1
|
Bao M, Sheng F, Zhang Q, Liu J, Xin R, Yan F, Zang S, Xu Z, Wu H. Toxicity of microplastics and nanoplastics to benthic Sargassum horneri: The role of nitrogen availability in modulating stress responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107366. [PMID: 40252308 DOI: 10.1016/j.aquatox.2025.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Over the past few decades, the accumulation of micro- and nanoplastics (MNPs) have identified as enduring contaminants, posing significant risks to aquatic organisms. However, the interplay of MNPs and environmental stressors (e.g. nutrient etc.) is not well understood. In this study, Sargassum horneri, a typical benthic macroalgae, was cultured with two sizes of plastic particles (MPs (5 μm), NPs (0.05 μm) and nitrogen concentrations (LN (30 μM), HN (120 μM)) for 20 days to investigate the interactive effects between MNPs and nitrogen levels by measuring different physiological and biochemical parameters. The results demonstrated that both MPs and NPs decrease growth rate, non-photochemical quenching (NPQ), and catalase (CAT) activity, but increased the chlorophyll a and c, carotenoid, and soluble protein contents at low nitrogen level. Notably, the inhibitory effect on growth rate was more pronounced in the NPs conditions. Compared to low nitrogen groups, high nitrogen concentration increased the growth rate, NPQ, the ratio of carotenoids to chlorophyll a, the energy absorbed by each reaction center (ABS/RC), the energy dissipated by each reaction center (DI0/RC), superoxide dismutase (SOD), and CAT levels at same MPs or NPs treatment, respectively. Meanwhile, there was no significant difference among different sizes of plastic particle treatment groups in high nitrogen conditions. These results imply that NPs may exhibit potentially greater detrimental effects than MPs, when the algae were cultured under low nitrogen conditions. However, increased nitrogen availability appears to alleviate the toxic effects of MNPs by enhancing the algal photoprotective and antioxidant capacities. These findings highlight the potential for nutrient enrichment to mitigate the toxic impacts of micro- and nanoplastics on benthic macroalgae, providing valuable insights into future ecosystem response to increasing MNPs pollution in nutrient-variable coastal environments.
Collapse
Affiliation(s)
- Menglin Bao
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Fei Sheng
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Qi Zhang
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Jichen Liu
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Rongyu Xin
- Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Chabrerie A, Arenas F. What if the upwelling weakens? Effects of rising temperature and nutrient depletion on coastal assemblages. Oecologia 2024; 205:365-381. [PMID: 38836933 PMCID: PMC11281971 DOI: 10.1007/s00442-024-05571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Surface temperature of the oceans has increased globally over the past decades. In coastal areas influenced by eastern boundary upwelling systems (EBUS), winds push seawater offshore and deep, cold and nutrient-rich seawater rise towards the surface, partially buffering global warming. On the North coast of Portugal, the NW Iberian upwelling system allows extensive kelp forests to thrive in these "boreal-like" conditions, fostering highly diverse and productive communities. However, the warming of the upper layer of the ocean may weaken this upwelling, leading to higher sea surface temperature and lower nutrient input in the coastal areas. The effects of these changes on the structure and function of coastal ecosystems remain unexplored. The present study aimed to examine the combined effects of elevated temperature and nutrient depletion on semi-naturally structured assemblages. The eco-physiological responses investigated included growth, chlorophyll fluorescence and metabolic rates at the levels of individual species and whole assemblages. Our findings showed interactive effects of the combination of elevated temperature with nutrient depletion on the large canopy-forming species (i.e., kelp). As main contributor to community response, those effects drove the whole assemblage responses to significant losses in productivity levels. We also found an additive effect of elevated temperature and reduced nutrients on sub-canopy species (i.e., Chondrus crispus), while turfs were only affected by temperature. Our results suggest that under weakening upwelling scenarios, the ability of the macroalgal assemblages to maintain high productivity rates could be seriously affected and predict a shift in community composition with the loss of marine forests.
Collapse
Affiliation(s)
- Axel Chabrerie
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Francisco Arenas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
3
|
James C, Layton C, Hurd CL, Britton D. The endemic kelp Lessonia corrugata is being pushed above its thermal limits in an ocean warming hotspot. JOURNAL OF PHYCOLOGY 2024; 60:503-516. [PMID: 38426571 DOI: 10.1111/jpy.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4-22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22-23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d-1) and high (90 μmol · d-1) nitrate conditions at and above the thermal optimum (16-23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20-21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.
Collapse
Affiliation(s)
- Cody James
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Sánchez de Pedro R, Fernández AN, Melero-Jiménez IJ, García-Sánchez MJ, Flores-Moya A, Bañares-España E. Temporal and spatial variability in population traits of an intertidal fucoid reveals local-scale climatic refugia. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106006. [PMID: 37182324 DOI: 10.1016/j.marenvres.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Global change is imposing significant losses in the functional traits of marine organisms. Although areas of climatic refugia ameliorate local conditions and help them to persist, the extent to which mesoscale effects contribute for intraregional variability on population traits and conservation is uncertain. Here we assess patterns of conservation status of Fucus guiryi, the main intertidal habitat-forming seaweed in the Strait of Gibraltar (southern Spain and northern Morocco). We investigated the demography, reproductive phenology, and morphology at northern and southern side populations. Population traits were compared seasonally within populations from each side, and at spatial scale in early summer 2019. In the last decade three populations became extinct; two marginal populations had dispersed individuals with a narrower fertility season and miniaturized individuals below 3 cm; and five populations showed variable density and cover with more than 20% of reproductive individuals over the seasons. Highest density, cover, morphology, and reproductive potential was detected at one population from each side, suggesting local-scale climatic refugia in upwelling areas located inside marine protected areas. Southern recruits were more warm-tolerant but grew less at colder conditions than northern ones, revealing a mesoscale heterogeneity in thermal affinities. This study evidenced functional losses and distinct reproductive strategies experienced by F. guiryi at peripheral locations and urges to prioritize its conservation and restoration at contemporary climatic refugia.
Collapse
Affiliation(s)
- Raquel Sánchez de Pedro
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain.
| | - Andrea N Fernández
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Ignacio José Melero-Jiménez
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - María Jesús García-Sánchez
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Antonio Flores-Moya
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| | - Elena Bañares-España
- Universidad de Málaga, Andalucía Tech, Departamento de Botánica y Fisiología Vegetal, Campus de Teatinos, 29010, Málaga, Spain
| |
Collapse
|
5
|
Spiecker BJ, Menge BA. El Niño and marine heatwaves: Ecological impacts on Oregon rocky intertidal kelp communities at local to regional scales. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis OR USA
| |
Collapse
|
6
|
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach. Sci Rep 2021; 11:2510. [PMID: 33510300 PMCID: PMC7843619 DOI: 10.1038/s41598-021-82094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3- assimilation, and enhanced expression of metabolic-genes involved in the NO3- and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3- and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species' response to climate change.
Collapse
|
7
|
Torres G, Thomas DN, Whiteley NM, Wilcockson D, Giménez L. Maternal and cohort effects modulate offspring responses to multiple stressors. Proc Biol Sci 2020; 287:20200492. [PMID: 32546091 PMCID: PMC7329052 DOI: 10.1098/rspb.2020.0492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current concerns about climate change have led to intensive research attempting to understand how climate-driven stressors affect the performance of organisms, in particular the offspring of many invertebrates and fishes. Although stressors are likely to act on several stages of the life cycle, little is known about their action across life phases, for instance how multiple stressors experienced simultaneously in the maternal environment can modulate the responses to the same stressors operating in the offspring environment. Here, we study how performance of offspring of a marine invertebrate (shore crab Carcinus maenas) changes in response to two stressors (temperature and salinity) experienced during embryogenesis in brooding mothers from different seasons. On average, offspring responses were antagonistic: high temperature mitigated the negative effects of low salinity on survival. However, the magnitude of the response was modulated by the temperature and salinity conditions experienced by egg-carrying mothers. Performance also varied among cohorts, perhaps reflecting genetic variation, and/or maternal conditions prior to embryogenesis. This study contributes towards the understanding of how anthropogenic modification of the maternal environment drives offspring performance in brooders.
Collapse
Affiliation(s)
- Gabriela Torres
- Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Helgoland, Germany.,School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK
| | - David N Thomas
- School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK
| | - Nia M Whiteley
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Luis Giménez
- Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Helgoland, Germany.,School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, Menai Bridge, UK
| |
Collapse
|
8
|
Schmid M, Fernández PA, Gaitán-Espitia JD, Virtue P, Leal PP, Revill AT, Nichols PD, Hurd CL. Stress due to low nitrate availability reduces the biochemical acclimation potential of the giant kelp Macrocystis pyrifera to high temperature. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Fernández PA, Gaitán-Espitia JD, Leal PP, Schmid M, Revill AT, Hurd CL. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress. Sci Rep 2020; 10:3186. [PMID: 32081970 PMCID: PMC7035356 DOI: 10.1038/s41598-020-60104-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Local and global changes associated with anthropogenic activities are impacting marine and terrestrial ecosystems. Macroalgae, especially habitat-forming species like kelp, play critical roles in temperate coastal ecosystems. However, their abundance and distribution patterns have been negatively affected by warming in many regions around the globe. Along with global change, coastal ecosystems are also impacted by local drivers such as eutrophication. The interaction between global and local drivers might modulate kelp responses to environmental change. This study examines the regulatory effect of NO3− on the thermal plasticity of the giant kelp Macrocystis pyrifera. To do this, thermal performance curves (TPCs) of key temperature-dependant traits–growth, photosynthesis, NO3− assimilation and chlorophyll a fluorescence–were examined under nitrate replete and deplete conditions in a short-term incubation. We found that thermal plasticity was modulated by NO3− but different thermal responses were observed among traits. Our study reveals that nitrogen, a local driver, modulates kelp responses to high seawater temperatures, ameliorating the negative impacts on physiological performance (i.e. growth and photosynthesis). However, this effect might be species-specific and vary among biogeographic regions – thus, further work is needed to determine the generality of our findings to other key temperate macroalgae that are experiencing temperatures close to their thermal tolerance due to climate change.
Collapse
Affiliation(s)
- Pamela A Fernández
- Centro i~mar & CeBiB, Universidad de Los Lagos, Camino a Chinquihue Km 6, Puerto Montt, Casilla 557, Chile. .,Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, 7004, TAS, Australia.
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, SAR, China
| | - Pablo P Leal
- Departamento de Repoblación y Cultivo, Instituto de Fomento Pesquero, Balmaceda 252, Puerto Montt, Casilla 665, Chile
| | - Matthias Schmid
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, 7004, TAS, Australia
| | - Andrew T Revill
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, 7001, TAS, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, 7004, TAS, Australia
| |
Collapse
|
10
|
Piñeiro-Corbeira C, Barreiro R, Franco JN, Cremades J, Cunha J, Arenas F. Unexpected nutrient influence on the thermal ecophysiology of seaweeds that recently followed opposite abundance shifts. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104747. [PMID: 31230707 DOI: 10.1016/j.marenvres.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
World's oceans are warming, and recent studies suggest that the Iberian upwelling system may be weakening. To understand the potential consequences of both trends, six intertidal seaweeds that recently followed opposite upward and downward abundance shifts in the Iberian upwelling region were exposed for six weeks to conditions simulating present and warmed scenarios, combined with nutrient treatments emulating the influence and absence of the upwelling. Unlike expectations, a high nutrient supply did not ameliorate the effects of warming. Instead, warming slowed down growth in four seaweeds and accelerated the photosynthesis of downward seaweeds only if nutrients were abundant. In a weakened upwelling scenario, nutrient limitation might more strongly influence the performance of both upward and downward seaweeds than warming. With a normally functioning upwelling, warming might be more detrimental to the performance of some downward seaweeds as they might would lose their ability to benefit from the extra nutrient input.
Collapse
Affiliation(s)
- Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain.
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - João N Franco
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Javier Cremades
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Jacinto Cunha
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Francisco Arenas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
11
|
Gao G, Gao Q, Bao M, Xu J, Li X. Nitrogen availability modulates the effects of ocean acidification on biomass yield and food quality of a marine crop Pyropia yezoensis. Food Chem 2018; 271:623-629. [PMID: 30236725 DOI: 10.1016/j.foodchem.2018.07.090] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/28/2018] [Accepted: 07/15/2018] [Indexed: 02/05/2023]
Abstract
Pyropia yezoensis is an important marine crop in the world. We cultured it under two levels of partial pressure of carbon dioxide (pCO2) (408 (LC), 998 (HC) μatm) and nitrate (30 (LN) and 500 (HN) μmol L-1) to investigate the effect of ocean acidification on its growth and food quality under changing nitrogen supply. HC decreased growth rate of P. yezoensis under LN but did not affect it under HN. Phycoerythrin and phycocyanin were enhanced by HC, particularly at HN, which contributed to the darker color. HC stimulated the synthesis of sweat amino acids regardless of nitrate condition and umami amino acid only under LN. HN increased the content of umami amino acids regardless of pCO2 condition and sweet amino acids only under HC. Our findings indicate that future ocean acidification may reduce biomass yield of P. yezoensis but increase its color and flavor, which was regulated by nitrate availability.
Collapse
Affiliation(s)
- Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Menglin Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Xinshu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|