1
|
Zhang B, Yang W, He Q, Chen H, Che B, Bai X. Analysis of differential effects of host plants on the gut microbes of Rhoptroceros cyatheae. Front Microbiol 2024; 15:1392586. [PMID: 38962140 PMCID: PMC11221597 DOI: 10.3389/fmicb.2024.1392586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
As an indispensable part of insects, intestinal symbiotic bacteria play a vital role in the growth and development of insects and their adaptability. Rhoptroceros cyatheae, the main pest of the relict plant Alsophila spinulosa, poses a serious threat to the development of the A. spinulosa population. In the present study, 16S rDNA and internal transcribed spacer high-throughput sequencing techniques were used to analyze the structure of intestinal microbes and the diversity of the insect feeding on two different plants, as well as the similarities between the intestinal microorganisms of R. cyatheae. The dominant bacteria of leaf endophytes were also compared based on the sequencing data. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla of intestinal bacteria, and Ascomycota was the dominant phylum of intestinal fungi. Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Methylobacterium-Methylorubrum, and Enterococcus were the dominant genera in the intestine of R. cyatheae feeding on two plants, and the relative abundance was significantly different between the two groups. Candida was the common dominant genus of intestinal fungi in the two groups, and no significant difference was observed in its abundance between the two groups. This showed that compared with the intestinal fungi of R. cyatheae, the abundance of the intestinal bacteria was greatly affected by food. The common core microbiota between the microorganisms in A. spinulosa leaves and the insect gut indicated the presence of a microbial exchange between the two. The network correlation diagram showed that the gut microbes of R. cyatheae feeding on Gymnosphaera metteniana were more closely related to each other, which could help the host to better cope with the adverse external environment. This study provides a theoretical basis for the adaptation mechanism of R. cyatheae and a new direction for the effective prevention and control of R. cyatheae.
Collapse
Affiliation(s)
- Bingchen Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaojie Bai
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| |
Collapse
|
2
|
Yu M, Li Y, Ji J, Lei Y, Sun Y. Gut yeast diversity of Helicoverpa armigera (Lepidoptera: Noctuidae) under different dietary conditions. Front Microbiol 2024; 15:1287083. [PMID: 38756734 PMCID: PMC11098133 DOI: 10.3389/fmicb.2024.1287083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Yeast is one of the important symbiotic flora in the insect gut. However, little is known about the gut yeast in Helicoverpa armigera (Lepidoptera: Noctuidae) under various dietary conditions. The composition and function of the intestinal yeast community also remain unclear. In this research, we explored the composition of yeast microorganisms in H. armigera larvae under different feeding environments, including apple, pear, tomato, artificial diet (laboratory feeding), Urtica fissa, Helianthus annuus, and Zinnia elegans (wild environment) using high-throughput sequencing. Results showed that a total of 43 yeast OTU readings were obtained, comprising 33 yeast genera and 42 yeast species. The yeast genera with a total content of more than 5% were Hanseniaspora (36.27%), Moesziomyces (21.47%), Trichosporon (16.20%), Wickerhamomyces (12.96%) and Pichia (6.38%). Hanseniaspora was predominant when fed indoors with fruits, whereas Moesziomyces was only detected in the wild group (Urtica fissa, Helianthus annuus, Zinnia elegans) and the artificial diet group. After transferring the larvae from artificial diet to apple, pear and tomato, the composition of intestinal yeast community changed, mainly reflected in the increased relative abundance of Hanseniaspora and the decreased abundance of Trichosporon. Simultaneously, the results of α diversity index indicated that the intestinal yeast microbial diversity of H. armigera fed on wild plants was higher than that of indoor artificial feeding. PCoA and PERMANOVA analysis concluded that there were significant differences in the gut yeast composition of H. armigera larvae on different diets. Our results confirmed that gut yeast communities of H. armigera can be influenced by host diets and may play an important role in host adaptation.
Collapse
Affiliation(s)
- Man Yu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jingyuan Ji
- College of Life Sciences and Food Engineering, Shaanxi Xueqian Normal University, Xi’an, Shaanxi, China
| | - Yonghui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yanfei Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Vitasse Y, Pohl N, Walde MG, Nadel H, Gossner MM, Baumgarten F. Feasting on the ordinary or starving for the exceptional in a warming climate: Phenological synchrony between spongy moth ( Lymantria dispar) and budburst of six European tree species. Ecol Evol 2024; 14:e10928. [PMID: 38371870 PMCID: PMC10869895 DOI: 10.1002/ece3.10928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024] Open
Abstract
Global warming is affecting the phenological cycles of plants and animals, altering the complex synchronization that has co-evolved over thousands of years between interacting species and trophic levels. Here, we examined how warmer winter conditions affect the timing of budburst in six common European trees and the hatching of a generalist leaf-feeding insect, the spongy moth Lymantria dispar, whose fitness depends on the synchrony between egg hatch and leaf emergence of the host tree. We applied four different temperature treatments to L. dispar eggs and twig cuttings, that mimicked warmer winters and reduced chilling temperatures that are necessary for insect diapause and bud dormancy release, using heated open-top chambers (ambient or +3.5°C), and heated greenhouses (maintained at >6°C or >10°C). In addition, we conducted preference and performance tests to determine which tree species the larvae prefer and benefit from the most. Budburst success and twig survival were highest for all tree species at ambient temperature conditions, whereas it declined under elevated winter temperature for Tilia cordata and Acer pseudoplatanus, likely due to a lack of chilling. While L. dispar egg hatch coincided with budburst in most tree species within 10 days under ambient conditions, it coincided with budburst only in Quercus robur, Carpinus betulus, and, to a lesser extent, Ulmus glabra under warmer conditions. With further warming, we, therefore, expect an increasing mismatch in trees with high chilling requirements, such as Fagus sylvatica and A. pseudoplatanus, but still good synchronization with trees having low chilling requirements, such as Q. robur and C. betulus. Surprisingly, first instar larvae preferred and gained weight faster when fed with leaves of F. sylvatica, while Q. robur ranked second. Our results suggest that spongy moth outbreaks are likely to persist in oak and hornbeam forests in western and central Europe.
Collapse
Affiliation(s)
- Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Nora Pohl
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
| | - Manuel G. Walde
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Hannah Nadel
- United States Department of AgricultureAnimal and Plant Health Inspection Service, Forest Pest Methods LaboratoryBuzzards BayMassachusettsUSA
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental Systems ScienceInstitute of Terrestrial Ecosystems, ETH ZürichZürichSwitzerland
| | - Frederik Baumgarten
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
4
|
Lazarević J, Milanović S, Šešlija Jovanović D, Janković-Tomanić M. Temperature- and Diet-Induced Plasticity of Growth and Digestive Enzymes Activity in Spongy Moth Larvae. Biomolecules 2023; 13:biom13050821. [PMID: 37238690 DOI: 10.3390/biom13050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature and food quality are the most important environmental factors determining the performance of herbivorous insects. The objective of our study was to evaluate the responses of the spongy moth (formerly known as the gypsy moth) [Lymantria dispar L. (Lepidoptera: Erebidae)] to simultaneous variation in these two factors. From hatching to the fourth instar, larvae were exposed to three temperatures (19 °C, 23 °C, and 28 °C) and fed four artificial diets that differed in protein (P) and carbohydrate (C) content. Within each temperature regime, the effects of the nutrient content (P+C) and ratio (P:C) on development duration, larval mass, growth rate, and activities of digestive proteases, carbohydrases, and lipase were examined. It was found that temperature and food quality had a significant effect on the fitness-related traits and digestive physiology of the larvae. The greatest mass and highest growth rate were obtained at 28 °C on a high-protein low-carbohydrate diet. A homeostatic increase in activity was observed for total protease, trypsin, and amylase in response to low substrate levels in the diet. A significant modulation of overall enzyme activities in response to 28 °C was detected only with a low diet quality. A decrease in the nutrient content and P:C ratio only affected the coordination of enzyme activities at 28 °C, as indicated by the significantly altered correlation matrices. Multiple linear regression analysis showed that variation in fitness traits in response to different rearing conditions could be explained by variation in digestion. Our results contribute to the understanding of the role of digestive enzymes in post-ingestive nutrient balancing.
Collapse
Affiliation(s)
- Jelica Lazarević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemĕdĕlská 3, 613 00 Brno, Czech Republic
| | - Darka Šešlija Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Milena Janković-Tomanić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Abstract
Prokaryotic and eukaryotic microbial symbiotic communities span through kingdoms. The vast microbial gene pool extends the host genome and supports adaptations to changing environmental conditions. Plants are versatile hosts for the symbionts, carrying microbes on the surface, inside tissues, and even within the cells. Insects are equally abundantly colonized by microbial symbionts on the exoskeleton, in the gut, in the hemocoel, and inside the cells. The insect gut is a prolific environment, but it is selective on the microbial species that enter with food. Plants and insects are often highly dependent on each other and frequently interact. Regardless of the accumulating evidence on the microbiomes of both organisms, it remains unclear how much they exchange and modify each other's microbiomes. In this review, we approach this question from the point of view of herbivores that feed on plants, with a special focus on the forest ecosystems. After a brief introduction to the subject, we concentrate on the plant microbiome, the overlap between plant and insect microbial communities, and how the exchange and modification of microbiomes affects the fitness of each host.
Collapse
|
6
|
Similar Bacterial Communities among Different Populations of a Newly Emerging Invasive Species, Tuta absoluta (Meyrick). INSECTS 2022; 13:insects13030252. [PMID: 35323550 PMCID: PMC8951508 DOI: 10.3390/insects13030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary As an invasive pest in China, the moth Tuta absoluta has spread extremely quickly, and now causes serious harm to the Chinese tomato industry. Understanding gut microbial diversity and composition can potentially identify the adaptive potential of introduced species. In this study, we found there were no significant differences in microbial diversity among three geographical populations, and the gut microbial compositions were similar among the Spanish, Xinjiang and Yunnan geographical populations. Abstract Microorganisms in the guts of insects enhance the adaptability of their hosts with different lifestyles, or those that live in different habitats. Tuta absoluta is an invasive pest that is a serious threat to tomato production in China. It has quickly spread and colonized Xinjiang, Yunnan and other provinces and regions. We used Illumina HiSeq next generation sequencing of the 16S rRNA gene to study and analyze the composition and diversity of the gut microbiota of three geographical populations of T. absoluta. At the phylum level, the most common bacteria in T. absoluta across all three geographical populations were Proteobacteria and Firmicutes. An uncultured bacterium in the Enterobacteriaceae was the dominant bacterial genus in the T. absoluta gut microbiotas. There were no significant differences in alpha diversity metrics among the Spanish, Yunnan and Xinjiang populations. The structures of the gut microbiota of the three populations were similar based on PCoA and NMDS results. The results confirmed that the microbial structures of T. absoluta from different regions were similar.
Collapse
|
7
|
Marín-Miret J, González-Serrano F, Rosas T, Baixeras J, Latorre A, Pérez-Cobas AE, Moya A. Temporal variations shape the gut microbiome ecology of the moth Brithys crini. Environ Microbiol 2022; 24:3939-3953. [PMID: 35243736 DOI: 10.1111/1462-2920.15952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Francisco González-Serrano
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Tania Rosas
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain.,Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain.,Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| |
Collapse
|
8
|
Adachi-Fukunaga S, Nakabayashi Y, Tokuda M. Transgenerational changes in pod maturation phenology and seed traits of Glycine soja infested by the bean bug Riptortus pedestris. PLoS One 2022; 17:e0263904. [PMID: 35235584 PMCID: PMC8890626 DOI: 10.1371/journal.pone.0263904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
Land plants have diverse defenses against herbivores. In some cases, plant response to insect herbivory may be chronological and even transgenerational. Feeding by various stink bugs, such as the bean bug Riptortus pedestris (Hemiptera: Alydidae), induce physiological changes in soybean, called as green stem syndrome, which are characterized by delayed senescence in stems, leaves, and pods. To investigate the plant response to the bean bug feeding in the infested generation and its offspring, we studied the effects of R. pedestris infestation on Glycine soja, the ancestral wild species of soybean. Field surveys revealed that the occurrence of the autumn R. pedestris generation coincided with G. soja pod maturation in both lowland and mountainous sites. Following infestation by R. pedestris, pod maturation was significantly delayed in G. soja. When G. soja seeds obtained from infested and non-infested plants were cultivated, the progeny of infested plants exhibited much earlier pod maturation and larger-sized seed production than that of control plants, indicating that R. pedestris feeding induced transgenerational changes. Because earlier seed maturity results in asynchrony with occurrence of R. pedestris, the transgenerational changes in plant phenology are considered to be an adaptive transgenerational and chronological defense for the plant against feeding by the stink bug.
Collapse
Affiliation(s)
- Shuhei Adachi-Fukunaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yui Nakabayashi
- Department of Biological Resource Science, Saga University, Saga, Japan
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Biological Resource Science, Saga University, Saga, Japan
| |
Collapse
|
9
|
Belousova I, Pavlushin S, Subbotina A, Rudneva N, Martemyanov V. Sex Specificity in Innate Immunity of Insect Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6449196. [PMID: 34865031 PMCID: PMC8644026 DOI: 10.1093/jisesa/ieab097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 06/13/2023]
Abstract
The innate immunity of insects has been widely studied. Although the effect of sex on insect immunity has been extensively discussed, differences in immunity between the sexes of larvae insects remain largely unstudied. Studying larval sex differences in immunity may provide valuable information about the mechanisms underlying the insect immune system, which, in turn, can be valuable for the development and improvement of pest management. Here we compared the antibacterial activity in both the midgut tissue and cell-free hemolymph of Lymantria dispar L. (Lepidoptera: Erebidae) females and males at the larval stage without and after a challenge by entomopathogenic bacterium Bacillus thuringiensis Berliner. We also evaluated the sex-specific mortality of L. dispar induced by B. thuringiensis infection. We find that antibacterial activity in the midgut is activated by infection, but only in females. Thus, sex differences in immunity can have important effects even before sexual differentiation at adulthood.
Collapse
Affiliation(s)
- Irina Belousova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Sergey Pavlushin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
- Biological Institute, National Research Tomsk State University, Lenin Ave. 36, Tomsk, 634050, Russia
| | - Anna Subbotina
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Natalya Rudneva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Vyacheslav Martemyanov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
- Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Ave. 31, Krasnoyarsk 660037, Russia
| |
Collapse
|
10
|
Kolmakova OV, Trusova MY, Baturina OA, Kabilov MR. Bacteria of Lake Pyasino and Adjacent Rivers after an Accidental Diesel Spill in 2020. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Yuan X, Zhang X, Liu X, Dong Y, Yan Z, Lv D, Wang P, Li Y. Comparison of Gut Bacterial Communities of Grapholita molesta (Lepidoptera: Tortricidae) Reared on Different Host Plants. Int J Mol Sci 2021; 22:ijms22136843. [PMID: 34202141 PMCID: PMC8268091 DOI: 10.3390/ijms22136843] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Intestinal symbiotic bacteria have played an important role in the digestion, immunity detoxification, mating, and reproduction of insects during long-term coevolution. The oriental fruit moth, Grapholita molesta, is an important fruit tree pest worldwide. However, the composition of the G. molesta microbial community, especially of the gut microbiome, remains unclear. To explore the differences of gut microbiota of G. molesta when reared on different host plants, we determined the gut bacterial structure when G. molesta was transferred from an artificial diet to different host plants (apples, peaches, nectarines, crisp pears, plums, peach shoots) by amplicon sequencing technology. The results showed that Proteobacteria and Firmicutes are dominant in the gut microbiota of G. molesta. Plum-feeding G. molesta had the highest richness and diversity of gut microbiota, while apple-feeding G. molesta had the lowest. PCoA and PERMANOVA analysis revealed that there were significant differences in the gut microbiota structure of G. molesta on different diets. PICRUSt2 analysis indicated that most of the functional prediction pathways were concentrated in metabolic and cellular processes. Our results confirmed that gut bacterial communities of G. molesta can be influenced by host diets and may play an important role in host adaptation.
Collapse
Affiliation(s)
- Xiangqun Yuan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xuan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xueying Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Yanlu Dong
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zizheng Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Dongbiao Lv
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Ping Wang
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Yiping Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, Zimens EA, Kabilov MR, Zhuchenko NA, Gorshkova AS, Suslova MY, Belykh OI. Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms 2021; 9:842. [PMID: 33920057 PMCID: PMC8071047 DOI: 10.3390/microorganisms9040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.
Collapse
Affiliation(s)
- Agnia Dmitrievna Galachyants
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Andrey Yurjevich Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Galina Vladimirovna Podlesnaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Sergey Anatoljevich Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Elena Viktorovna Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Irina Vasiljevna Tikhonova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Ekaterina Andreevna Zimens
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Marsel Rasimovich Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia Albertovna Zhuchenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Anna Sergeevna Gorshkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| |
Collapse
|
13
|
Mason CJ, Hoover K, Felton GW. Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Sci Rep 2021; 11:4429. [PMID: 33627698 PMCID: PMC7904771 DOI: 10.1038/s41598-021-83497-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Plants can have fundamental roles in shaping bacterial communities associated with insect herbivores. For larval lepidopterans (caterpillars), diet has been shown to be a driving force shaping gut microbial communities, where the gut microbiome of insects feeding on different plant species and genotypes can vary in composition and diversity. In this study, we aimed to better understand the roles of plant genotypes, sources of microbiota, and the host gut environment in structuring bacterial communities. We used multiple maize genotypes and fall armyworm (Spodoptera frugiperda) larvae as models to parse these drivers. We performed a series of experiments using axenic larvae that received a mixed microbial community prepared from frass from larvae that consumed field-grown maize. The new larval recipients were then provided different maize genotypes that were gamma-irradiated to minimize bacteria coming from the plant during feeding. For field-collected maize, there were no differences in community structure, but we did observe differences in gut community membership. In the controlled experiment, the microbial inoculation source, plant genotype, and their interactions impacted the membership and structure of gut bacterial communities. Compared to axenic larvae, fall armyworm larvae that received frass inoculum experienced reduced growth. Our results document the role of microbial sources and plant genotypes in contributing to variation in gut bacterial communities in herbivorous larvae. While more research is needed to shed light on the mechanisms driving this variation, these results provide a method for incorporating greater gut bacterial community complexity into laboratory-reared larvae.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Butina TV, Bukin YS, Krasnopeev AS, Belykh OI, Tupikin AE, Kabilov MR, Sakirko МV, Belikov SI. Estimate of the diversity of viral and bacterial assemblage in the coastal water of Lake Baikal. FEMS Microbiol Lett 2020; 366:5484837. [PMID: 31049590 DOI: 10.1093/femsle/fnz094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
In this study, we analysed the diversity and composition of double-stranded DNA viral and bacterial communities within the sample of surface coastal water of Southern Baikal through metagenomics and deep sequencing of the 16S ribosomal RNA gene, respectively. The 16S rRNA gene analysis has revealed 14 phyla and dominance of the 'Actinobacteria' (43.6%), 'Proteobacteria' (25.2%) and 'Bacteroidetes' (11.5%). The bacterial composition was similar to that obtained previously in Lake Baikal littoral zone. Out of 1 030 169 processed virome reads, 37.4% of sequences (385 421) were identified as viral; 15.1% were identified as nonviral and related to the domains Eukarya, Bacteria and Archaea; and 47.5% had no matches in the databases. The identified virotypes belonged to different families and were predicted to infect a wide range of organisms, from bacteria to mammals. Six families (Myoviridae, Poxviridae, Mimiviridae, Siphoviridae, Phycodnaviridae and Podoviridae) were dominant accounting for more than 90% of the identified sequences (48.3%, 17.4%, 8.3%, 6.8%, 5.8% and 4.1%, respectively). In contrast to other freshwater systems, high percentage of the Poxviridae and Mimiviridae was recorded in the water sample of Lake Baikal.
Collapse
Affiliation(s)
- Tatyana V Butina
- Laboratory of Analytical and Bioorganic Chemistry, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Yurij S Bukin
- Laboratory of Genosystematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia.,Department of Biotechnology and Bioinformatics, National Research Irkutsk State Technical University, 83, Lermontov street, Irkutsk, 664074, Russia
| | - Andrey S Krasnopeev
- Laboratory of Aquatic Microbiology, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Olga I Belykh
- Laboratory of Aquatic Microbiology, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Aleksey E Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Мaria V Sakirko
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| | - Sergey I Belikov
- Laboratory of Analytical and Bioorganic Chemistry, Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya street, Irkutsk, 664033, Russia
| |
Collapse
|
15
|
Kurenshchikov DK, Martemyanov VV, Imranova EL. Features of the Far Eastern Gypsy Moth (Lymantria dispar L.) Population Outbreak. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425520020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Glupov V, Martemyanov V, Kryukov V. Insect parasites in multicomponent systems and development of new bioinsecticides. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201800009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stable and dynamic interactions among plants, herbivorous insects, parasites and associated microbes are formed in natural habitats. The study of these interactions in multicomponent models is required to develop integrated methods for the management of insect pest populations. In this work, we summarize our studies on the influence of different factors, such as hygrothermal conditions, host development, host microbiota, plant quality, and concomitant infections, on interactions between insects and their parasites, such as fungi, bacteria, viruses and parasitoids. Some approaches for developing complex products for biocontrol are also discussed. For example, the use of natural compounds with immunosuppressive effects may enhance the efficacy of microbial agents toward pest insects.
Collapse
|
17
|
Damien M, Tougeron K. Prey-predator phenological mismatch under climate change. CURRENT OPINION IN INSECT SCIENCE 2019; 35:60-68. [PMID: 31401300 DOI: 10.1016/j.cois.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
Insect phenology is affected by climate change and main responses are driven by phenotypic plasticity and evolutionary changes. Any modification in seasonal activity in one species can have consequences on interacting species, within and among trophic levels. In this overview, we focus on synchronisation mismatches that can occur between tightly interacting species such as hosts and parasitoids or preys and predators. Asynchronies happen because species from different trophic levels can have different response rates to climate change. We show that insect species alter their seasonal activities by modifying their life-cycle through change in voltinism or by altering their development rate. We expect strong bottom-up effects for phenology adjustments rather than top-down effects within food-webs. Extremely complex outcomes arise from such trophic mismatches, which make consequences at the community or ecosystem levels tricky to predict in a climate change context. We explore a set of potential consequences on population dynamics, conservation of species interactions, with a particular focus on the provision of ecosystem services by predators and parasitoids, such as biological pest control.
Collapse
Affiliation(s)
- Maxime Damien
- Crop Research Institute (Výzkumný ústav rostlinné výroby), Drnovská 507, 161 06 Praha 6, Ruzyně, Czech Republic.
| | - Kévin Tougeron
- The University of Wisconsin - La Crosse, Department of Biology, La Crosse 54601, WI, USA; UMR 7058, CNRS-UPJV, EDYSAN "Ecologie et Dynamique des Systèmes Anthropisés", Amiens 80000, France
| |
Collapse
|
18
|
Zeng J, Shi Z, Shi J, Guo J, Zhang G, Zhang J. Ambient temperature-mediated enzymic activities and intestinal microflora in Lymantria dispar larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21597. [PMID: 31328829 DOI: 10.1002/arch.21597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To understand how ambient temperature affect the gypsy moth larvae, and provide a theoretical basis for pest control in different environments. Fourth instar gypsy moth larvae were incubating for 3 hr at 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃, respectively. Afterward, digestive and antioxidant enzyme activities, total antioxidant capacity, and intestinal microflora community were analyzed to reveal how the caterpillars respond to ambient temperature stress. Results showed that both digestive and antioxidant enzymes were regulated by the ambient temperature. The optimum incubation temperatures of protease, amylase, trehalase, and lipase in gypsy moth larvae were 30℃, 25℃, and 20℃, respectively. When the incubation temperature was deviated optimum temperatures, digestive enzyme activities would be downregulated depending on the extent of temperature stress. In addition, glutathione S-transferase, peroxidase, catalase, and polyphenol oxidase would be activated under a sufferable temperature stress, but superoxide dismutase and carboxylesterase (CarE) would be inhibited. In addition, results showed that the top two abundant phyla were Proteobacteria and Firmicutes. The phylum Firmicutes abundance was decreased and phylum Proteobacteria abundance was increased by ambient temperature stress. Moreover, it suggested that gypsy moth caterpillars at different ambient temperature mainly differed from each other by Escherichia-Shigella and Bifidobacterium in control, Acinetobacter in T15, and Lactobacillus in T40, respectively.
Collapse
Affiliation(s)
- JianYong Zeng
- School of Forest, Northeast Forestry University, Harbin, China
| | - ZhongBin Shi
- School of Forest, Northeast Forestry University, Harbin, China
| | - JianHong Shi
- School of Forest, Northeast Forestry University, Harbin, China
| | - JiaXing Guo
- School of Forest, Northeast Forestry University, Harbin, China
| | - GuoCai Zhang
- School of Forest, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Martemyanov V, Bykov R, Demenkova M, Gninenko Y, Romancev S, Bolonin I, Mazunin I, Belousova I, Akhanaev Y, Pavlushin S, Krasnoperova P, Ilinsky Y. Genetic evidence of broad spreading of Lymantria dispar in the West Siberian Plain. PLoS One 2019; 14:e0220954. [PMID: 31430316 PMCID: PMC6701763 DOI: 10.1371/journal.pone.0220954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/27/2019] [Indexed: 11/18/2022] Open
Abstract
Gypsy moth Lymantria dispar L. 1758 (Lepidoptera: Erebidae) is one of the most dangerous forest pests of the Holarctic region. Outbreaks of gypsy moth populations lead to significant defoliation of local forests. Within the vast territory of the West Siberian Plain, we noted the outbreak front movement in the north-east direction with a speed 100-200 km per year. The reason for the outbreak's movement is still unclear because L. dispar females are characterised by limited flight ability, which is not enough to support that movement per se. Herein, we analysed the mtDNA divergence pattern among L. dispar populations collected from the vast territory of the West Siberian Plain to determine the boundaries of populations and reveal the effect of the outbreak's front movement on mtDNA patterns of populations. The 590-bp region of the cytochrome oxidase subunit I gene of the mitochondrial genome was sequenced for 220 specimens that were collected from 18 localities along a transect line (~ 1400 km). Our results clearly show that the gypsy moth populations of the vast Siberian territory are not subdivided. This result can be explained by extensive genetic exchange among local populations. Taking into account that the flight ability of L. dispar females is rather limited, we suggest that spreading occurs through ballooning of early instar larvae. This hypothesis was confirmed by the coincidence of the outbreaks' movement direction with that of the dominant winds, complemented by the observation of ballooned larvae far from a forest edge.
Collapse
Affiliation(s)
- Vyacheslav Martemyanov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Biological Institute, National Research Tomsk State University, Tomsk, Russia
- * E-mail: (VM); (YL)
| | - Roman Bykov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Marya Demenkova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Yuri Gninenko
- All-Russian Research Institute for Silviculture and Mechanization of Forestry, Pushkino, Moscow Region, Russia
| | | | - Ivan Bolonin
- FSI "Russian Centre of Forest Health", Novosibirsk, Russia
| | - Ilia Mazunin
- Baltic Federal University, Kaliningrad, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Irina Belousova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Yuri Akhanaev
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Sergey Pavlushin
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | | | - Yury Ilinsky
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Baltic Federal University, Kaliningrad, Russia
- All-Russian Plant Quarantine Center, Bykovo, Moscow Oblast, Russia
- * E-mail: (VM); (YL)
| |
Collapse
|
20
|
Polenogova OV, Kabilov MR, Tyurin MV, Rotskaya UN, Krivopalov AV, Morozova VV, Mozhaitseva K, Kryukova NA, Alikina T, Kryukov VY, Glupov VV. Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Sci Rep 2019; 9:4012. [PMID: 30850650 PMCID: PMC6408550 DOI: 10.1038/s41598-019-40301-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
Gut bacteria influence the development of different pathologies caused by bacteria, fungi and parasitoids in insects. Wax moth larvae became more susceptible to fungal infections after envenomation by the ectoparasitoid Habrobracon hebetor. In addition, spontaneous bacterioses occurred more often in envenomated larvae. We analyzed alterations in the midgut microbiota and immunity of the wax moth in response to H. hebetor envenomation and topical fungal infection (Beauveria bassiana) alone or in combination using 16S rRNA sequencing, an analysis of cultivable bacteria and a qPCR analysis of immunity- and stress-related genes. Envenomation led to a predominance shift from enterococci to enterobacteria, an increase in CFUs and the upregulation of AMPs in wax moth midguts. Furthermore, mycosis nonsignificantly increased the abundance of enterobacteria and the expression of AMPs in the midgut. Combined treatment led to a significant increase in the abundance of Serratia and a greater upregulation of gloverin. The oral administration of predominant bacteria (Enterococcus faecalis, Enterobacter sp. and Serratia marcescens) to wax moth larvae synergistically increased fungal susceptibility. Thus, the activation of midgut immunity might prevent the bacterial decomposition of envenomated larvae, thus permitting the development of fungal infections. Moreover, changes in the midgut bacterial community may promote fungal killing.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Ulyana N Rotskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Anton V Krivopalov
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Vera V Morozova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Kseniya Mozhaitseva
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Nataliya A Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia.
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630091, Russia
| |
Collapse
|