1
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Qiao M, Li Y, Yan S, Zhang RJ, Dong H. Modulation of arterial wall remodeling by mechanical stress: Focus on abdominal aortic aneurysm. Vasc Med 2025; 30:238-249. [PMID: 39895313 DOI: 10.1177/1358863x241309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The rupture of an abdominal aortic aneurysm (AAA) poses a significant threat, with a high mortality rate, and the mechanical stability of the arterial wall determines both its growth and potential for rupture. Owing to extracellular matrix (ECM) degradation, wall-resident cells are subjected to an aberrant mechanical stress environment. In response to stress, the cellular mechanical signaling pathway is activated, initiating the remodeling of the arterial wall to restore stability. A decline in mechanical signal responsiveness, coupled with inadequate remodeling, significantly contributes to the AAA's progressive expansion and eventual rupture. In this review, we summarize the main stresses experienced by the arterial wall, emphasizing the critical role of the ECM in withstanding stress and the importance of stress-exposed cells in maintaining mechanical stability. Furthermore, we will discuss the application of biomechanical analyses as a predictive tool for assessing AAA stability.
Collapse
Affiliation(s)
- Maolin Qiao
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Yaling Li
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Sheng Yan
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Rui Jing Zhang
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Honglin Dong
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Ramachandra AB, Sharma P, De Man R, Nikola F, Guerrera N, Doddaballapur P, Cavinato C, Choi R, Raredon MSB, Szafron JM, Zhuang ZW, Barnthaler T, Justet A, Akingbesote ND, Abu Hussein NS, Diggs L, Perry RJ, Adams TS, Singh I, Kaminski N, Yan X, Tellides G, Humphrey JD, Manning EP. Hypoxia-Induced Cardiopulmonary Remodeling and Recovery: Critical Roles of the Proximal Pulmonary Artery, Macrophages, and Exercise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.15.638455. [PMID: 40027757 PMCID: PMC11870459 DOI: 10.1101/2025.02.15.638455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Hypoxemia impairs cardiopulmonary function. We investigated pulmonary artery remodeling in mice exposed to chronic hypoxia for up to five weeks and quantified associated changes in cardiac and lung function, without or with subsequent normoxic recovery in the absence or presence of exercise or pharmacological intervention. Hypoxia-induced stiffening of the proximal pulmonary artery stemmed primarily from remodeling of the adventitial collagen, which resulted in part from altered inter-cellular signaling associated with phenotypic changes in the mural smooth muscle cells and macrophages. Such stiffening appeared to precede and associate with both right ventricular and lung dysfunction, with changes emerging to similar degrees regardless of the age of onset of hypoxia during postnatal development. Key homeostatic target values of the wall mechanics were recovered by the pulmonary arteries with normoxic recovery while other values recovered only partially. Overall cardiopulmonary dysfunction due to hypoxia was similarly only partially reversible. Remodeling of the cardiopulmonary system due to hypoxia is a complex, multi-scale process that involves maladaptations of the proximal pulmonary artery.
Collapse
|
4
|
Jiang B, Ren P, He C, Wang M, Murtada SI, Ruiz-Rodríguez MJ, Chen Y, Ramachandra AB, Li G, Qin L, Assi R, Schwartz MA, Humphrey JD, Tellides G. Short-term disruption of TGF-β signaling in adult mice renders the aorta vulnerable to hypertension-induced dissection. JCI Insight 2025; 10:e182629. [PMID: 39932797 PMCID: PMC11949005 DOI: 10.1172/jci.insight.182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, a common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure, as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by cotreatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice following 1 week of disrupted TGF-β signaling in smooth muscle cells (SMCs). Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes (as did angiotensin II) that was prevented by hydralazine. Initial medial injury manifested as blood extravasation among SMCs and fibrillar matrix, progressive delamination from accumulation of blood, and stretched or ruptured SMCs with persistent attachments to elastic fibers. Altered regulatory contractile molecule expression was not of pathological importance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically basement membrane-associated multiplexin collagen, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure can cause dissection in aortas rendered vulnerable by inhibition of TGF-β-driven extracellular matrix production by SMCs.
Collapse
MESH Headings
- Animals
- Mice
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/etiology
- Transforming Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Hypertension/metabolism
- Hypertension/pathology
- Disease Models, Animal
- Aorta/pathology
- Aorta/metabolism
- Aorta/drug effects
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Blood Pressure/drug effects
- Angiotensin II/pharmacology
- Mice, Inbred C57BL
- Norepinephrine/metabolism
- Norepinephrine/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Extracellular Matrix/metabolism
- Extracellular Matrix/drug effects
- Humans
Collapse
Affiliation(s)
- Bo Jiang
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Pengwei Ren
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Changshun He
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Mo Wang
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | | | - Yu Chen
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Abhay B. Ramachandra
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | - Guangxin Li
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Lingfeng Qin
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
| | - Roland Assi
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
- Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Martin A. Schwartz
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
- Department of Medicine (Cardiology)
- Department of Cell Biology, and
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
- Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery (Cardiac), Yale School of Medicine, New Haven, Connecticut, USA
- Program in Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
5
|
Cantalupo A, Asano K, Dikalov S, Gordon D, Ramirez F. Fibrillin-1 Deficiency Perturbs Aortic Cholinergic Relaxation and Adrenergic Contraction in a Mouse Model of Early Onset Progressively Severe Marfan Syndrome. J Vasc Res 2025; 62:96-108. [PMID: 39827863 PMCID: PMC11961321 DOI: 10.1159/000542481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/03/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS. METHODS Wire myography, immunoblotting, measurements of aortic NO, and superoxide levels were used to compare vasomotor function, contractile protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild-type littermates. RESULTS Isometric force measurements of aortic rings from 16-day-old male Fbn1mgR/mgR mice revealed a significant reduction in acetylcholine-induced relaxation and increased phenylephrine (PE)-promoted contractility, associated with abnormally low eNOSSer1177 phosphorylation, decreased NO production, and augmented superoxide levels. Greater aortic contractility was associated with α1-adrenoceptor upregulation and normal levels of contractile proteins. While iNOS inhibition had no effect on vasomotor functions, mutant aortic rings preincubated with a nonspecific NOS inhibitor yielded a greater PE response, implying a significant contribution of endothelial dysfunction to aortic hypercontractility. CONCLUSION Impaired eNOS signaling disrupts aortic cholinergic relaxation and adrenergic contraction in MFS mice with dissecting TAA. INTRODUCTION The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS. METHODS Wire myography, immunoblotting, measurements of aortic NO, and superoxide levels were used to compare vasomotor function, contractile protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild-type littermates. RESULTS Isometric force measurements of aortic rings from 16-day-old male Fbn1mgR/mgR mice revealed a significant reduction in acetylcholine-induced relaxation and increased phenylephrine (PE)-promoted contractility, associated with abnormally low eNOSSer1177 phosphorylation, decreased NO production, and augmented superoxide levels. Greater aortic contractility was associated with α1-adrenoceptor upregulation and normal levels of contractile proteins. While iNOS inhibition had no effect on vasomotor functions, mutant aortic rings preincubated with a nonspecific NOS inhibitor yielded a greater PE response, implying a significant contribution of endothelial dysfunction to aortic hypercontractility. CONCLUSION Impaired eNOS signaling disrupts aortic cholinergic relaxation and adrenergic contraction in MFS mice with dissecting TAA.
Collapse
MESH Headings
- Animals
- Marfan Syndrome/physiopathology
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Marfan Syndrome/complications
- Fibrillin-1/deficiency
- Fibrillin-1/genetics
- Male
- Disease Models, Animal
- Nitric Oxide Synthase Type III/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/drug effects
- Nitric Oxide/metabolism
- Vasodilation/drug effects
- Vasoconstriction/drug effects
- Nitric Oxide Synthase Type II/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/etiology
- Acetylcholine/pharmacology
- Superoxides/metabolism
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/drug effects
- Signal Transduction
- Phosphorylation
- Mice, Inbred C57BL
- Adrenergic alpha-1 Receptor Agonists/pharmacology
- Severity of Illness Index
- Phenylephrine/pharmacology
- Mice
- Vasodilator Agents/pharmacology
- Disease Progression
- Adipokines
Collapse
Affiliation(s)
- Anna Cantalupo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keiichi Asano
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dylan Gordon
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Holzapfel GA, Humphrey JD, Ogden RW. Biomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling. J R Soc Interface 2025; 22:20240361. [PMID: 39876788 PMCID: PMC11775666 DOI: 10.1098/rsif.2024.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 11/01/2024] [Indexed: 01/31/2025] Open
Abstract
The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery. Indeed, most cells within load-bearing soft tissues are highly sensitive to their local mechanical environment, which can typically be quantified using methods of continuum mechanics only after the constitutive relations are determined from appropriate data, often multi-axial. In this review, we discuss some of the many experimental findings of the structure and the mechanical response, as well as constitutive formulations for 10 representative soft tissues or organs, and present basic concepts of mechanobiology to support continuum biomechanical studies. We conclude by encouraging similar research along these lines, but also the need for models that can describe and predict evolving tissue properties under many conditions, ranging from normal development to disease progression and wound healing. An important foundation for biomechanics and mechanobiology now exists and methods for collecting detailed multi-scale data continue to progress. There is, thus, considerable opportunity for continued advancement of mechanobiology and biomechanics.
Collapse
Affiliation(s)
- Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jay D. Humphrey
- Department of Biomedical Engineering and Vascular Biology & Therapeutics Program, Yale University and Yale School of Medicine, New Haven, CT, USA
| | - Ray W. Ogden
- School of Mathematics and Statistics, University of Glasgow, Scotland, UK
| |
Collapse
|
7
|
Pi D, Braun J, Dutta S, Patra D, Bougaran P, Mompeón A, Ma F, Stock SR, Choi S, García-Ortega L, Pratama MY, Pichardo D, Ramkhelawon B, Benedito R, Bautch VL, Ornitz DM, Goyal Y, Iruela-Arispe ML. Resolving the design principles that control postnatal vascular growth and scaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627758. [PMID: 39713449 PMCID: PMC11661209 DOI: 10.1101/2024.12.10.627758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
After birth, tissues grow continuously until reaching adult size, with each organ exhibiting unique cellular dynamics, growth patterns, and (stem or non-stem) cell sources. Using a suite of experimental and computational multiscale approaches, we found that aortic expansion is guided by specific biological principles and scales with the vertebral column rather than animal body weight. Expansion proceeds via two distinct waves of arterial cell proliferation along blood flow that are spatially stochastic, yet temporally coordinated. Each wave exhibits unique cell cycle kinetics and properties, with the first wave exhibiting cell cycle durations as fast as 6 hours. Single-cell RNA sequencing showed changes in fatty acid metabolism concomitant with an increase in cell size. Mathematical modeling and experiments indicated endothelial cell extrusion is essential for homeostatic aortic growth and balancing excess proliferation. In a genetic model of achondroplasia, the aorta achieves proper scaling through enhanced cell extrusion while maintaining normal proliferation dynamics. Collectively, these results provide a blueprint of the principles that orchestrate aortic growth which depends entirely on differentiated cell proliferation rather than resident stem cells.
Collapse
|
8
|
Weiss D, Yeung N, Ramachandra AB, Humphrey JD. Transcriptional regulation of postnatal aortic development. Cells Dev 2024; 180:203971. [PMID: 39426523 PMCID: PMC11634634 DOI: 10.1016/j.cdev.2024.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical & Materials Engineering, University of Denver, Denver, CO, USA
| | - N Yeung
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. SCIENCE ADVANCES 2024; 10:eadi6286. [PMID: 39167642 PMCID: PMC11338229 DOI: 10.1126/sciadv.adi6286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Tissue mechanical properties are determined mainly by the extracellular matrix (ECM) and actively maintained by resident cells. Despite its broad importance to biology and medicine, tissue mechanical homeostasis remains poorly understood. To explore cell-mediated control of tissue stiffness, we developed mutations in the mechanosensitive protein talin 1 to alter cellular sensing of ECM. Mutation of a mechanosensitive site between talin 1 rod-domain helix bundles R1 and R2 increased cell spreading and tension exertion on compliant substrates. These mutations promote binding of the ARP2/3 complex subunit ARPC5L, which mediates the change in substrate stiffness sensing. Ascending aortas from mice bearing these mutations showed less fibrillar collagen, reduced axial stiffness, and lower rupture pressure. Together, these results demonstrate that cellular stiffness sensing contributes to ECM mechanics, directly supporting the mechanical homeostasis hypothesis and identifying a mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
Affiliation(s)
- Manasa Chanduri
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Igor Barsukov
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Miusi Shi
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Xinzhe Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Amit Datye
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Florine Collin
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - TuKiet Lam
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Udo D. Schwarz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA
| | - Suxia Bai
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin T Goult
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
10
|
Cavinato C, Spronck B, Caulk AW, Murtada SI, Humphrey JD. AT1b receptors contribute to regional disparities in angiotensin II mediated aortic remodelling in mice. J R Soc Interface 2024; 21:20240110. [PMID: 39192727 PMCID: PMC11350382 DOI: 10.1098/rsif.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The renin-angiotensin system plays a key role in regulating blood pressure, which has motivated many investigations of associated mouse models of hypertensive arterial remodelling. Such studies typically focus on histological and cell biological changes, not wall mechanics. This study explores tissue-level ramifications of chronic angiotensin II infusion in wild-type (WT) and type 1b angiotensin II (AngII) receptor null (Agtr1b -/-) mice. Biaxial biomechanical and immunohistological changes were quantified and compared in the thoracic and abdominal aorta in these mice following 14 and 28 days of angiotensin II infusion. Preliminary results showed that changes were largely independent of sex. Associated thickening and stiffening of the aortic wall in male mice differed significantly between thoracic and abdominal regions and between genotypes. Notwithstanding multiple biomechanical changes in both WT and Agtr1b -/- mice, AngII infusion caused distinctive wall thickening and inflammation in the descending thoracic aorta of WT, but not Agtr1b -/-, mice. Our study underscores the importance of exploring differential roles of receptor-dependent angiotensin II signalling along the aorta and its influence on distinct cell types involved in regional histomechanical remodelling. Disrupting the AT1b receptor primarily affected inflammatory cell responses and smooth muscle contractility, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Franklin MK, Sawada H, Ito S, Howatt DA, Amioka N, Liang CL, Zhang N, Graf DB, Moorleghen JJ, Katsumata Y, Lu HS, Daugherty A. β-Aminopropionitrile Induces Distinct Pathologies in the Ascending and Descending Thoracic Aortic Regions of Mice. Arterioscler Thromb Vasc Biol 2024; 44:1555-1569. [PMID: 38779856 PMCID: PMC11209774 DOI: 10.1161/atvbaha.123.320402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND β-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.
Collapse
MESH Headings
- Animals
- Aminopropionitrile/toxicity
- Aminopropionitrile/pharmacology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Female
- Male
- Mice, Inbred C57BL
- Disease Models, Animal
- Aortic Rupture/chemically induced
- Aortic Rupture/pathology
- Aortic Rupture/metabolism
- Aortic Rupture/prevention & control
- Mice
- Vascular Remodeling/drug effects
- Dilatation, Pathologic
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Age Factors
- Time Factors
- Sex Factors
- Cell Proliferation/drug effects
- Protein-Lysine 6-Oxidase/metabolism
Collapse
Affiliation(s)
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Ching-Ling Liang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Nancy Zhang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David B. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
12
|
Manning EP, Mishall P, Ramachandra AB, Hassab AHM, Lamy J, Peters DC, Murphy TE, Heerdt P, Singh I, Downie S, Choudhary G, Tellides G, Humphrey JD. Stiffening of the human proximal pulmonary artery with increasing age. Physiol Rep 2024; 12:e16090. [PMID: 38884325 PMCID: PMC11181131 DOI: 10.14814/phy2.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Adverse effects of large artery stiffening are well established in the systemic circulation; stiffening of the proximal pulmonary artery (PPA) and its sequelae are poorly understood. We combined in vivo (n = 6) with ex vivo data from cadavers (n = 8) and organ donors (n = 13), ages 18 to 89, to assess whether aging of the PPA associates with changes in distensibility, biaxial wall strain, wall thickness, vessel diameter, and wall composition. Aging exhibited significant negative associations with distensibility and cyclic biaxial strain of the PPA (p ≤ 0.05), with decreasing circumferential and axial strains of 20% and 7%, respectively, for every 10 years after 50. Distensibility associated directly with diffusion capacity of the lung (R2 = 0.71, p = 0.03). Axial strain associated with right ventricular ejection fraction (R2 = 0.76, p = 0.02). Aging positively associated with length of the PPA (p = 0.004) and increased luminal caliber (p = 0.05) but showed no significant association with mean wall thickness (1.19 mm, p = 0.61) and no significant differences in the proportions of mural elastin and collagen (p = 0.19) between younger (<50 years) and older (>50) ex vivo samples. We conclude that age-related stiffening of the PPA differs from that of the aorta; microstructural remodeling, rather than changes in overall geometry, may explain age-related stiffening.
Collapse
Affiliation(s)
- Edward P. Manning
- Section of Pulmonary, Critical Care, and Pulmonary MedicineYale School of MedicineNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Priti Mishall
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of Ophthalmology and Visual SciencesAlbert Einstein College of MedicineBronxNew YorkUSA
| | | | | | - Jerome Lamy
- Université Paris Cité, INSERM U970, PARCC, APHP Hôpital Européen Georges PompidouParisFrance
| | - Dana C. Peters
- Department of RadiologyYale School of MedicineNew HavenConnecticutUSA
| | - Terrence E. Murphy
- Department of Public Health SciencesThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Paul Heerdt
- Department of AnesthesiologyYale School of MedicineNew HavenConnecticutUSA
| | - Inderjit Singh
- Section of Pulmonary, Critical Care, and Pulmonary MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Sherry Downie
- Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gaurav Choudhary
- Lifespan Cardiovascular Institute, Providence VA Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School, Brown UniversityProvidenceRhode IslandUSA
| | - George Tellides
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Surgery (Cardiac)Yale School of MedicineNew HavenConnecticutUSA
| | - Jay D. Humphrey
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
13
|
Estrada AC, Irons L, Tellides G, Humphrey JD. Multiscale computational model of aortic remodeling following postnatal disruption of TGFβ signaling. J Biomech 2024; 169:112152. [PMID: 38763809 PMCID: PMC11141772 DOI: 10.1016/j.jbiomech.2024.112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The healthy adult aorta is a remarkably resilient structure, able to resist relentless cardiac-induced and hemodynamic loads under normal conditions. Fundamental to such mechanical homeostasis is the mechano-sensitive cell signaling that controls gene products and thus the structural integrity of the wall. Mouse models have shown that smooth muscle cell-specific disruption of transforming growth factor-beta (TGFβ) signaling during postnatal development compromises this resiliency, rendering the aortic wall susceptible to aneurysm and dissection under normal mechanical loading. By contrast, disruption of such signaling in the adult aorta appears to introduce a vulnerability that remains hidden under normal loading, but manifests under increased loading as experienced during hypertension. We present a multiscale (transcript to tissue) computational model to examine possible reasons for compromised mechanical homeostasis in the adult aorta following reduced TGFβ signaling in smooth muscle cells.
Collapse
Affiliation(s)
- Ana C Estrada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Linda Irons
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Cardiothoracic, Yale School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Jiang B, Ren P, He C, Wang M, Murtada SI, Chen Y, Ramachandra AB, Li G, Qin L, Assi R, Schwartz MA, Humphrey JD, Tellides G. Short-Term Disruption of TGFβ Signaling in Adult Mice Renders the Aorta Vulnerable to Hypertension-Induced Dissection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590484. [PMID: 38712205 PMCID: PMC11071440 DOI: 10.1101/2024.04.22.590484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, the common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice 1 week after disruption of TGFβ signaling in smooth muscle cells. Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes that was rescued by hydralazine; results were similar with angiotensin II. Changes in regulatory contractile molecule expression were not of pathological significance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically type XVIII, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure cause dissection in aortas rendered vulnerable by inhibition of TGFβ-driven extracellular matrix production by smooth muscle cells. A corollary is that medial fibrosis, a frequent feature of medial degeneration, may afford some protection against aortic dissection.
Collapse
|
15
|
Rego BV, Murtada SI, Li G, Tellides G, Humphrey JD. Multiscale insights into postnatal aortic development. Biomech Model Mechanobiol 2024; 23:687-701. [PMID: 38151614 PMCID: PMC11419831 DOI: 10.1007/s10237-023-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Despite its vital importance for establishing proper cardiovascular function, the process through which the vasculature develops and matures postnatally remains poorly understood. From a clinical perspective, an ability to mechanistically model the developmental time course in arteries and veins, as well as to predict how various pathologies and therapeutic interventions alter the affected vessels, promises to improve treatment strategies and long-term clinical outcomes, particularly in pediatric patients suffering from congenital heart defects. In the present study, we conducted a multiscale investigation into the postnatal development of the murine thoracic aorta, examining key allometric relations as well as relationships between in vivo mechanical stresses, collagen and elastin expression, and the gradual accumulation of load-bearing constituents within the aortic wall. Our findings suggest that the production of fibrillar collagens in the developing aorta associates strongly with the ratio of circumferential stresses between systole and diastole, hence emphasizing the importance of a pulsatile mechanobiological stimulus. Moreover, rates of collagen turnover and elastic fiber compaction can be inferred directly by synthesizing transcriptional data and quantitative histological measurements of evolving collagen and elastin content. Consistent with previous studies, we also observed that wall shear stresses acting on the aorta are similar at birth and in maturity, supporting the hypothesis that at least some stress targets are established early in development and maintained thereafter, thus providing a possible homeostatic basis to guide future experiments and inform future predictive modeling.
Collapse
Affiliation(s)
- Bruno V Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Tarraf SA, de Souza RB, Herrick A, Pereira LV, Bellini C. The Fbn1 gene variant governs passive ascending aortic mechanics in the mgΔ lpn mouse model of Marfan syndrome when superimposed to perlecan haploinsufficiency. Front Cardiovasc Med 2024; 11:1319164. [PMID: 38545339 PMCID: PMC10965555 DOI: 10.3389/fcvm.2024.1319164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
Introduction Ascending thoracic aortic aneurysms arise from pathological tissue remodeling that leads to abnormal wall dilation and increases the risk of fatal dissection/rupture. Large variability in disease manifestations across family members who carry a causative genetic variant for thoracic aortic aneurysms suggests that genetic modifiers may exacerbate clinical outcomes. Decreased perlecan expression in the aorta of mgΔlpn mice with severe Marfan syndrome phenotype advocates for exploring perlecan-encoding Hspg2 as a candidate modifier gene. Methods To determine the effect of concurrent Hspg2 and Fbn1 mutations on the progression of thoracic aortopathy, we characterized the microstructure and passive mechanical response of the ascending thoracic aorta in female mice of four genetic backgrounds: wild-type, heterozygous with a mutation in the Fbn1 gene (mgΔlpn), heterozygous with a mutation in the Hspg2 gene (Hspg2+/-), and double mutants carrying both the Fbn1 and Hspg2 variants (dMut). Results Elastic fiber fragmentation and medial disarray progress from the internal elastic lamina outward as the ascending thoracic aorta dilates in mgΔlpn and dMut mice. Concurrent increase in total collagen content relative to elastin reduces energy storage capacity and cyclic distensibility of aortic tissues from mice that carry the Fbn1 variant. Inherent circumferential tissue stiffening strongly correlates with the severity of aortic dilatation in mgΔlpn and dMut mice. Perlecan haploinsufficiency superimposed to the mgΔlpn mutation curbs the viability of dMut mice, increases the occurrence of aortic enlargement, and reduces the axial stretch in aortic tissues. Discussion Overall, our findings show that dMut mice are more vulnerable than mgΔlpn mice without an Hspg2 mutation, yet later endpoints and additional structural and functional readouts are needed to identify causative mechanisms.
Collapse
Affiliation(s)
- Samar A. Tarraf
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | | | - Ashley Herrick
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Lygia V. Pereira
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
17
|
Chanduri MVL, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Mechanosensing through talin 1 contributes to tissue mechanical homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.03.556084. [PMID: 38328095 PMCID: PMC10849504 DOI: 10.1101/2023.09.03.556084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
|
18
|
Weiss D, Rego BV, Cavinato C, Li DS, Kawamura Y, Emuna N, Humphrey JD. Effects of Age, Sex, and Extracellular Matrix Integrity on Aortic Dilatation and Rupture in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e358-e372. [PMID: 37470181 PMCID: PMC10528515 DOI: 10.1161/atvbaha.123.319122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Transmural failure of the aorta is responsible for substantial morbidity and mortality; it occurs when mechanical stress exceeds strength. The aortic root and ascending aorta are susceptible to dissection and rupture in Marfan syndrome, a connective tissue disorder characterized by a progressive reduction in elastic fiber integrity. Whereas competent elastic fibers endow the aorta with compliance and resilience, cross-linked collagen fibers confer stiffness and strength. We hypothesized that postnatal reductions in matrix cross-linking increase aortopathy when turnover rates are high. METHODS We combined ex vivo biaxial mechanical testing with multimodality histological examinations to quantify expected age- and sex-dependent structural vulnerability of the ascending aorta in Fbn1C1041G/+ Marfan versus wild-type mice without and with 4-week exposures to β-aminopropionitrile, an inhibitor of lysyl oxidase-mediated cross-linking of newly synthesized elastic and collagen fibers. RESULTS We found a strong β-aminopropionitrile-associated sexual dimorphism in aortic dilatation in Marfan mice and aortic rupture in wild-type mice, with dilatation correlating with compromised elastic fiber integrity and rupture correlating with compromised collagen fibril organization. A lower incidence of rupture of β-aminopropionitrile-exposed Marfan aortas associated with increased lysyl oxidase, suggesting a compensatory remodeling of collagen that slows disease progression in the otherwise compromised Fbn1C1041G/+ aorta. CONCLUSIONS Collagen fiber structure and function in the Marfan aorta are augmented, in part, by increased lysyl oxidase in female and especially male mice, which improves structural integrity, particularly via fibrils in the adventitia. Preserving or promoting collagen cross-linking may represent a therapeutic target for an otherwise vulnerable aorta.
Collapse
Affiliation(s)
- Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Bruno V Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Yuki Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.)
| |
Collapse
|
19
|
Crawshaw JR, Flegg JA, Bernabeu MO, Osborne JM. Mathematical models of developmental vascular remodelling: A review. PLoS Comput Biol 2023; 19:e1011130. [PMID: 37535698 PMCID: PMC10399886 DOI: 10.1371/journal.pcbi.1011130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Over the past 40 years, there has been a strong focus on the development of mathematical models of angiogenesis, while developmental remodelling has received little such attention from the mathematical community. Sprouting angiogenesis can be seen as a very crude way of laying out a primitive vessel network (the raw material), while remodelling (understood as pruning of redundant vessels, diameter control, and the establishment of vessel identity and hierarchy) is the key to turning that primitive network into a functional network. This multiscale problem is of prime importance in the development of a functional vasculature. In addition, defective remodelling (either during developmental remodelling or due to a reactivation of the remodelling programme caused by an injury) is associated with a significant number of diseases. In this review, we discuss existing mathematical models of developmental remodelling and explore the important contributions that these models have made to the field of vascular development. These mathematical models are effectively used to investigate and predict vascular development and are able to reproduce experimentally observable results. Moreover, these models provide a useful means of hypothesis generation and can explain the underlying mechanisms driving the observed structural and functional network development. However, developmental vascular remodelling is still a relatively new area in mathematical biology, and many biological questions remain unanswered. In this review, we present the existing modelling paradigms and define the key challenges for the field.
Collapse
Affiliation(s)
- Jessica R. Crawshaw
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Osborne
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Sachan N, Phoon CKL, Zilberberg L, Kugler MC, Ene T, Mintz SB, Murtada SI, Weiss D, Fishman GI, Humphrey JD, Rifkin DB. TGFβ-2 haploinsufficiency causes early death in mice with Marfan syndrome. Matrix Biol 2023; 121:41-55. [PMID: 37217119 PMCID: PMC10527763 DOI: 10.1016/j.matbio.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
To assess the contribution of individual TGF-β isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-β1, 2, or 3 heterozygous null mutation. The loss of TGF-β2, and only TGF-β2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-β2 in the postnatal development of the heart, aorta and lungs.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| | - Colin K L Phoon
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Lior Zilberberg
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Matthias C Kugler
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Taylor Ene
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Shana B Mintz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Glenn I Fishman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Daniel B Rifkin
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
22
|
Ban E, Humphrey JD. New Computational Approach to Shunt Design in Congenital Heart Palliation. J Biomech 2023; 152:111568. [PMID: 37099931 DOI: 10.1016/j.jbiomech.2023.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Shunts are commonly used to redirect blood to pulmonary arteries in procedures that palliate congenital cardiovascular defects. Previous clinical studies and hemodynamic simulations reveal a critical role of shunt diameter in balancing flow to pulmonary versus systemic vessels, but the biomechanical process of creating the requisite anastomosis between the shunt and host vessel has received little attention. Here, we report a new Lagrange multiplier-based finite element approach that represents the shunt and host vessels as individual structures and predicts the anastomosis geometry and attachment force that result when the shunt is sutured at an incision in the host, followed by pressurization. Simulations suggest that anastomosis orifice opening increases markedly with increasing length of the host incision and moderately with increasing blood pressure. The host artery is further predicted to conform to common stiff synthetic shunts, whereas more compliant umbilical vessel shunts should conform to the host, with orifice area transitioning between these two extremes via a Hill-type function of shunt stiffness. Moreover, a direct relationship is expected between attachment forces and shunt stiffness. This new computational approach promises to aid in surgical planning for diverse vascular shunts by predicting in vivo pressurized geometries.
Collapse
Affiliation(s)
- E Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Murtada SI, Ramachandra AB, Humphrey JD. Ex vivo biomechanical characterization of umbilical vessels: Possible shunts in congenital heart palliation. J Biomech 2023; 151:111518. [PMID: 36906968 DOI: 10.1016/j.jbiomech.2023.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Children born with congenital heart defects typically undergo staged palliative surgeries to reconstruct the circulation to improve transport of deoxygenated blood to the lungs. As part of the first surgery, a temporary shunt (Blalock-Thomas-Taussig) is often created in neonates to connect a systemic and a pulmonary artery. Standard-of-care shunts are synthetic, which can lead to thrombosis, and much stiffer than the two host vessels, which can cause adverse mechanobiological responses. Moreover, the neonatal vasculature can undergo significant changes in size and structure over a short period, thus constraining the use of a non-growing synthetic shunt. Recent studies suggest that autologous umbilical vessels could serve as improved shunts, but there has not been a detailed biomechanical characterization of the four primary vessels - subclavian artery, pulmonary artery, umbilical vein, and umbilical artery. Herein, we biomechanically phenotype umbilical veins and arteries from prenatal mice (E18.5) and compare them to subclavian and pulmonary arteries harvested at two critical postnatal developmental ages (P10, P21). Comparisons include age-specific physiological conditions and simulated 'surgical-like' shunt conditions. Results suggest that the intact umbilical vein is a better choice as a shunt than the umbilical artery due to concerns with lumen closure and constriction related intramural damage in the latter. Yet, decellularization of umbilical arteries may be a viable alternative, with the possibility of host cellular infiltration and subsequent remodeling. Given recent efforts using autologous umbilical vessels as Blalock-Thomas-Taussig shunts in a clinical trial, our findings highlight aspects of the associated biomechanics that deserve further investigation.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Tellides G, Humphrey JD. Smooth Muscle Cell Death Drives an Osteochondrogenic Phenotype and Severe Proximal Vascular Disease in Progeria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523266. [PMID: 36711514 PMCID: PMC9882088 DOI: 10.1101/2023.01.10.523266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end of life. We associate progressive deterioration of arterial structure and function with single cell transcriptional changes, which reveals a rapid disease process in proximal elastic arteries that largely spares distal muscular arteries. These data suggest a novel sequence of progressive vascular disease in progeria: initial extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death in proximal arteries, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotypic modulation that results in an accumulation of proteoglycans that thickens the wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased pulse wave velocity drives left ventricular diastolic dysfunction, the primary diagnosis in progeria children. Mitigating smooth muscle cell loss / phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Dostie AM, Lea HG, Lee UN, van Neel TL, Berthier E, Theberge AB. Freestanding hydrogel lumens for modeling blood vessels and vasodilation. SLAS Technol 2022; 27:344-349. [PMID: 35970321 PMCID: PMC9997118 DOI: 10.1016/j.slast.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/05/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Lumen structures exist throughout the human body, and the vessels of the circulatory system are essential for carrying nutrients and oxygen and regulating inflammation. Vasodilation, the widening of the blood vessel lumen, is important to the immune response as it increases blood flow to a site of inflammation, raises local temperature, and enables optimal immune system function. A common method for studying vasodilation uses excised vessels from animals; major drawbacks include heterogeneity in vessel shape and size, time-consuming procedures, sacrificing animals, and differences between animal and human biology. We have developed a simple, user-friendly in vitro method to form freestanding cell-laden hydrogel rings from collagen and quantitatively measure the effects of vasodilators on ring size. The hydrogel rings are composed of collagen I and can be laden with human vascular smooth muscle cells, a major cellular and structural component of blood vessels, or lined with endothelial cells in the lumen. The methods presented include a 3D printed device (which is amenable to future fabrication by injection molding) and commercially available components (e.g., Teflon tubing or a syringe) to form hydrogel rings between 2.6-4.6 mm outer diameter and 0.79-1.0 mm inner diameter. Here we demonstrate a significant difference in ring area in the presence of a known vasodilator, fasudil (p < 0.0001). Our method is easy to implement and provides a foundation for a medium-throughput solution to generating vessel model structures for future investigations of the fundamental mechanisms of vasodilation (e.g., studying uncharacterized endogenous molecules that may have vasoactivity) and testing vasoactive drugs.
Collapse
Affiliation(s)
- Ashley M Dostie
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Hannah G Lea
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ulri N Lee
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA; Department of Urology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
26
|
Irons L, Estrada AC, Humphrey JD. Intracellular signaling control of mechanical homeostasis in the aorta. Biomech Model Mechanobiol 2022; 21:1339-1355. [PMID: 35867282 PMCID: PMC10547132 DOI: 10.1007/s10237-022-01593-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Mature arteries exhibit a preferred biomechanical state in health evidenced by a narrow range of intramural and wall shear stresses. When stresses are perturbed by changes in blood pressure or flow, homeostatic mechanisms tend to restore target values via altered contractility and/or cell and matrix turnover. In contrast, vascular disease associates with compromised homeostasis, hence we must understand mechanisms underlying mechanical homeostasis and its robustness. Here, we use a multiscale computational model wherein mechanosensitive intracellular signaling pathways drive arterial growth and remodeling. First, we identify an ensemble of cell-level parameterizations where tissue-level responses are well-regulated and adaptive to hemodynamic perturbations. The responsible mechanism is persistent multiscale negative feedback whereby mechanosensitive signaling drives mass turnover until homeostatic target stresses are reached. This demonstrates how robustness emerges despite inevitable cell and individual heterogeneity. Second, we investigate tissue-level effects of signaling node knockdowns (ATIR, ROCK, TGF[Formula: see text]RII, PDGFR, ERK1/2) and find general agreement with experimental reports of fault tolerance. Robustness against structural changes manifests via low engagement of the node under baseline stresses or compensatory multiscale feedback via upregulation of additional pathways. Third, we show how knockdowns affect collagen and smooth muscle turnover at baseline and with perturbed stresses. In several cases, basal production is not remarkably affected, but sensitivities to stress deviations, which influence feedback strength, are reduced. Such reductions can impair adaptive responses, consistent with previously reported aortic vulnerability despite grossly normal appearances. Reduced stress sensitivities thus form a candidate mechanism for how robustness is lost, enabling transitions from health towards disease.
Collapse
Affiliation(s)
- Linda Irons
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ana C Estrada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Linka K, Cavinato C, Humphrey JD, Cyron CJ. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning. Acta Biomater 2022; 147:63-72. [PMID: 35643194 DOI: 10.1016/j.actbio.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 01/15/2023]
Abstract
Microstructural features and mechanical properties are closely related in all soft biological tissues. Both yet exhibit considerable inter-individual differences and are affected by factors such as aging and disease and its progression. Histological analysis, modern in situ imaging, and biomechanical testing have deepened our understanding of these complex interrelations, yet two key questions remain: (1) Given the specific microstructure, can one predict the macroscopic mechanical properties without mechanical testing? (2) Can one quantify individual contributions of the different microstructural features to the macroscopic mechanical properties in an automated, systematic and largely unbiased way? Here we propose a bidirectional deep learning architecture to address these two questions. Our architecture uses data from standard histological analyses, two-photon microscopy and biaxial biomechanical testing. Its capabilities are demonstrated by predicting with high accuracy (R2=0.92) the evolving mechanical properties of the murine aorta during maturation and aging. Moreover, our architecture reveals that the extracellular matrix composition and organization are the most prominent factors governing the macroscopic mechanical properties of the tissues studied herein. STATEMENT OF SIGNIFICANCE: .
Collapse
Affiliation(s)
- Kevin Linka
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Christian J Cyron
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany; Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
| |
Collapse
|
28
|
Abstract
Elastin is a long-lived extracellular matrix protein that is organized into elastic fibers that provide elasticity to the arterial wall, allowing stretch and recoil with each cardiac cycle. By forming lamellar units with smooth muscle cells, elastic fibers transduce tissue-level mechanics to cell-level changes through mechanobiological signaling. Altered amounts or assembly of elastic fibers leads to changes in arterial structure and mechanical behavior that compromise cardiovascular function. In particular, genetic mutations in the elastin gene (ELN) that reduce elastin protein levels are associated with focal arterial stenosis, or narrowing of the arterial lumen, such as that seen in supravalvular aortic stenosis and Williams-Beuren syndrome. Global reduction of Eln levels in mice allows investigation of the tissue- and cell-level arterial mechanical changes and associated alterations in smooth muscle cell phenotype that may contribute to stenosis formation. A loxP-floxed Eln allele in mice highlights cell type- and developmental origin-specific mechanobiological effects of reduced elastin amounts. Eln production is required in distinct cell types for elastic layer formation in different parts of the mouse vasculature. Eln deletion in smooth muscle cells from different developmental origins in the ascending aorta leads to characteristic patterns of vascular stenosis and neointima. Dissecting the mechanobiological signaling associated with local Eln depletion and subsequent smooth muscle cell response may help develop new therapeutic interventions for elastin-related diseases.
Collapse
Affiliation(s)
- Chien-Jung Lin
- 1Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri,2Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri
| | - Austin J. Cocciolone
- 3Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Jessica E. Wagenseil
- 4Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri
| |
Collapse
|
29
|
Passive biaxial mechanical behavior of newborn mouse aorta with and without elastin. J Mech Behav Biomed Mater 2022; 126:105021. [PMID: 34864571 PMCID: PMC9808670 DOI: 10.1016/j.jmbbm.2021.105021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Aortic wall material properties are needed for computational models and for comparisons across developmental and disease states. There has been abundant work in comparing aortic material properties across disease states, but limited work across developmental states. We performed passive biaxial mechanical testing on newborn mouse aorta with (Eln+/+) and without (Eln-/-) elastin. Elastin provides elasticity to the aortic wall and is necessary for survival beyond birth in the mouse. Mechanically functional elastin is challenging to create in vitro and so Eln-/- aorta can be a comparison for tissue engineered arteries with limited elastin amounts. We found that a traditional arterial strain energy function provided reasonable fits to newborn mouse aorta and generally predicted lower material constants in Eln-/- compared to Eln+/+ aorta. At physiologic pressures, the circumferential stresses and moduli trended lower in Eln-/- compared to Eln+/+ aorta. Increased blood pressure in Eln-/- mice helps to alleviate the differences in stresses and moduli. Increased blood pressure also serves to partially offload stresses in the isotropic compared to the anisotropic component of the wall. The baseline material parameters can be used in computational models of growth and remodeling to improve understanding of developmental mechanobiology and tissue engineering strategies.
Collapse
|
30
|
Cavinato C, Chen M, Weiss D, Ruiz-Rodríguez MJ, Schwartz MA, Humphrey JD. Progressive Microstructural Deterioration Dictates Evolving Biomechanical Dysfunction in the Marfan Aorta. Front Cardiovasc Med 2021; 8:800730. [PMID: 34977201 PMCID: PMC8716484 DOI: 10.3389/fcvm.2021.800730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Medial deterioration leading to thoracic aortic aneurysms arises from multiple causes, chief among them mutations to the gene that encodes fibrillin-1 and leads to Marfan syndrome. Fibrillin-1 microfibrils associate with elastin to form elastic fibers, which are essential structural, functional, and instructional components of the normal aortic wall. Compromised elastic fibers adversely impact overall structural integrity and alter smooth muscle cell phenotype. Despite significant progress in characterizing clinical, histopathological, and mechanical aspects of fibrillin-1 related aortopathies, a direct correlation between the progression of microstructural defects and the associated mechanical properties that dictate aortic functionality remains wanting. In this paper, age-matched wild-type, Fbn1 C1041G/+, and Fbn1 mgR/mgR mouse models were selected to represent three stages of increasing severity of the Marfan aortic phenotype. Ex vivo multiphoton imaging and biaxial mechanical testing of the ascending and descending thoracic aorta under physiological loading conditions demonstrated that elastic fiber defects, collagen fiber remodeling, and cell reorganization increase with increasing dilatation. Three-dimensional microstructural characterization further revealed radial patterns of medial degeneration that become more uniform with increasing dilatation while correlating strongly with increased circumferential material stiffness and decreased elastic energy storage, both of which comprise aortic functionality.
Collapse
Affiliation(s)
- Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Minghao Chen
- Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Maria Jesús Ruiz-Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Martin A. Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Eberth J, Humphrey J. Reduced Smooth Muscle Contractile Capacity Facilitates Maladaptive Arterial Remodeling. J Biomech Eng 2021; 144:1122986. [PMID: 34729580 DOI: 10.1115/1.4052888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Albeit seldom considered explicitly, the vasoactive state of a central artery can contribute significantly to the in vivo values of flow-induced wall shear stress and pressure-induced wall stress, which in turn are strong determinants of wall growth and remodeling. In this technical brief, we test the hypothesis that diminished vasoactive capacity compromises effective mechano-adaptations of central arteries. Toward this end, we use consistent methods to re-interpret previously published data on carotid artery remodeling in a common mouse model of induced hypertension and a separate model of connective tissue disease that results in Marfan syndrome. Animals have identical backgrounds and in both cases, the data are consistent with the hypothesis considered. In particular, individual carotid arteries with strong (normal) vasoactive capacity tend to maintain wall thickness and in vivo axial stress closer to homeostatic, thus resulting in passive circumferential wall stress and energy storage closer to normal values. We conclude, therefore, that effective vasoactivity helps to control the biomechanical state in which cells and matrix turnover, thus helping to delineate mechano-adaptive from maladaptive remodeling. Future analyses of experimental data and computational models of growth and remodeling should account for this strong coupling between smooth muscle contractile capacity and central arterial remodeling.
Collapse
Affiliation(s)
- JohnF Eberth
- Department of Cell Biology and Anatomy, Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Jay Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Clark-Patterson GL, Roy S, Desrosiers L, Knoepp LR, Sen A, Miller KS. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci Rep 2021; 11:20956. [PMID: 34697337 PMCID: PMC8546087 DOI: 10.1038/s41598-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.
Collapse
Affiliation(s)
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Leise R Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
33
|
Weiss D, Latorre M, Rego BV, Cavinato C, Tanski BJ, Berman AG, Goergen CJ, Humphrey JD. Biomechanical consequences of compromised elastic fiber integrity and matrix cross-linking on abdominal aortic aneurysmal enlargement. Acta Biomater 2021; 134:422-434. [PMID: 34332103 DOI: 10.1016/j.actbio.2021.07.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are characterized histopathologically by compromised elastic fiber integrity, lost smooth muscle cells or their function, and remodeled collagen. We used a recently introduced mouse model of AAAs that combines enzymatic degradation of elastic fibers and blocking of lysyl oxidase, and thus matrix cross-linking, to study progressive dilatation of the infrarenal abdominal aorta, including development of intraluminal thrombus. We quantified changes in biomaterial properties and biomechanical functionality within the aneurysmal segment as a function of time of enlargement and degree of thrombosis. Towards this end, we combined multi-modality imaging with state-of-the art biomechanical testing and histology to quantify regional heterogeneities for the first time and we used a computational model of arterial growth and remodeling to test multiple hypotheses, suggested by the data, regarding the degree of lost elastin, accumulation of glycosaminoglycans, and rates of collagen turnover. We found that standard histopathological findings can be misleading, while combining advanced experimental and computational methods revealed that glycosaminoglycan accumulation is pathologic, not adaptive, and that heightened collagen deposition is ineffective if not cross-linked. In conclusion, loss of elastic fiber integrity can be a strong initiator of aortic aneurysms, but it is the rate and effectiveness of fibrillar collagen remodeling that dictates enlargement. STATEMENT OF SIGNIFICANCE: Precise mechanisms by which abdominal aortic aneurysms enlarge remain unclear, but a recent elastase plus β-aminopropionitrile mouse model provides new insight into disease progression. As in the human condition, the aortic degeneration and adverse remodeling are highly heterogeneous in this model. Our multi-modality experiments quantify and contrast the heterogeneities in geometry and biomaterial properties, and our computational modeling shows that standard histopathology can be misleading. Neither accumulating glycosaminoglycans nor frustrated collagen synthesis slow disease progression, thus highlighting the importance of stimulating adaptive collagen remodeling to limit lesion enlargement.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - M Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - B V Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - C Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - B J Tanski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - A G Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - C J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Mechanobiology of the arterial tissue from the aortic root to the diaphragm. Med Eng Phys 2021; 96:64-70. [PMID: 34565554 DOI: 10.1016/j.medengphy.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/26/2023]
Abstract
Arterial tissue microstructure and its mechanical properties directly correlate with cardiovascular diseases such as atherosclerosis and aneurysm. Experienced hemodynamic loads are the primary factor of arterial tissue remodeling. By virtue of altering hemodynamic loads along the arterial tree, respective structure-function relations will be region-dependent. Since, there is limited experimental evidence on these structure-function homeostases, the current study, aims to report microstructural and mechanical alterations along the aorta from the aortic root up to the diaphragm, where intense hemodynamic alterations take place. The ascending, arch, and descending parts of the same cadaveric aortas were investigated by histomechanical examinations. Anatomical landmarks were labeled on the specimens, and then biaxial tensile tests were conducted on samples from each region. Furthermore, area fractions of elastin and collagen were measured on stained sections of the tissue. Also, a fragmentation index of elastin tissue is proposed for quantitative measurement of ECM integrity, which correlates with the nature of experienced hemodynamic loads. For the ascending aorta and the aortic arch, different values for mechanical properties and fragmentation index are observed even in a specific cross-section of the artery. It is primarily due to the complex loading regimes and curved geometry. Conversely, microstructural and mechanical features along the descending aorta exhibited minimal variations, and hence, smooth blood flow and pressure waves are expected in this region, which is well-documented in the literature. Both of the microstructural and mechanical features of the aorta vary along the arterial tree depending on the hemodynamic and geometric complexities they incur and may shed light on the initiation of cardiovascular diseases.
Collapse
|
35
|
Cavinato C, Murtada SI, Rojas A, Humphrey JD. Evolving structure-function relations during aortic maturation and aging revealed by multiphoton microscopy. Mech Ageing Dev 2021; 196:111471. [PMID: 33741396 PMCID: PMC8154707 DOI: 10.1016/j.mad.2021.111471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/30/2022]
Abstract
The evolving microstructure and mechanical properties that promote homeostasis in the aorta are fundamental to age-specific adaptations and disease progression. We combine ex vivo multiphoton microscopy and biaxial biomechanical phenotyping to quantify and correlate layer-specific microstructural parameters, for the primary extracellular matrix components (fibrillar collagen and elastic lamellae) and cells (endothelial, smooth muscle, and adventitial), with mechanical properties of the mouse aorta from weaning through natural aging up to one year. The aging endothelium was characterized by progressive reductions in cell density and altered cellular orientation. The media similarly showed a progressive decrease in smooth muscle cell density and alignment though with inter-lamellar widening from intermediate to older ages, suggesting cell hypertrophy, matrix accumulation, or both. Despite not changing in tissue thickness, the aging adventitia exhibited a marked thickening and straightening of collagen fiber bundles and reduction in cell density, suggestive of age-related remodeling not growth. Multiple microstructural changes correlated with age-related increases in circumferential and axial material stiffness, among other mechanical metrics. Because of the importance of aging as a risk factor for cardiovascular diseases, understanding the normal progression of structural and functional changes is essential when evaluating superimposed disease-related changes as a function of the age of onset.
Collapse
Affiliation(s)
- Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alexia Rojas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
36
|
Murtada SI, Kawamura Y, Weiss D, Humphrey JD. Differential biomechanical responses of elastic and muscular arteries to angiotensin II-induced hypertension. J Biomech 2021; 119:110297. [PMID: 33647550 DOI: 10.1016/j.jbiomech.2021.110297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries are distinguished by their distinct microstructures, biomechanical properties, and smooth muscle cell contractile functions. They also exhibit differential remodeling in aging and hypertension. Although regional differences in biomechanical properties have been compared, few studies have quantified biaxial differences in response to hypertension. Here, we contrast passive and active changes in large elastic and medium- and small-sized muscular arteries in adult mice in response to chronic infusion of angiotensin over 14 days. We found a significant increase in wall thickness, both medial and adventitial, in the descending thoracic aorta that associated with trends of an increased collagen:elastin ratio. There was adventitial thickening in the small-sized mesenteric artery, but also significant changes in elastic lamellar structure and contractility. An increased contractile response to phenylephrine coupled with a reduced vasodilatory response to acetylcholine in the mesenteric artery suggested an increased contractile state in response to hypertension. Overall reductions in the calculated gradients in pulse wave velocity and elastin energy storage capability from elastic-to-muscular arteries suggested a possible transfer of excessive pulsatile energy into the small-sized muscular arteries resulting in significant functional consequences in response to hypertension.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Y Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Kawamura Y, Murtada SI, Gao F, Liu X, Tellides G, Humphrey JD. Adventitial remodeling protects against aortic rupture following late smooth muscle-specific disruption of TGFβ signaling. J Mech Behav Biomed Mater 2021; 116:104264. [PMID: 33508556 DOI: 10.1016/j.jmbbm.2020.104264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Altered signaling through transforming growth factor-beta (TGFβ) increases the risk of aortic dissection in patients, which has been confirmed in mouse models. It is well known that altered TGFβ signaling affects matrix turnover, but there has not been a careful examination of associated changes in structure-function relations. In this paper, we present new findings on the rupture potential of the aortic wall following late postnatal smooth muscle cell (SMC)-specific disruption of type I and II TGFβ receptors in a mouse model with demonstrated dissection susceptibility. Using a combination of custom computer-controlled biaxial tests and quantitative histology and immunohistochemistry, we found that loss of TGFβ signaling in SMCs compromises medial properties but induces compensatory changes in the adventitia that preserve wall strength above that which is needed to resist in vivo values of wall stress. These findings emphasize the different structural defects that lead to aortic dissection and rupture - compromised medial integrity and insufficient adventitial strength, respectively. Relative differences in these two defects, in an individual subject at a particular time, likely reflects the considerable phenotypic diversity that is common in clinical presentations of thoracic aortic dissection and rupture. There is, therefore, a need to move beyond examinations of bulk biological assays and wall properties to cell- and layer-specific studies that delineate pathologic and compensatory changes in wall biology and composition, and thus the structural integrity of the aortic wall that can dictate differences between life and death.
Collapse
Affiliation(s)
- Y Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - F Gao
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - X Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - G Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|