1
|
Liu W, Zhang Z, Zhang B, Zhu Y, Zhu C, Chen C, Zhang F, Liu F, Ai J, Wang W, Kong W, Xiang H, Wang W, Gong D, Meng D, Zhu L. Role of bacterial pathogens in microbial ecological networks in hydroponic plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1403226. [PMID: 39290732 PMCID: PMC11405252 DOI: 10.3389/fpls.2024.1403226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 09/19/2024]
Abstract
Plant-associated microbial communities are crucial for plant growth and health. However, assembly mechanisms of microbial communities and microbial interaction patterns remain elusive across vary degrees of pathogen-induced diseases. By using 16S rRNA high-throughput sequencing technology, we investigated the impact of wildfire disease on the microbial composition and interaction network in plant three different compartments. The results showed that pathogen infection significantly affect the phyllosphere and rhizosphere microbial community. We found that the primary sources of microbial communities in healthy and mildly infected plants were from the phyllosphere and hydroponic solution community. Mutual exchanges between phyllosphere and rhizosphere communities were observed, but microbial species migration from the leaf to the root was rarely observed in severely infected plants. Moreover, wildfire disease reduced the diversity and network complexity of plant microbial communities. Interactions among pathogenic bacterial members suggested that Caulobacter and Bosea might be crucial "pathogen antagonists" inhibiting the spread of wildfire disease. Our study provides deep insights into plant pathoecology, which is helpful for the development of novel strategies for phyllosphere disease prediction or prevention.
Collapse
Affiliation(s)
- Wenyi Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhihua Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Bin Zhang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yi Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chongwen Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Chaoyong Chen
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Fangxu Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Feng Liu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jixiang Ai
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wei Wang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Wuyuan Kong
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Haoming Xiang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Weifeng Wang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Daoxin Gong
- College of Environment and Ecology, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Li Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| |
Collapse
|
2
|
Borden JB, San Antonio KM, Tomat-Kelly G, Clark T, Flory SL. Invasive grass indirectly alters seasonal patterns in seed predation. Biol Lett 2022; 18:20220095. [PMID: 35702984 PMCID: PMC9198778 DOI: 10.1098/rsbl.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
Invasive species threaten ecosystems globally, but their impacts can be cryptic when they occur indirectly. Invader phenology can also differ from that of native species, potentially causing seasonality in invader impacts. Yet, it is unclear if invader phenology can drive seasonal patterns in indirect effects. We used a field experiment to test if an invasive grass (Imperata cylindrica) caused seasonal indirect effects by altering rodent foraging and seed predation patterns through time. Using seeds from native longleaf pine (Pinus palustris), we found seed predation was 25% greater, on average, in invaded than control plots, but this effect varied by season. Seed predation was 24-157% greater in invaded plots during spring and autumn months, but invasion had no effect on seed predation in other months. One of the largest effects occurred in October when longleaf pine seeds are dispersed, suggesting potential effects on tree regeneration. Thus, seasonal patterns in indirect effects from invaders may cause underappreciated impacts on ecological communities.
Collapse
Affiliation(s)
- Jesse B. Borden
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611, USA
| | - Kelly M. San Antonio
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | | | - Taylor Clark
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - S. Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Flory SL, Dillon W, Hiatt D. Interacting global change drivers suppress a foundation tree species. Ecol Lett 2022; 25:971-980. [PMID: 35132744 DOI: 10.1111/ele.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023]
Abstract
Ecological stress caused by climate change, invasive species and anthropogenic disturbance is driving global environmental change, but how these stressors interact to impact native species are poorly understood. We used a field experiment to test how two stressors (drought and plant invasion by Imperata cylindrica) interacted to determine the effects of a third stressor (fire) on a foundation tree species (Pinus palustris). The invasion combined with prolonged drought resulted in shorter trees than invasion alone. The invasion also resulted in 65% greater fuel loads, four times taller flames, greater maximum temperatures and longer heating duration. Consequently, nearly all tree mortality occurred due to a synergistic interaction between the drought + invasion treatment and fire, where invasion caused taller flames that impacted trees that were shorter due to drought. These findings demonstrate that synergy amongst ecological stressors can dramatically impact native species, with significant implications for forecasting the effects of multiple stressors under global change.
Collapse
Affiliation(s)
- S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Whalen Dillon
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Drew Hiatt
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Tao J, Cao P, Xiao Y, Wang Z, Huang Z, Jin J, Liu Y, Yin H, Liu T, Zhou Z. Distribution of the potential pathogenic Alternaria on plant leaves determines foliar fungal communities around the disease spot. ENVIRONMENTAL RESEARCH 2021; 200:111715. [PMID: 34297933 DOI: 10.1016/j.envres.2021.111715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Plant leaves are colonized by a remarkably diverse fungal microbiome, which contributes to host plant growth and health. However, responses of foliar fungal community to phytopathogen invasion and measures of the fungal community taken to resist or assist pathogens remain elusive. By utilizing high-throughput sequencing of internal transcribed spacer (ITS) amplicons, we studied the relationships between the foliar fungal community around the disease spot and the pathogen of brown spot disease. The pathogenic Alternaria was found to follow a dramatically decreased trend from the disease spot to its surrounding fungal communities, whose community structure also diverged substantially away from the disease spot community. With the increase of pathogenic Alternaria, diversity indexes, including Shannon, Pielou and Simpson, showed a trend of increasing first and then decreasing. Total network links and the average path distance exhibited strong negative and positive correlations with Alternaria, respectively. Five keystone members showed direct interactions with pathogenic Alternaria. Members of Botryosphaeria, Paraphoma and Plectosphaerella might act as key 'pathogen facilitators' to increase the severity and development of brown spot disease, while Pleospora and Ochrocladosporium might be important 'pathogen antagonists' to suppress the expansion of pathogenic Alternaria. Our study provides new insights in developing new strategies for leaf disease prediction or prevention.
Collapse
Affiliation(s)
- Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, 423000, China
| | - Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, 427000, China
| | - Zhihua Huang
- Yuxi Tobacco Company of Yunnan Province, Yuxi, 653100, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yongjun Liu
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Tianbo Liu
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China; College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhicheng Zhou
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China.
| |
Collapse
|
5
|
Cabrera S, Hiatt D, Dillon WW, Clark T, Allan BF, Flory SL. Observations of Wild Turkey Nesting in Invasive Cogongrass. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Steven Cabrera
- University of Florida, Agronomy Department, Gainesville, FL 32611
| | - Drew Hiatt
- University of Florida, Agronomy Department, Gainesville, FL 32611
| | - Whalen W. Dillon
- University of Florida, Agronomy Department, Gainesville, FL 32611
| | - Taylor Clark
- University of Florida, Agronomy Department, Gainesville, FL 32611
| | - Brian F. Allan
- University of Illinois Urbana-Champaign, Department of Entomology, Champaign, IL 61820
| | - S. Luke Flory
- University of Florida, Agronomy Department, Gainesville, FL 32611
| |
Collapse
|
6
|
Estrada JA, Wilson CH, Flory SL. Clonal integration enhances performance of an invasive grass. OIKOS 2020. [DOI: 10.1111/oik.07016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - S. Luke Flory
- Agronomy Dept, Univ. of Florida Gainesville FL 32611 USA
| |
Collapse
|
7
|
Vetter VMS, Kreyling J, Dengler J, Apostolova I, Arfin-Khan MAS, Berauer BJ, Berwaers S, De Boeck HJ, Nijs I, Schuchardt MA, Sopotlieva D, von Gillhausen P, Wilfahrt PA, Zimmermann M, Jentsch A. Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought. GLOBAL CHANGE BIOLOGY 2020; 26:3539-3551. [PMID: 32011046 DOI: 10.1111/gcb.15025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity-stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity-stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non-native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi-natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.
Collapse
Affiliation(s)
- Vanessa M S Vetter
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
- Geoecology/Physical Geography, Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany
| | - Juergen Kreyling
- Experimental Plant Ecology, Greifswald University, Greifswald, Germany
| | - Jürgen Dengler
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
- Vegetation Ecology Group, Institute of Natural Resource Management (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Iva Apostolova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammed A S Arfin-Khan
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Bernd J Berauer
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Sigi Berwaers
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ivan Nijs
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Max A Schuchardt
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Desislava Sopotlieva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Philipp von Gillhausen
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Peter A Wilfahrt
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Maja Zimmermann
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anke Jentsch
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Fahey C, Koyama A, Antunes PM, Dunfield K, Flory SL. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities. THE ISME JOURNAL 2020; 14:1396-1409. [PMID: 32076127 PMCID: PMC7242364 DOI: 10.1038/s41396-020-0614-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 01/05/2023]
Abstract
Soil microbiomes could play a major role in ecosystem responses to escalating anthropogenic global change. However, we currently have a poor understanding of how soil microbes will respond to interacting global change factors and if responses will be mediated by changes in plant community structure. We used a field experiment to assess changes in soil fungal and bacterial communities in response to plant invasion, experimental drought, and their combination. In addition, we evaluated the relative importance of direct versus indirect pathways of invasion and drought through changes in associated plant communities with structural equation models. We found that fungal communities were interactively structured by invasion and drought, where fungal richness was lowest with invasion under ambient conditions but highest with invasion under drought conditions. Bacterial richness was lower under drought but unaffected by invasion. Changes in the plant community, including lower plant richness and higher root biomass, moderated the direct effects of invasion on microbial richness. Fungal and bacterial functional groups, including pathogens, mutualists, and nitrogen metabolizers, were also influenced by plant community changes. In sum, plant communities mediated the effects of interacting global change drivers on soil microbial community structure, with significant potential consequences for community dynamics and ecosystem functions.
Collapse
Affiliation(s)
- Catherine Fahey
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
| | - Akihiro Koyama
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| | - Pedro M Antunes
- Biology Department, Algoma University, Sault Ste. Marie, Ontario, Canada
| | - Kari Dunfield
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Manrubia M, van der Putten WH, Weser C, ten Hooven FC, Martens H, Brinkman EP, Geisen S, Ramirez KS, Veen GF(C. Soil functional responses to drought under range-expanding and native plant communities. Funct Ecol 2019; 33:2402-2416. [PMID: 31894174 PMCID: PMC6919305 DOI: 10.1111/1365-2435.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 11/30/2022]
Abstract
Current climate warming enables plant species and soil organisms to expand their range to higher latitudes and altitudes. At the same time, climate change increases the incidence of extreme weather events such as drought. While it is expected that plants and soil organisms originating from the south are better able to cope with drought, little is known about the consequences of their range shifts on soil functioning under drought events.Here, we test how range-expanding plant species and soil communities may influence soil functioning under drought. We performed a full-factorial outdoor mesocosm experiment with plant communities of range expanders or related natives, with soil inocula from the novel or the original range, with or without summer drought. We measured litter decomposition, carbon mineralization and enzyme activities, substrate-induced respiration and the relative abundance of soil saprophytic fungi immediately after drought and at 6 and 12 weeks after rewetting.Drought decreased all soil functions regardless of plant and soil origin except one; soil respiration was less reduced in soils of range-expanding plant communities, suggesting stronger resistance to drought. After rewetting, soil functioning responses depended on plant and soil origin. Soils of native plant communities with a history of drought had more litter mass loss and higher relative abundance of saprophytic fungi than soils without drought and soils of range expanders. Functions of soil from range expanders recovered in a more conservative manner than soils of natives, as litter mass loss did not exceed the control rates. At the end of the experiment, after rewetting, most soil functions in mesocosms with drought history did not differ anymore from the control.We conclude that functional consequences of range-expanding plants and soil biota may interact with effects of drought and that these effects are most prominent during the first weeks after rewetting of the soil. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13453/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Marta Manrubia
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
| | - Carolin Weser
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Freddy C. ten Hooven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Henk Martens
- Department of Soil QualityWageningen UniversityWageningenThe Netherlands
| | - E. Pernilla Brinkman
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Stefan Geisen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kelly S. Ramirez
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - G. F. (Ciska) Veen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| |
Collapse
|
10
|
Alba C, Fahey C, Flory SL. Global change stressors alter resources and shift plant interactions from facilitation to competition over time. Ecology 2019; 100:e02859. [DOI: 10.1002/ecy.2859] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Christina Alba
- Agronomy Department University of Florida McCarty Hall B Gainesville Florida 32611 USA
- Research and Conservation Department Denver Botanic Gardens 909 York Street Denver Colorado 80206 USA
| | - Catherine Fahey
- School of Natural Resources and Environment University of Florida 103 Black Hall Gainesville Florida 32611 USA
- Biology Department Algoma University 1520 Queen Street East Sault Ste. Marie Ontario P6A 2G4 Canada
| | - S. Luke Flory
- Agronomy Department University of Florida McCarty Hall B Gainesville Florida 32611 USA
| |
Collapse
|
11
|
Grass invasion and drought interact to alter the diversity and structure of native plant communities. Ecology 2018; 99:2692-2702. [DOI: 10.1002/ecy.2536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022]
|
12
|
Hyperspectral Measurement of Seasonal Variation in the Coverage and Impacts of an Invasive Grass in an Experimental Setting. REMOTE SENSING 2018. [DOI: 10.3390/rs10050784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Rivett DW, Jones ML, Ramoneda J, Mombrikotb SB, Ransome E, Bell T. Elevated success of multispecies bacterial invasions impacts community composition during ecological succession. Ecol Lett 2018; 21:516-524. [PMID: 29446215 DOI: 10.1111/ele.12916] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Successful microbial invasions are determined by a species' ability to occupy a niche in the new habitat whilst resisting competitive exclusion by the resident community. Despite the recognised importance of biotic factors in determining the invasiveness of microbial communities, the success and impact of multiple concurrent invaders on the resident community has not been examined. Simultaneous invasions might have synergistic effects, for example if resident species need to exhibit divergent phenotypes to compete with the invasive populations. We used three phylogenetically diverse bacterial species to invade two compositionally distinct communities in a controlled, naturalised in vitro system. By initiating the invader introductions at different stages of succession, we could disentangle the relative importance of resident community structure, invader diversity and time pre-invasion. Our results indicate that multiple invaders increase overall invasion success, but do not alter the successional trajectory of the whole community.
Collapse
Affiliation(s)
- Damian W Rivett
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK.,Division of Biology and Conservation Ecology, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK
| | - Matt L Jones
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Josep Ramoneda
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Shorok B Mombrikotb
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Emma Ransome
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, UK
| |
Collapse
|
14
|
Alba C, NeSmith JE, Fahey C, Angelini C, Flory SL. Methods to test the interactive effects of drought and plant invasion on ecosystem structure and function using complementary common garden and field experiments. Ecol Evol 2017; 7:1442-1452. [PMID: 28261456 PMCID: PMC5330907 DOI: 10.1002/ece3.2729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/18/2016] [Indexed: 11/10/2022] Open
Abstract
Abiotic global change drivers affect ecosystem structure and function, but how they interact with biotic factors such as invasive plants is understudied. Such interactions may be additive, synergistic, or offsetting, and difficult to predict. We present methods to test the individual and interactive effects of drought and plant invasion on native ecosystems. We coupled a factorial common garden experiment containing resident communities exposed to drought (imposed with rainout shelters) and invasion with a field experiment where the invader was removed from sites spanning a natural soil moisture gradient. We detail treatments and their effects on abiotic conditions, including soil moisture, light, temperature, and humidity, which shape community and ecosystem responses. Ambient precipitation during the garden experiment exceeded historic norms despite severe drought in prior years. Soil moisture was 48% lower in drought than ambient plots, but the invader largely offset drought effects. Additionally, temperature and light were lower and humidity higher in invaded plots. Field sites spanned up to a 10‐fold range in soil moisture and up to a 2.5‐fold range in light availability. Invaded and resident vegetation did not differentially mediate soil moisture, unlike in the garden experiment. Herbicide effectively removed invaded and resident vegetation, with removal having site‐specific effects on soil moisture and light availability. However, light was generally higher in invader‐removal than control plots, whereas resident removal had less effect on light, similar to the garden experiment. Invasion mitigated a constellation of abiotic conditions associated with drought stress in the garden experiment. In the field, where other factors co‐varied, these patterns did not emerge. Still, neither experiment suggested that drought and invasion will have synergistic negative effects on ecosystems, although invasion can limit light availability. Coupling factorial garden experiments with field experiments across environmental gradients will be effective for predicting how multiple stressors interact in natural systems.
Collapse
Affiliation(s)
- Christina Alba
- Agronomy Department University of Florida Gainesville FL USA
| | - Julienne E NeSmith
- School of Natural Resources and Environment University of Florida Gainesville FL USA
| | - Catherine Fahey
- School of Natural Resources and Environment University of Florida Gainesville FL USA
| | - Christine Angelini
- Department of Environmental Engineering Sciences Engineering School for Sustainable Infrastructure and Environment University of Florida Gainesville FL USA
| | | |
Collapse
|