1
|
Vinogradov IM, Fox RJ, Fichtel C, Kappeler PM, Jennions MD. Paternity analysis reveals sexual selection on cognitive performance in mosquitofish. Nat Ecol Evol 2025; 9:692-704. [PMID: 40000808 DOI: 10.1038/s41559-025-02645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
In many animal species, cognitive abilities are under strong natural selection because decisions about foraging, habitat choice and predator avoidance affect fecundity and survival. But how has sexual selection, which is usually stronger on males than females, shaped the evolution of cognitive abilities that influence success when competing for mates or fertilizations? We aimed to investigate potential links between individual differences in male cognitive performance to variation in paternity arising solely from sexual selection. We therefore ran four standard cognitive assays to quantify five measures of cognitive performance by male mosquitofish (Gambusia holbrooki). Males were then assigned to 11 outdoor ponds where they could compete for females. Females mate many times, which leads to intense sperm competition and broods with mixed paternity. We genotyped 2,430 offspring to identify their fathers. Males with greater inhibitory control and better spatial learning abilities sired significantly more offspring, while males with better initial impulse control sired significantly fewer offspring. Associative and reversal learning did not predict a male's share of paternity. In sum, there was sexual selection on several, but not all, aspects of male cognitive performance.
Collapse
Affiliation(s)
- Ivan M Vinogradov
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Rebecca J Fox
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Michael D Jennions
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Aich U, Polverino G, Yazdan Parast F, Melo GC, Tan H, Howells J, Nosrati R, Wong BBM. Long-term effects of widespread pharmaceutical pollution on trade-offs between behavioural, life-history and reproductive traits in fish. J Anim Ecol 2025; 94:340-355. [PMID: 39188010 PMCID: PMC11880659 DOI: 10.1111/1365-2656.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/27/2024] [Indexed: 08/28/2024]
Abstract
In our rapidly changing world, understanding how species respond to shifting conditions is of paramount importance. Pharmaceutical pollutants are widespread in aquatic ecosystems globally, yet their impacts on animal behaviour, life-history and reproductive allocation remain poorly understood, especially in the context of intraspecific variation in ecologically important traits that facilitate species' adaptive capacities. We test whether a widespread pharmaceutical pollutant, fluoxetine (Prozac), disrupts the trade-off between individual-level (co)variation in behavioural, life-history and reproductive traits of freshwater fish. We exposed the progeny of wild-caught guppies (Poecilia reticulata) to three field-relevant levels of fluoxetine (mean measured concentrations: 0, 31.5 and 316 ng/L) for 5 years, across multiple generations. We used 12 independent laboratory populations and repeatedly quantified activity and risk-taking behaviour of male guppies, capturing both mean behaviours and variation within and between individuals across exposure treatments. We also measured key life-history traits (body condition, coloration and gonopodium size) and assessed post-copulatory sperm traits (sperm vitality, number and velocity) that are known to be under strong sexual selection in polyandrous species. Intraspecific (co)variation of these traits was analysed using a comprehensive, multivariate statistical approach. Fluoxetine had a dose-specific (mean) effect on the life-history and sperm trait of guppies: low pollutant exposure altered male body condition and increased gonopodium size, but reduced sperm velocity. At the individual level, fluoxetine reduced the behavioural plasticity of guppies by eroding their within-individual variation in both activity and risk-taking behaviour. Fluoxetine also altered between-individual correlations in pace-of-life syndrome traits: it triggered the emergence of correlations between behavioural and life-history traits (e.g. activity and body condition) and between life-history and sperm traits (e.g. gonopodium size and sperm vitality), but collapsed other between-individual correlations (e.g. activity and gonopodium size). Our results reveal that chronic exposure to global pollutants can affect phenotypic traits at both population and individual levels, and even alter individual-level correlations among such traits in a dose-specific manner. We discuss the need to integrate individual-level analyses and test behaviour in association with life-history and reproductive traits to fully understand how animals respond to human-induced environmental change.
Collapse
Affiliation(s)
- Upama Aich
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Giovanni Polverino
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| | - Farin Yazdan Parast
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoriaAustralia
| | - Gabriela C. Melo
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Hung Tan
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - James Howells
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Reza Nosrati
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoriaAustralia
| | - Bob B. M. Wong
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
3
|
Aich U, Chowdhury S, Jennions MD. Separating the effects of paternal age and mating history: Evidence for sex-specific paternal effect in eastern mosquitofish. Evolution 2022; 76:1565-1577. [PMID: 35544673 PMCID: PMC9543789 DOI: 10.1111/evo.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Paternal age and past mating effort by males are often confounded, which can affect our understanding of a father's age effects. To our knowledge, only a few studies have standardized mating history when testing for effects of paternal age, and none has simultaneously disentangled how paternal age and mating history might jointly influence offspring traits. Here, we experimentally manipulated male mating history to tease apart its effects from those of paternal age on female fertility and offspring traits in the eastern mosquitofish (Gambusia holbrooki). Male age did not affect female fertility. However, males with greater past mating effort produced significantly larger broods. Paternal age and mating history interacted to affect sons' body size: sons sired by old-virgin males were larger than those sired by old-mated males, but this was not the case for younger fathers. Intriguingly, however, sons sired by old-virgin males tended to produce fewer sperms than those sired by old-mated males, indicating a potential trade-off in beneficial paternal effects. Finally, neither paternal age nor mating history affected daughter's fitness. Our results highlight that variation in offspring traits attributed to paternal age effect could partly arise due to a father's mating history, and not simply to his chronological age.
Collapse
Affiliation(s)
- Upama Aich
- Division of Ecology & EvolutionResearch School of BiologyThe Australian National UniversityCanberraAustralia,School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Shawan Chowdhury
- School of Biological SciencesUniversity of QueenslandSaint LuciaQueenslandAustralia
| | - Michael D. Jennions
- Division of Ecology & EvolutionResearch School of BiologyThe Australian National UniversityCanberraAustralia
| |
Collapse
|
4
|
Polverino G, Soman VR, Karakaya M, Gasparini C, Evans JP, Porfiri M. Ecology of fear in highly invasive fish revealed by robots. iScience 2022; 25:103529. [PMID: 35106458 PMCID: PMC8786638 DOI: 10.1016/j.isci.2021.103529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Invasive species threaten biodiversity and ecosystem functioning. We develop an innovative experimental approach, integrating biologically inspired robotics, time-series analysis, and computer vision, to build a detailed profile of the effects of non-lethal stress on the ecology and evolution of mosquitofish (Gambusia holbrooki)—a global pest. We reveal that brief exposures to a robotic predator alter mosquitofish behavior, increasing fear and stress responses, and mitigate the impact of mosquitofish on native tadpoles (Litoria moorei) in a cause-and-effect fashion. Effects of predation risk from the robot carry over to routine activity and feeding rate of mosquitofish weeks after exposure, resulting in weight loss, variation in body shape, and reduction in the fertility of both sexes—impairing survival, reproduction, and ecological success. We capitalize on evolved responses of mosquitofish to reduce predation risk—neglected in biological control practices—and provide scientific foundations for widespread use of state-of-the-art robotics in ecology and evolution research. Can robotic predators reveal the vulnerabilities of invasive and pest species? Our predator selectively targets invasive fish to protect native amphibians Stress from the robot compromises behavior, health, and reproduction of invaders We open new frontiers for robotics in ecology, evolution, and biocontrol research
Collapse
Affiliation(s)
- Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Vrishin R Soman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| | - Clelia Gasparini
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia.,Department of Biology, University of Padova, Padova, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA.,Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
5
|
Kim B, Moran NP, Reinhold K, Sánchez-Tójar A. Male size and reproductive performance in three species of livebearing fishes (Gambusia spp.): A systematic review and meta-analysis. J Anim Ecol 2021; 90:2431-2445. [PMID: 34231219 DOI: 10.1111/1365-2656.13554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/05/2021] [Indexed: 11/27/2022]
Abstract
The genus Gambusia represents approximately 45 species of polyandrous livebearing fishes with reversed sexual size dimorphism (i.e. males smaller than females) and with copulation predominantly via male coercion. Male body size has been suggested as an important sexually selected trait, but despite abundant research, evidence for sexual selection on male body size in this genus is mixed. Studies have found that large males have an advantage in both male-male competition and female choice, but that small males perform sneaky copulations better and at higher frequency and thus may sire more offspring in this coercive mating system. Here, we synthesized this inconsistent body of evidence using pre-registered methods and hypotheses. We performed a systematic review and meta-analysis of summary and primary (raw) data combining both published (n = 19 studies, k = 106 effect sizes) and unpublished effect sizes (n = 17, k = 242) to test whether there is overall selection on male body size across studies in Gambusia. We also tested several specific hypotheses to understand the sources of heterogeneity across effects. Meta-analysis revealed an overall positive correlation between male size and reproductive performance (r = 0.23, 95% confidence interval: 0.10-0.35, n = 36, k = 348, 4,514 males, three Gambusia species). Despite high heterogeneity, the large-male advantage appeared robust across all measures studied (i.e. female choice, mating success, paternity, sperm quantity and quality), and was considerably larger for female choice (r = 0.43, 95% confidence interval: 0.28-0.59, n = 14, k = 43). Meta-regressions found several important factors explaining heterogeneity across effects, including type of sperm characteristic, male-to-female ratio, female reproductive status and environmental conditions. We found evidence of publication bias; however, its influence on our estimates was attenuated by including a substantial amount of unpublished effects, highlighting the importance of open primary data for more accurate meta-analytic estimates. In addition to positive selection on male size, our study suggests that we need to rethink the role and form of sexual selection in Gambusia and, more broadly, to consider the ecological factors that affect reproductive behaviour in livebearing fishes.
Collapse
Affiliation(s)
- Bora Kim
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Nicholas Patrick Moran
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Centre for Ocean Life DTU-Aqua, Technical University of Denmark, Lyngby, Denmark
| | - Klaus Reinhold
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
6
|
Mousavi SE, Purser GJ, Patil JG. Embryonic Onset of Sexually Dimorphic Heart Rates in the Viviparous Fish, Gambusia holbrooki. Biomedicines 2021; 9:165. [PMID: 33567532 PMCID: PMC7915484 DOI: 10.3390/biomedicines9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
In fish, little is known about sex-specific differences in physiology and performance of the heart and whether these differences manifest during development. Here for the first time, the sex-specific heart rates during embryogenesis of Gambusia holbrooki, from the onset of the heart rates (HRs) to just prior to parturition, was investigated using light cardiogram. The genetic sex of the embryos was post-verified using a sex-specific genetic marker. Results reveal that heart rates and resting time significantly increase (p < 0.05) with progressive embryonic development. Furthermore, both ventricular and atrial frequencies of female embryos were significantly higher (p < 0.05) than those of their male sibs at the corresponding developmental stages and remained so at all later developmental stages (p < 0.05). In concurrence, the heart rate and ventricular size of the adult females were also significantly (p < 0.05) higher and larger respectively than those of males. Collectively, the results suggest that the cardiac sex-dimorphism manifests as early as late-organogenesis and persists through adulthood in this species. These findings suggest that the cardiac measurements can be employed to non-invasively sex the developing embryos, well in advance of when their phenotypic sex is discernible. In addition, G. holbrooki could serve as a better model to study comparative vertebrate cardiovascular development as well as to investigate anthropogenic and climatic impacts on heart physiology of this species, that may be sex influenced.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - G. John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Service, New Norfolk, TAS 7140, Australia
| |
Collapse
|
7
|
Langerhans RB, Rosa-Molinar E. A Novel Body Plan Alters Diversification of Body Shape and Genitalia in Live-Bearing Fish. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Major evolutionary innovations can greatly influence subsequent evolution. While many major transitions occurred in the deep past, male live-bearing fishes (family Poeciliidae) more recently evolved a novel body plan. This group possesses a three-region axial skeleton, with one region—the ano-urogenital region—representing a unique body region accommodating male genitalic structures (gonopodial complex). Here we evaluate several hypotheses for the evolution of diversity in this region and examine its role in the evolution of male body shape. Examining Gambusia fishes, we tested a priori predictions for (1) joint influence of gonopodial-complex traits on mating performance, (2) correlated evolution of gonopodial-complex traits at macro- and microevolutionary scales, and (3) predator-driven evolution of gonopodial-complex traits in a post-Pleistocene radiation of Bahamas mosquitofish. We found the length of the sperm-transfer organ (gonopodium) and its placement along the body (gonopodial anterior transposition) jointly influenced mating success, with correlational selection favoring particular trait combinations. Despite these two traits functionally interacting during mating, we found no evidence for their correlated evolution at macro- or microevolutionary scales. In contrast, we did uncover correlated evolution of modified vertebral hemal spines (part of the novel body region) and gonopodial anterior transposition at both evolutionary scales, matching predictions of developmental connections between these components. Developmental linkages in the ano-urogenital region apparently play key roles in evolutionary trajectories, but multiple selective agents likely act on gonopodium length and cause less predictable evolution. Within Bahamas mosquitofish, evolution of hemal-spine morphology, and gonopodial anterior transposition across predation regimes was quite predictable, with populations evolving under high predation risk showing more modified hemal spines with greater modifications and a more anteriorly positioned gonopodium. These changes in the ano-urogenital vertebral region have facilitated adaptive divergence in swimming abilities and body shape between predation regimes. Gonopodium surface area, but not length, evolved as predicted in Bahamas mosquitofish, consistent with a previously suggested tradeoff between natural and sexual selection on gonopodium size. These results provide insight into how restructured body plans offer novel evolutionary solutions. Here, a novel body region—originally evolved to aid sperm transfer—was apparently co-opted to alter whole-organism performance, facilitating phenotypic diversification.
Collapse
|
8
|
House CM, Lewis Z, Sharma MD, Hodgson DJ, Hunt J, Wedell N, Hosken DJ. Sexual selection on the genital lobes of male Drosophila simulans. Evolution 2021; 75:501-514. [PMID: 33386741 DOI: 10.1111/evo.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/01/2022]
Abstract
Sexual selection is thought to be responsible for the rapid divergent evolution of male genitalia with several studies detecting multivariate sexual selection on genital form. However, in most cases, selection is only estimated during a single episode of selection, which provides an incomplete view of net selection on genital traits. Here, we estimate the strength and form of multivariate selection on the genitalia arch of Drosophila simulans when mating occurs in the absence of a competitor and during sperm competition, in both sperm defence and offense roles (i.e., when mating first and last). We found that the strength of sexual selection on the genital arch was strongest during noncompetitive mating and weakest during sperm offense. However, the direction of selection was similar across selection episodes with no evidence for antagonistic selection. Overall, selection was not particularly strong despite genitals clearly evolving rapidly in this species.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | - Zenobia Lewis
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hodgson
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Richmond, NSW, Australia.,Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - Nina Wedell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
9
|
Iglesias-Carrasco M, Harrison L, Jennions MD, Head ML. Combined effects of rearing and testing temperatures on sperm traits. J Evol Biol 2020; 33:1715-1724. [PMID: 33070398 DOI: 10.1111/jeb.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
Temperature experienced during early development can affect a range of adult life-history traits. Animals often show seemingly adaptive developmental plasticity-with animals reared at certain temperatures performing better as adults at those temperatures. The extent to which this type of adaptive response occurs in gonadal tissue that affects sperm traits is, however, poorly studied. We initially reared male mosquito fish (Gambusia holbrooki) at either 18°C or 30°C, and then measured their sperm reserves as adults. We also looked at the velocity of their sperm, at both the matched and mismatched temperatures. Although males reared at 30°C were larger than those initially reared at 18°C, there was no detectable effect of rearing temperature on absolute sperm number. Sperm swam faster at 30°C than 18°C regardless of the male's rearing temperature. Therefore, we found no evidence of adaptive developmental plasticity. Rearing temperature did, however, significantly influence the relationship between male body size and sperm velocity. Larger males had faster sperm when reared at the warmer temperature and slower sperm when reared at the cooler temperature. This suggests that rearing temperature could alter the relationship between pre-copulatory sexual selection and post-copulatory sexual selection as male size affects mating success. Finally, there was a positive correlation between velocities at the two test temperatures, suggesting that temperature experienced during sperm competition is unlikely to affect a male's relative fertilization success.
Collapse
Affiliation(s)
- Maider Iglesias-Carrasco
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Lauren Harrison
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Chung MHJ, Fox RJ, Jennions MD. Fine-scale genital morphology affects male ejaculation success: an experimental test. Biol Lett 2020; 16:20200251. [PMID: 32574532 DOI: 10.1098/rsbl.2020.0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of male genital traits is usually ascribed to advantages that arise when there is sperm competition, cryptic female choice or sexual conflict. However, when male-female contact is brief and sperm production is costly, genital structures that ensure the appropriate timing of sperm release should also be under intense selection. Few studies have examined the role of individual structures in triggering ejaculation. We therefore conducted a series of anatomical manipulations of fine-scale features of the complex intromittent organ (gonopodium) of a freshwater fish with internal fertilization (Gambusia holbrooki) to determine their effects on sperm release. Mating in G. holbrooki is fleeting (less than 50 ms), so there should be strong selection for control over the timing of sperm release. We surgically removed three features at the tip of the gonopodium (claws, spines, awl-shape) to test for their potential role in triggering ejaculation. We show that the 'awl-shape' of the tip affects sperm release when a male makes contact with a female, but neither gonopodial claws nor spines had a detectable effect. We suggest that the claws and spines may instead function to increase the precision of sperm deposition (facilitating anchorage and contact time with the female's gonopore), rather than the initiation of ejaculation.
Collapse
Affiliation(s)
- Meng-Han Joseph Chung
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Rebecca J Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
11
|
Aich U, Jennions MD, Fox RJ. An experimental test of the role of male mating history on paternal effects in the livebearer fish Gambusia holbrooki. Biol Lett 2020; 16:20190945. [PMID: 32097600 DOI: 10.1098/rsbl.2019.0945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies often show that paternal age affects offspring fitness. However, such effects could be due either to age, or to a male's previous mating effort (which is necessarily confounded with age). We experimentally tested whether differences in the mating history of old males affect offspring performance in the mosquitofish Gambusia holbrooki. Upon maturation, males were housed for a duration of the natural field-breeding season (23 weeks) either with mating access to females (lifetime-mating), or with visual but no physical access to females (no-mating). We then paired these males with a female to test whether male mating history had a significant effect on their mate's breeding success or offspring performance. The daughters, but not the sons, of 'no-mating' treatment males matured significantly sooner, and at a significantly smaller size, than those of 'lifetime-mating' treatment males. There was, however, no effect of male mating history on their daughters' initial fecundity, or on proxy measures of their sons' reproductive success. These results, when combined with earlier studies showing effects of male mating history on sperm quality, growth and immunity, suggest that variation in paternal effects currently attributed to male age could partly arise because older males have usually mated more often than younger males.
Collapse
Affiliation(s)
- Upama Aich
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Rebecca J Fox
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|
12
|
Chung MHJ, Jennions MD, Fox RJ. Novel ablation technique shows no sperm priming response by male eastern mosquitofish to cues of female availability. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2779-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Iglesias‐Carrasco M, Fox RJ, Vega‐Trejo R, Jennions MD, Head ML. An experimental test for body size‐dependent effects of male harassment and an elevated copulation rate on female lifetime fecundity and offspring performance. J Evol Biol 2019; 32:1262-1273. [DOI: 10.1111/jeb.13526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Maider Iglesias‐Carrasco
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT Australia
| | - Rebecca J. Fox
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT Australia
| | - Regina Vega‐Trejo
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT Australia
- Department of Zoology/Ethology Stockholm University Stockholm Sweden
| | - Michael D. Jennions
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT Australia
| | - Megan L. Head
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT Australia
| |
Collapse
|
14
|
Harrison LM, Jennions MD, Head ML. Does the winner-loser effect determine male mating success? Biol Lett 2019; 14:rsbl.2018.0195. [PMID: 29769302 DOI: 10.1098/rsbl.2018.0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 11/12/2022] Open
Abstract
Winning or losing a fight can have lasting effects on competitors. Controlling for inherent fighting ability and other factors, a history of winning often makes individuals more likely to win future contests, while the opposite is true for losers (the 'winner-loser effect'). But does the winner-loser effect also influence a male's mating success? We experimentally staged contests between male mosquitofish (Gambusia holbrooki) such that focal males either won or lost three successive encounters with stimulus males. We then placed a size-matched (to control for inherent fighting ability) winner and loser with a female and monitored their behaviour (n = 63 trios). Winners spent significantly more time associating with the female. Winners did not make more copulation attempts, nor have a greater number of successful attempts. There was, however, a significant effect of male size on the number of successful copulation attempts: success decreased with male size for losers, but size had no effect on the success rate of winners.
Collapse
Affiliation(s)
- Lauren M Harrison
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Michael D Jennions
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Megan L Head
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
|
16
|
Fox RJ, Head ML, Jennions MD. Disentangling the costs of male harassment and the benefits of polyandry for females. Behav Ecol 2019. [DOI: 10.1093/beheco/arz024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rebecca J Fox
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Ouyang X, Gao J, Xie M, Liu B, Zhou L, Chen B, Jourdan J, Riesch R, Plath M. Natural and sexual selection drive multivariate phenotypic divergence along climatic gradients in an invasive fish. Sci Rep 2018; 8:11164. [PMID: 30042477 PMCID: PMC6057953 DOI: 10.1038/s41598-018-29254-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Invasive species that rapidly spread throughout novel distribution ranges are prime models to investigate climate-driven phenotypic diversification on a contemporary scale. Previous studies on adaptive diversification along latitudinal gradients in fish have mainly considered body size and reported either increased or decreased body size towards higher latitudes (i.e. Bergmann's rule). Our study is the first to investigate phenotypic divergence in multiple traits, including sexually selected traits (size and shape of the male copulatory organ, the gonopodium) of invasive Gambusia affinis in China. We studied body size, life history traits and morphological variation across populations spanning 17 degrees of latitude and 16 degrees of longitude. Even though we found phenotypic variation along climatic gradients to be strongest in naturally selected traits, some sexually selected traits also showed systematic gradual divergence. For example, males from southern populations possessed wider gonopodia with increased armament. Generally, males and females diverged in response to different components of climatic gradients (latitudinal or longitudinal variation) and in different trait suites. We discuss that not only temperature regimes, but also indirect effects of increased resource and mate competition (as a function of different extrinsic overwinter mortality rates) alter the selective landscape along climatic gradients.
Collapse
Affiliation(s)
- Xu Ouyang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Meifeng Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Binghua Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bojian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
18
|
Hernandez-Jimenez A, Rios-Cardenas O. Condition-dependent female preference for male genitalia length is based on male reproductive tactics. Proc Biol Sci 2018; 284:rspb.2017.2223. [PMID: 29212729 DOI: 10.1098/rspb.2017.2223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/09/2017] [Indexed: 11/12/2022] Open
Abstract
There is extensive morphological variation of male genitalia across animals with internal fertilization, even among closely related species. Most studies attempting to explain this extraordinary diversity have focused on processes that occur post-copula (e.g. sperm competition, cryptic female choice). Only a few studies have focused on the pre-copula process of female preference. In addition, the extent to which this variation could be associated with the use of different reproductive tactics has yet to be explored. Here, we show that female preference for male genitalia length in two livebearing fishes depends on the type of reproductive tactic of the males being evaluated as well as the body condition of the female. In a species where all males coax females to acquire matings (courters), females preferred males with short genitalia. In a species with genetically influenced alternative reproductive tactics (courter males that only court and produce courter sons, sneaker males that use the coercive tactic of sneak chase and produce sneaker sons), female preference depended on an interaction between male tactic and female condition: females in good condition preferred courter males with short genitalia, and sneaker males with long genitalia. Our results suggest that female preference for male traits favourable to their sons may be an important factor contributing to the diversification of male genitalia. Despite the contrasting selection for genitalia length that our female preference tests suggest, we found no significant differences in genitalia length between coaxing (courters) and coercive (sneakers) males. Our study represents a starting point to more clearly understand the role of alternative reproductive tactics and variation in female mate preference in the evolution of male genitalia.
Collapse
|
19
|
Chen BJ, Liu K, Zhou LJ, Gomes-Silva G, Sommer-Trembo C, Plath M. Personality differentially affects individual mate choice decisions in female and male Western mosquitofish (Gambusia affinis). PLoS One 2018; 13:e0197197. [PMID: 29763435 PMCID: PMC5953439 DOI: 10.1371/journal.pone.0197197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
Consistent individual differences in behavioral tendencies (animal personality) can affect individual mate choice decisions. We asked whether personality traits affect male and female mate choice decisions similarly and whether potential personality effects are consistent across different mate choice situations. Using western mosquitofish (Gambusia affinis) as our study organism, we characterized focal individuals (males and females) twice for boldness, activity, and sociability/shoaling and found high and significant behavioral repeatability. Additionally, each focal individual was tested in two different dichotomous mate choice tests in which it could choose between computer-animated stimulus fish of the opposite sex that differed in body size and activity levels, respectively. Personality had different effects on female and male mate choice: females that were larger than average showed stronger preferences for large-bodied males with increasing levels of boldness/activity (i.e., towards more proactive personality types). Males that were larger than average and had higher shoaling tendencies showed stronger preferences for actively swimming females. Size-dependent effects of personality on the strength of preferences for distinct phenotypes of potential mating partners may reflect effects of age/experience (especially in females) and social dominance (especially in males). Previous studies found evidence for assortative mate choice based on personality types or hypothesized the existence of behavioral syndromes of individuals’ choosiness across mate choice criteria, possibly including other personality traits. Our present study exemplifies that far more complex patterns of personality-dependent mate choice can emerge in natural systems.
Collapse
Affiliation(s)
- Bo-jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Kai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Lin-jun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Guilherme Gomes-Silva
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- Department of Geography (“Saude Ambiental”), Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Carolin Sommer-Trembo
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- Department of Ecology and Evolution, J.W. Goethe University Frankfurt, Max-von-Laue-Straße, Frankfurt am Main, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- * E-mail:
| |
Collapse
|
20
|
Head ML, Kahn AT, Henshaw JM, Keogh JS, Jennions MD. Sexual selection on male body size, genital length and heterozygosity: Consistency across habitats and social settings. J Anim Ecol 2017; 86:1458-1468. [PMID: 28815592 DOI: 10.1111/1365-2656.12742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022]
Abstract
Spatial and temporal variation in environmental factors and the social setting can help to maintain genetic variation in sexually selected traits if it affects the strength of directional selection. A key social parameter which affects the intensity of, and sometimes predicts the response to, mating competition is the operational sex ratio (OSR; ratio of receptive males to females). How the OSR affects selection for specific male traits is poorly understood. It is also unclear how sexual selection is affected by interactions between the OSR and environmental factors, such as habitat complexity, that alter key male-female interactions such as mate encounter rates. Here, we experimentally manipulated the OSR and habitat complexity and quantified sexual selection on male mosquitofish (Gambusia holbrooki) by directly measuring male reproductive success (i.e. paternity). We show that despite a more equitable sharing of paternity (i.e. higher levels of multiple paternity) under a male-biased OSR, selection on focal male traits was unaffected by the OSR or habitat complexity. Instead, sexual selection consistently, and significantly, favoured smaller bodied males, males with higher genome wide heterozygosity (based on >3,000 SNP markers) and males with a relatively long gonopodium (intromittent organ). Our results show that sexual selection on male body size, relative genital size and heterozygosity in this system is consistent across environments that vary in ecological parameters that are expected to influence mate encounter rates.
Collapse
Affiliation(s)
- Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Andrew T Kahn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Jonathan M Henshaw
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
21
|
Marsh JN, Vega-Trejo R, Jennions MD, Head ML. Why does inbreeding reduce male paternity? Effects on sexually selected traits. Evolution 2017; 71:2728-2737. [PMID: 28857148 DOI: 10.1111/evo.13339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Abstract
Mating with relatives has often been shown to negatively affect offspring fitness (inbreeding depression). There is considerable evidence for inbreeding depression due to effects on naturally selected traits, particularly those expressed early in life, but there is less evidence of it for sexually selected traits. This is surprising because sexually selected traits are expected to exhibit strong inbreeding depression. Here, we experimentally created inbred and outbred male mosquitofish (Gambusia holbrooki). Inbred males were the offspring of matings between full siblings. We then investigated how inbreeding influenced a number of sexually selected male traits, specifically: attractiveness, sperm number and velocity, as well as sperm competitiveness based on a male's share of paternity. We found no inbreeding depression for male attractiveness or sperm traits. There was, however, evidence that lower heterozygosity decreased paternity due to reduced sperm competitiveness. Our results add to the growing evidence that competitive interactions exacerbate the negative effects of the increased homozygosity that arises when there is inbreeding.
Collapse
Affiliation(s)
- Jason N Marsh
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Regina Vega-Trejo
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael D Jennions
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.,Wissenschaftskolleg zu Berlin, Wallotstaße 19, 14193 Berlin, Germany
| | - Megan L Head
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
22
|
Roth-Monzón AJ, Scott LE, Camargo AA, Clark EI, Schott EE, Johnson JB. Sympatry Predicts Spot Pigmentation Patterns and Female Association Behavior in the Livebearing Fish Poeciliopsis baenschi. PLoS One 2017; 12:e0170326. [PMID: 28107407 PMCID: PMC5249170 DOI: 10.1371/journal.pone.0170326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 01/03/2017] [Indexed: 12/03/2022] Open
Abstract
In this study, we explored the possibility that differences in pigmentation patterns among populations of the fish Poeciliopsis baenschi were associated with the presence or absence of the closely related species P. turneri. If reproductive character displacement is responsible, spotting patterns in these two species should diverge in sympatry, but not allopatry. We predicted that female P. baenschi from sympatric sites should show a preference for associating with conspecifics vs. heterospecific males, but females from allopatric sites should show no such preferences. To evaluate these predictions, we compared spotting patterns and female association behaviors in populations of P. baenschi from Central Mexico. We found that both of our predictions were supported. Poeciliopsis baenschi that co-occured with P. turneri had spotting patterns significantly different than their counterparts from allopatric sites. Using a simultaneous choice test of video presentations of males, we also found that female P. baenschi from populations that co-occured with P. turneri spent significantly more time with males of their own species than with P. turneri males. In contrast, females from allopatric populations of P. baenschi showed no differences in the amount of time they spent with either conspecific or heterospecific males. Together, our results are consistent with the hypothesis that reproductive character displacement may be responsible for behavioral and spotting pattern differences in these populations of P. baenschi.
Collapse
Affiliation(s)
- Andrea J Roth-Monzón
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Laura E Scott
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Ashley A Camargo
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Eliza I Clark
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Eric E Schott
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jerald B Johnson
- Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, Utah, United States of America.,Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
23
|
Vega‐Trejo R, Head ML, Keogh JS, Jennions MD. Experimental evidence for sexual selection against inbred males. J Anim Ecol 2017; 86:394-404. [DOI: 10.1111/1365-2656.12615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/24/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - Megan L. Head
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
- Wissenschaftskolleg zu Berlin Wallotstraße 19 14193 Berlin Germany
| |
Collapse
|
24
|
Vega-Trejo R, Jennions MD, Head ML. Are sexually selected traits affected by a poor environment early in life? BMC Evol Biol 2016; 16:263. [PMID: 27905874 PMCID: PMC5134236 DOI: 10.1186/s12862-016-0838-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/25/2016] [Indexed: 01/06/2023] Open
Abstract
Background Challenging conditions experienced early in life, such as a restricted diet, can detrimentally affect key life-history traits. Individuals can reduce these costs by delaying their sexual maturation, albeit at the price of the later onset of breeding, to eventually reach the same adult size as individuals that grow up in a benevolent environment. Delayed maturation can, however, still lead to other detrimental morphological and physiological changes that become apparent later in adulthood (e.g. shorter lifespan, faster senescence). In general, research focuses on the naturally selected costs of a poor early diet. In mosquitofish (Gambusia holbrooki), males with limited food intake early in life delay maturation to reach a similar adult body size to their well-fed counterparts (‘catch-up growth’). Here we tested whether a poor early diet is costly due to the reduced expression of sexually selected male characters, namely genital size and ejaculate traits. Results We found that a male’s diet early in life significantly influenced his sperm reserves and sperm replenishment rate. Shortly after maturation males with a restricted early diet had significantly lower sperm reserves and slower replenishment rates than control diet males, but this dietary difference was no longer detectable in older males. Conclusions Although delaying maturation to reach the same body size as well fed juveniles can ameliorate some costs of a poor start in life, our findings suggest that costs might still arise because of sexual selection against these males. It should be noted, however, that the observed effects are modest (Hedges’ g = 0.20–0.36), and the assumption that lower sperm production translates into a decline in fitness under sperm competition remains unconfirmed. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0838-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Vega-Trejo
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, 14193, Germany
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
25
|
Head ML, Vega-Trejo R, Jacomb F, Jennions MD. Predictors of male insemination success in the mosquitofish (Gambusia holbrooki). Ecol Evol 2015; 5:4999-5006. [PMID: 26640677 PMCID: PMC4662323 DOI: 10.1002/ece3.1775] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/20/2015] [Indexed: 12/03/2022] Open
Abstract
Identifying targets of selection is key to understanding the evolution of sexually selected behavioral and morphological traits. Many animals have coercive mating, yet little is known about whether and how mate choice operates when these are the dominant mating tactic. Here, we use multivariate selection analysis to examine the direction and shape of selection on male insemination success in the mosquitofish (Gambusia holbrooki). We found direct selection on only one of five measured traits, but correlational selection involving all five traits. Larger males with longer gonopodia and with intermediate sperm counts were more likely to inseminate females than smaller males with shorter gonopodia and extreme sperm counts. Our results highlight the need to investigate sexual selection using a multivariate framework even in species that lack complex sexual signals. Further, female choice appears to be important in driving the evolution of male sexual traits in this species where sexual coercion is the dominant mating tactic.
Collapse
Affiliation(s)
- Megan L Head
- Division of Evolution, Ecology and Genetics Research School of Biology Australian National University Acton Canberra Australian Capital Territory 0200 Australia
| | - Regina Vega-Trejo
- Division of Evolution, Ecology and Genetics Research School of Biology Australian National University Acton Canberra Australian Capital Territory 0200 Australia
| | - Frances Jacomb
- Division of Evolution, Ecology and Genetics Research School of Biology Australian National University Acton Canberra Australian Capital Territory 0200 Australia
| | - Michael D Jennions
- Division of Evolution, Ecology and Genetics Research School of Biology Australian National University Acton Canberra Australian Capital Territory 0200 Australia
| |
Collapse
|