1
|
White JDM, Stevens N, Fisher JT, Reynolds C. Woody plant encroachment drives population declines in 20% of common open ecosystem bird species. GLOBAL CHANGE BIOLOGY 2024; 30:e17340. [PMID: 38840515 DOI: 10.1111/gcb.17340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Grassy ecosystems cover more than 40% of the world's terrestrial surface, supporting crucial ecosystem services and unique biodiversity. These ecosystems have experienced major losses from conversion to agriculture with the remaining fragments threatened by global change. Woody plant encroachment, the increase in woody cover threatening grassy ecosystems, is a major global change symptom, shifting the composition, structure, and function of plant communities with concomitant effects on all biodiversity. To identify generalisable impacts of encroachment on biodiversity, we urgently need broad-scale studies on how species respond to woody cover change. Here, we make use of bird atlas, woody cover change data (between 2007 and 2016) and species traits, to assess: (1) population trends and woody cover responses using dynamic occupancy models; (2) how outcomes relate to habitat, diet and nesting traits; and (3) predictions of future occupancy trends, for 191 abundant, southern African bird species. We found that: (1) 63% (121) of species showed a decline in occupancy, with 18% (34) of species' declines correlated with increasing woody cover (i.e. losers). Only 2% (4) of species showed increasing population trends linked with increased woody cover (i.e. winners); (2) Open habitat specialist, invertivorous, ground nesting birds were the most frequent losers, however, we found no definitive evidence that the selected traits could predict outcomes; and (3) We predict open habitat loser species will take on average 52 years to experience 50% population declines with current rates of encroachment. Our results bring attention to concerning region-wide declining bird population trends and highlight woody plant encroachment as an important driver of bird population dynamics. Importantly, these findings should encourage improved management and restoration of our remaining grassy ecosystems. Furthermore, our findings show the importance of lands beyond protected areas for biodiversity, and the urgent need to mitigate the impacts of woody plant encroachment on bird biodiversity.
Collapse
Affiliation(s)
- Joseph D M White
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS, Johannesburg, South Africa
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Nicola Stevens
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS, Johannesburg, South Africa
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Jolene T Fisher
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS, Johannesburg, South Africa
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, WITS, Johannesburg, South Africa
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
2
|
Stenhouse P, Moseby KE. Patch size and breeding status influence movement patterns in the threatened Malleefowl (
Leipoa ocellata
). AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Neumann LK, Davis CA, Fuhlendorf SD, Elmore RD. Does weather drive habitat use and movement of a nonmigratory bird? Ecosphere 2023. [DOI: 10.1002/ecs2.4407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- L. K. Neumann
- Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA
| | - C. A. Davis
- Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA
| | - S. D. Fuhlendorf
- Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA
| | - R. D. Elmore
- Natural Resource Ecology and Management Oklahoma State University Stillwater Oklahoma USA
| |
Collapse
|
4
|
Ansley RJ, Rivera‐Monroy VH, Griffis‐Kyle K, Hoagland B, Emert A, Fagin T, Loss SR, McCarthy HR, Smith NG, Waring EF. Assessing impacts of climate change on selected foundation species and ecosystem services in the South‐Central USA. Ecosphere 2023. [DOI: 10.1002/ecs2.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- R. James Ansley
- Natural Resource Ecology and Management Department Oklahoma State University Stillwater Oklahoma USA
| | - Victor H. Rivera‐Monroy
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment Louisiana State University Baton Rouge Louisiana USA
| | - Kerry Griffis‐Kyle
- Department of Natural Resources Management Texas Tech University Lubbock Texas USA
| | - Bruce Hoagland
- Department of Geography and Environmental Sustainability University of Oklahoma Norman Oklahoma USA
| | - Amanda Emert
- The Institute of Environmental and Human Health Texas Tech University Lubbock Texas USA
| | - Todd Fagin
- The Center for Spatial Analysis University of Oklahoma Norman Oklahoma USA
| | - Scott R. Loss
- Natural Resource Ecology and Management Department Oklahoma State University Stillwater Oklahoma USA
| | - Heather R. McCarthy
- The Department of Microbiology and Plant Biology University of Oklahoma Norman Oklahoma USA
| | - Nicholas G. Smith
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| | - Elizabeth F. Waring
- Department of Natural Sciences Northeastern State University Tahlequah Oklahoma USA
| |
Collapse
|
5
|
Neumann LK, Fuhlendorf SD, Davis CD, Wilder SM. Climate alters the movement ecology of a non-migratory bird. Ecol Evol 2022; 12:e8869. [PMID: 35475174 PMCID: PMC9034450 DOI: 10.1002/ece3.8869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/11/2022] Open
Abstract
Global climate change is causing increased climate extremes threatening biodiversity and altering ecosystems. Climate is comprised of many variables including air temperature, barometric pressure, solar radiation, wind, relative humidity, and precipitation that interact with each other. As movement connects various aspects of an animal's life, understanding how climate influences movement at a fine-temporal scale will be critical to the long-term conservation of species impacted by climate change. The sedentary nature of non-migratory species could increase some species risk of extirpation caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter bobwhite) as a model to better understand the relationship between climate and the movement ecology of a non-migratory species at a fine-temporal scale. We collected movement data on bobwhite from across western Oklahoma during 2019-2020 and paired these data with meteorological data. We analyzed movement in three different ways (probability of movement, hourly distance moved, and sinuosity) using two calculated movement metrics: hourly movement (displacement between two consecutive fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount of curvature of a random search path). We used generalized linear-mixed models to analyze probability of movement and hourly distance moved, and used linear-mixed models to analyze sinuosity. The interaction between air temperature and solar radiation affected probability of movement and hourly distance moved. Bobwhite movement increased as air temperature increased beyond 10°C during low solar radiation. During medium and high solar radiation, bobwhite moved farther as air temperature increased until 25-30°C when hourly distance moved plateaued. Bobwhite sinuosity increased as solar radiation increased. Our results show that specific climate variables alter the fine-scale movement of a non-migratory species. Understanding the link between climate and movement is important to determining how climate change may impact a species' space use and fitness now and in the future.
Collapse
Affiliation(s)
- Landon K. Neumann
- Oklahoma State UniversityStillwaterOklahomaUSA,Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Samuel D. Fuhlendorf
- Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Craig D. Davis
- Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Shawn M. Wilder
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
6
|
Bourne AR, Ridley AR, McKechnie AE, Spottiswoode CN, Cunningham SJ. Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the southern pied babbler Turdoides bicolor. CONSERVATION PHYSIOLOGY 2021; 9:coab043. [PMID: 34150211 PMCID: PMC8208672 DOI: 10.1093/conphys/coab043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/12/2023]
Abstract
High air temperatures have measurable negative impacts on reproduction in wild animal populations, including during incubation in birds. Understanding the mechanisms driving these impacts requires comprehensive knowledge of animal physiology and behaviour under natural conditions. We used a novel combination of a non-invasive doubly labelled water (DLW) technique, nest temperature data and field-based behaviour observations to test effects of temperature, rainfall and group size on physiology and behaviour during incubation in southern pied babblers Turdoides bicolor, a cooperatively breeding passerine endemic to the arid savanna regions of southern Africa. The proportion of time that clutches were incubated declined as air temperatures increased, a behavioural pattern traditionally interpreted as a benefit of ambient incubation. However, we show that (i) clutches had a <50% chance of hatching when exposed to daily maximum air temperatures of >35.3°C; (ii) pied babbler groups incubated their nests almost constantly (99% of daylight hours) except on hot days; (iii) operative temperatures in unattended nests frequently exceeded 40.5°C, above which bird embryos are at risk of death; (iv) pied babblers incubating for long periods of time failed to maintain water balance on hot days; and (v) pied babblers from incubating groups lost mass on hot days. These results suggest that pied babblers might leave their nests during hot periods to lower the risk of dehydration associated with prolonged incubation at high operative temperatures. As mean air temperatures increase and extreme heat events become more frequent under climate change, birds will likely incur ever greater thermoregulatory costs of incubation, leading to compromised nest attendance and increased potential for eggs to overheat, with implications for nest success and, ultimately, population persistence.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Corresponding author: FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley 6009, Australia
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0184, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0002, South Africa
| | - Claire N Spottiswoode
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
7
|
Schindler AR, Haukos DA, Hagen CA, Ross BE. A multispecies approach to manage effects of land cover and weather on upland game birds. Ecol Evol 2020; 10:14330-14345. [PMID: 33391719 PMCID: PMC7771187 DOI: 10.1002/ece3.7034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/04/2022] Open
Abstract
Loss and degradation of grasslands in the Great Plains region have resulted in major declines in abundance of grassland bird species. To ensure future viability of grassland bird populations, it is crucial to evaluate specific effects of environmental factors among species to determine drivers of population decline and develop effective conservation strategies. We used threshold models to quantify the effects of land cover and weather changes in "lesser prairie-chicken" and "greater prairie-chicken" (Tympanuchus pallidicinctus and T. cupido, respectively), northern bobwhites (Colinus virginianus), and ring-necked pheasants (Phasianus colchicus). We demonstrated a novel approach for estimating landscape conditions needed to optimize abundance across multiple species at a variety of spatial scales. Abundance of all four species was highest following wet summers and dry winters. Prairie chicken and ring-necked pheasant abundance was highest following cool winters, while northern bobwhite abundance was highest following warm winters. Greater prairie chicken and northern bobwhite abundance was also highest following cooler summers. Optimal abundance of each species occurred in landscapes that represented a grassland and cropland mosaic, though prairie chicken abundance was optimized in landscapes with more grassland and less edge habitat than northern bobwhites and ring-necked pheasants. Because these effects differed among species, managing for an optimal landscape for multiple species may not be the optimal scenario for any one species.
Collapse
Affiliation(s)
| | - David A. Haukos
- U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research UnitKansas State UniversityManhattanKSUSA
| | - Christian A. Hagen
- Department of Fisheries and WildlifeOregon State UniversityCorvallisORUSA
| | - Beth E. Ross
- U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research UnitClemson UniversityClemsonSCUSA
| |
Collapse
|
8
|
Bramer I, Anderson BJ, Bennie J, Bladon AJ, De Frenne P, Hemming D, Hill RA, Kearney MR, Körner C, Korstjens AH, Lenoir J, Maclean IM, Marsh CD, Morecroft MD, Ohlemüller R, Slater HD, Suggitt AJ, Zellweger F, Gillingham PK. Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2017.12.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Carroll JM, Davis CA, Elmore RD, Fuhlendorf SD. Using a historic drought and high-heat event to validate thermal exposure predictions for ground-dwelling birds. Ecol Evol 2017; 7:6413-6422. [PMID: 28861244 PMCID: PMC5574822 DOI: 10.1002/ece3.3185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/01/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Deviations from typical environmental conditions can provide insight into how organisms may respond to future weather extremes predicted by climate modeling. During an episodic and multimonth heat wave event (i.e., ambient temperature up to 43.4°C), we studied the thermal ecology of a ground-dwelling bird species in Western Oklahoma, USA. Specifically, we measured black bulb temperature (Tbb) and vegetation parameters at northern bobwhite (Colinus virginianus; hereafter bobwhite) adult and brood locations as well as at stratified random points in the study area. On the hottest days (i.e., ≥39°C), adults and broods obtained thermal refuge using tall woody cover that remained on average up to 16.51°C cooler than random sites on the landscape which reached >57°C. We also found that refuge sites used by bobwhites moderated thermal conditions by more than twofold compared to stratified random sites on the landscape but that Tbb commonly exceeded thermal stress thresholds for bobwhites (39°C) for several hours of the day within thermal refuges. The serendipitous high heat conditions captured in our study represent extreme heat for our study region as well as thermal stress for our study species, and subsequently allowed us to assess ground-dwelling bird responses to temperatures that are predicted to become more common in the future. Our findings confirm the critical importance of tall woody cover for moderating temperatures and functioning as important islands of thermal refuge for ground-dwelling birds, especially during extreme heat. However, the potential for extreme heat loads within thermal refuges that we observed (albeit much less extreme than the landscape) indicates that the functionality of tall woody cover to mitigate heat extremes may be increasingly limited in the future, thereby reinforcing predictions that climate change represents a clear and present danger for these species.
Collapse
Affiliation(s)
- James M. Carroll
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOKUSA
| | - Craig A. Davis
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOKUSA
| | - R. Dwayne Elmore
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOKUSA
| | - Samuel D. Fuhlendorf
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|