expressed Pomc. We observed some Kisspeptin expressing neurons labeled with the Pomc reporter similar to NPY neurons, suggesting that these distinct neurons can arise from a common progenitor. Finally, we hypothesized that temporal differences leading to premature depletion of progenitors in cKO mice lead to our observed phenotype. Using a BrdU birthdating paradigm, we determined the percentage of NPY and Kisspeptin neurons born on embryonic days 11.5, 12.5, and 13.5. We found no difference in the timing of differentiation of either neuronal subtype, with a majority occurring at e11.5. Taken together, our findings suggest that active Notch signaling is an important molecular switch involved in instructing subpopulations of progenitor cells to differentiate into Kisspeptin neurons.
Collapse
|