1
|
Kang S, Wang Z, Guo X, Zhao M, Wu S, Zhang X, Zhu L, Han G. High grazing pressure accelerates changes in community assembly over time in a long-term grazing experiment in the desert steppe of northern China. Oecologia 2025; 207:18. [PMID: 39775277 DOI: 10.1007/s00442-024-05647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Although numerous studies have shown that grazing gives rise to community succession from the communities or even species perspective, there is a lack of discussion about how grazing drives community assembly based on plant functional traits in a long-term experiment. We find different grazing intensities lead to temporal effects on trait-mediated multidimensional community assembly processes, including community-weighted trait mean (CWM), trait filtering, and trait distribution (divergence/convergence). CWM, trait filtering, and trait distribution of different traits transformed over the 16-year grazing experiment. Major findings include the following: (1) CWM changed rapidly under higher grazing intensity, and the removal of unsuitable traits from communities over time was accelerated with higher grazing intensity, such as higher specific leaf area (SLA), rich epidermal appendages (PAP), deep root system (RD), and growth form (shrub and subshrub) and dispersal mode (DM, e.g., insect spread) with higher scores. (2) Patterns of trait filtering strongly depended on grazing intensity and trait types, most traits, such as SLA, DM, PAP, RD, and onset of flowering (OFL), were filtered at high grazing intensity area, and effects of trait filtering in the community assembly process strengthened with grazing time. (3) Traits related to the cycling of biological matter, such as leaf area (LA), SLA, reproductive height (RH), photosynthetic (PHO), and GF more frequently diverged after long-term grazing, especially in higher grazing areas. Community assembly in intensely grazed ecosystems takes over a decade to support fundamental functions, highlighting the need for grazing intensity thresholds for sustainable grassland use.
Collapse
Affiliation(s)
- Saruul Kang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China
- National Demonstration Center for Botany Experimental Education, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Zhongwu Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Xulin Guo
- Department of Geography and Planning, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Mengli Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Saqila Wu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
| | - Xia Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
| | - Lin Zhu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China
| | - Guodong Han
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, 29 Ordos Rd., Hohhot, 010011, China.
- Key Laboratory of Grassland Resources, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Key Laboratory of Grassland Management and Utilization, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| |
Collapse
|
2
|
Liu Z, Guo S, Wang T, Yan W, Baoyin T, Fry E. Phase-dependent grassland temporal stability is mediated by species and functional group asynchrony: A long-term mowing experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175445. [PMID: 39134279 DOI: 10.1016/j.scitotenv.2024.175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
The temporal stability of grasslands plays a key role in the stable provisioning of multiple ecosystem goods and services for humankind. Despite recent progress, our knowledge on how long-term mowing influences ecosystem stability remains unclear. Using a dataset from an 18-year-long mowing experiment with different treatment intensities (no-mowing, mowing once per year, and mowing twice per year) in grasslands of Inner Mongolia, China, we aimed to determine whether and how long-term mowing influenced grassland temporal stability in a temperate steppe. We found mowing decreased ecosystem stability in the early and intermediate periods (1-12 years of treatment), but increased stability in the later period (13-18 years of treatment), indicating responses of ecosystem stability to long-term mowing were phase dependent. Bivariate correlation and structural equation modeling analyses revealed that the degree of asynchrony both at the species and functional group levels, as well as dominant species stability, played key roles in stabilizing the whole community. In addition, portfolio effects rather than diversity made significant contributions to ecosystem stability. Our results suggest the phase-dependent temporal stability of grassland under long-term mowing is mainly mediated by species and functional group asynchrony. This finding provides a new insight for understanding how dryland grassland responds to long-term anthropogenic perturbations.
Collapse
Affiliation(s)
- Zhiying Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shuying Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianqi Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenbin Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Taogetao Baoyin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Ellen Fry
- Department of Biology, Edge Hill University, Lancashire L39 4QP, United Kingdom
| |
Collapse
|
3
|
Zhao T, Suo R, Alemu AW, Zheng J, Zhang F, Iwaasa AD, Guo J, Zhao M, Zhang B. Mowing increased community stability in semiarid grasslands more than either fencing or grazing. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2985. [PMID: 38772563 DOI: 10.1002/eap.2985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 05/23/2024]
Abstract
A substantial body of empirical evidence suggests that anthropogenic disturbance can affect the structure and function of grassland ecosystems. Despite this, few studies have elucidated the mechanisms through which grazing and mowing, the two most widespread land management practices, affect the stability of natural grassland communities. In this study, we draw upon 9 years of field data from natural grasslands in northern China to investigate the effects of gazing and mowing on community stability, specifically focusing on community aboveground net primary productivity (ANPP) and dominance, which are two major biodiversity mechanisms known to characterize community fluctuations. We found that both grazing and mowing reduced ANPP in comparison to areas enclosed by fencing. Grazing reduced community stability by increasing the likelihood of single-species dominance and decreasing the relative proportion of nondominant species. In contrast, mowing reduced the productivity of the dominant species but increased the productivity of nondominant species. As a consequence, mowing improved the overall community stability by increasing the stability of nondominant species. Our study provides novel insight into understanding of the relationship between community species fluctuation-stability, with implications for ecological research and ecosystem management in natural grasslands.
Collapse
Affiliation(s)
- Tianqi Zhao
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Rongzhen Suo
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Aklilu W Alemu
- Agriculture and Agri-Food Canada, Swift Current Research and Development Center, Swift Current, Saskatchewan, Canada
| | - Jiahua Zheng
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Alan D Iwaasa
- Agriculture and Agri-Food Canada, Swift Current Research and Development Center, Swift Current, Saskatchewan, Canada
| | - Jianying Guo
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Area Ministry of Water Resources, Hohhot, China
| | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Li T, Chang S, Wang Z, Cheng Y, Peng Z, Li L, Lou S, Liu Y, Wang D, Zhong H, Zhu H, Hou F, Nan Z. Interactive effects of grassland utilization and climatic factors govern the plant diversity-soil C relationship in steppe of North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171171. [PMID: 38402971 DOI: 10.1016/j.scitotenv.2024.171171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The relationship between plant diversity and the ecosystem carbon pool is important for understanding the role of biodiversity in regulating ecosystem functions. However, it is not clear how the relationship between plant diversity and soil carbon content changes under different grassland use patterns. In a 3-year study from 2013 to 2015, we investigated plant diversity and soil total carbon (TC) content of grasslands in northern China under different grassland utilization methods (grazing, mowing, and enclosure) and climatic conditions. Shannon-Wiener and Species richness index of grassland were significantly decreased by grazing and mowing. Plant diversity was positively correlated with annual precipitation (AP) and negatively correlated with annual mean temperature (AMT). AP was the primary regulator of plant diversity. Grazing and mowing decreased TC levels in grasslands compared with enclosures, especially in topsoil (0-20 cm). The average TC content was decreased by 58 % and 36 % in the 0-10 cm soil layer, while it was decreased by 68 % and 39 % in 10-20 cm soil layer. TC was positively correlated with AP and negatively correlated with AMT. Principal component analysis (PCA) showed that plant diversity was positively correlated with soil TC, and the correlation decreased with an increase in the soil depth. Overall, this study provides a theoretical basis for predicting soil carbon storage in grasslands under human disturbances and climate change impacts.
Collapse
Affiliation(s)
- Tengfei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shenghua Chang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhaofeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yunxiang Cheng
- College of Ecology and Environment, Inner Mongolia University, Huhhot, China
| | - Zechen Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shanning Lou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yongjie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | | | - Huaping Zhong
- Institute of Geographic Sciences and Natural Resources Research, CAS, China
| | - Huazhong Zhu
- Institute of Geographic Sciences and Natural Resources Research, CAS, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
5
|
Wang X, Wang Z, Miao H, Zhang C, Zou H, Yang Y, Zhang Z, Liu J. Appropriate livestock grazing alleviates the loss of plant diversity and maintains community resistance in alpine meadows. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119850. [PMID: 38141346 DOI: 10.1016/j.jenvman.2023.119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Alpine meadows constitute one of the major ecosystems on the Qinghai-Tibetan Plateau, with livestock grazing exerting a considerable impact on their biodiversity. However, the degree to which plant diversity influences community stability under different grazing intensities remains unclear in this region. This study conducted controlled grazing experiments across four levels of grazing intensity (no-, low-, medium-, and high-grazing) based on herbage utilization rate to assess the influence of grazing intensities on plant community structure and diversity-stability relationships. We discovered that high-grazing reduced plant diversity and attenuated the temporal stability and resistance of above-ground biomass. No- and low-grazing could alleviate plant biomass loss, with community resistance being optimal under low-grazing. The direct effects of livestock grazing on temporal stability were found to be negligible. Plant characteristics and diversity accounted for a substantial proportion of livestock grazing effects on community resistance (R2 = 0.46), as revealed by piecewise structural equation model analysis. The presence of plant diversity enhances the resistance of alpine meadows against disturbance and accelerates the recovery after grazing. Our results suggest that low-grazing intensity may represent a judicious option for preserving species diversity and community stability on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Xiaofang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Haitao Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chunping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hao Zou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhenghua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
6
|
Zhu J, Zhang Y, Wu J, Zhang X, Yu G, Shen Z, Yang X, He Y, Jiang L, Hautier Y. Herbivore exclusion stabilizes alpine grassland biomass production across spatial scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17155. [PMID: 38273528 DOI: 10.1111/gcb.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.
Collapse
Affiliation(s)
- Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianshuang Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Berlin, Germany
- Department of Geography, Geography and Geology Faculty, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Xianzhou Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhenxi Shen
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yunlong He
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Huang X, He M, Li L, Wang Z, Shi L, Zhao X, Hou F. Grazing and precipitation addition reduces the temporal stability of aboveground biomass in a typical steppe of Chinese Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167156. [PMID: 37751835 DOI: 10.1016/j.scitotenv.2023.167156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Few studies on the effects of human activities and global climate change on temporal stability have considered either grazing or precipitation addition (PA). How community stability responds to the interaction between PA and grazing in a single experiment remains unknown. We studied the impact of grazing and PA on the temporal stability of communities in four years field experiment conducted in a typical steppe, adopting a randomized complete block design with grazing was the main block factor and PA was the split block factor. Grazing and PA had negative impacts on the temporal stability of communities. PA reduced the community stability through decreasing the stability of subordinate and community species richness (SR), whereas grazing reduced the community stability through decreasing the stability of the SR and dominant species. In contrast, grazing and PA maintained community stability through increasing species asynchronism and promoting the decoupling of asynchronism and stability. Our results revealed the different mechanisms of grazing and PA on community stability. Exploring the response characteristics of population dynamics to global climate change and pasture management is key to understanding future climate scenarios and changes in community stability under grazing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Meiyue He
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhen Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Liyuan Shi
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xinzhou Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
8
|
Huang X, He M, Guo Z, Li L, Hou F. Effects of grazing and precipitation addition induced by functional groups on the relationship between aboveground biomass and species richness of a typical steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117924. [PMID: 37060693 DOI: 10.1016/j.jenvman.2023.117924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Several studies have explored the influence of grazing or precipitation addition (PA), two important components of human activities and global climate change on the structure and function of communities. However, the response of communities to a combination of grazing and PA remains largely unexplored. We investigated the impact of grazing and PA on the relationship between aboveground biomass (AGB) and species richness (SR) of communities in three-year field experiments conducted in a typical steppe in the Loess Plateau, using a split-plot design with grazing as the main-plot factor and PA as the split-plot factor. AGB and SR have response threshold value to PA, which was decreased by grazing for AGB, but increased for SR. This indicates that implementing grazing management strategies is conducive to strengthening the protection of biodiversity in arid and semi-arid grasslands. Grazing promoted the AGB-SR coupling of the community by increasing the SR of medium drought tolerance (MD), low drought tolerance, and grazing tolerant functional groups. Grazing also accelerated the AGB-SR decoupling of the community by changing the AGB of high drought tolerance, MD, high grazing tolerance, and medium grazing tolerance functional groups. PA mediated changes in MD and SR of both drought and grazing tolerant functional groups and AGB of low grazing tolerance promoted the coupling of AGB-SR of the community. The Two-dimension functional groups classification method reflects the changes of AGB and SR in communities more reasonable than the division of single-factor functional groups.
Collapse
Affiliation(s)
- Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Meiyue He
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoxia Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Lan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
9
|
Bai X, Zhao W, Wang J, Ferreira CSS. Reducing plant community variability and improving resilience for sustainable restoration of temperate grassland. ENVIRONMENTAL RESEARCH 2022; 207:112149. [PMID: 34619132 DOI: 10.1016/j.envres.2021.112149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Grassland ecosystem is important for the realization of the global sustainable development goals (e.g. Goal 15) since it provides irreplaceable services for human beings, supporting human health and sustainable development. Most studies have focused on improving grassland restoration techniques, but less attention has been paid to grassland ecosystem stability in succession. Plant community stability of temperate grassland in arid and semi-arid regions is analyzed through 38 sampling sites in Inner Mongolia, China. The degradation succession sequence of grassland is established by principal component analysis, and the species diversity and functional diversity along degradation gradient analyzed by multivariate statistical analysis. The results show that (1) functional diversity has higher explanatory power for community stability than species diversity due to the functional dispersion of plant traits; (2) climate factors rather than grazing or soil control plant community diversity and stability at regional scale; (3) the resistance of plant community does not change in degradation succession, but the trade-off effect of stability components in different plant communities differ, such as the order of trade-off effects (e.g. community resilience (ET)>community resistance (RT)>structural variability (St)>functional variability (Fu) in the community dominated by Stipa grandis, RT>ET>St>Fu in Leymus chinensis community, St>ET>Fu>RT in Stipa capillata community, RT>St>Fu>ET in Artemisia frigida community, St>Fu>ET>RT in Cleistogenes squarrosa community, and Fu>St>RT>ET in Artemisia halodendron community); (4) grassland ecosystem with higher diversity shows greater resilience and lower variability than those with single species, which supports the established diversity hypothesis. Furthermore, sustainable grassland restoration should reduce community variability and improve resilience. These findings highlight the response of diversity to stability in temperate grassland and provide scientific support for grassland ecosystem protection and restoration.
Collapse
Affiliation(s)
- Xiaohang Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Jing Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Carla Sofia Santos Ferreira
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm SE, 10691, Sweden; Navarino Environmental Observatory, Costa Navarino, Navarino Dunes, 24001, Messinia, Greece
| |
Collapse
|
10
|
Xu F, Li J, Wu L, Su J, Wang Y, Chen D, Bai Y. Linking leaf traits to the temporal stability of above- and belowground productivity under global change and land use scenarios in a semi-arid grassland of Inner Mongolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151858. [PMID: 34822882 DOI: 10.1016/j.scitotenv.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The biotic drivers for the temporal stability of aboveground net productivity (ANPP) in natural ecosystems are well understood. However, knowledge gaps still exist regarding the relative importance of biotic and abiotic drivers regulating the temporal stability of aboveground productivity (ANPP), belowground net productivity (BNPP), and community net productivity (NPP) under global change and land use scenarios. Thus, in this study, we aimed to study the effects of increased water and nitrogen availability on temporal stability of ANPP, BNPP, and NPP and underlying mechanisms at sites with different long-term grazing histories in typical grasslands of the Inner Mongolia. The results suggested that resource addition affected the ANPP stability, but it did not change the stability of BNPP and NPP, which were all mediated by grazing histories. Most importantly, our study further indicated that species asynchrony, primarily contributed to the stability of ANPP and NPP by weakening their variation, and species asynchrony was regulated directly by plant diversity-related variables and indirectly by soil variables which were affected by resource addition and grazing history. In addition, an increase of ANPP stimulated under resource addition was a secondary contributor to ANPP stability. Specifically, the community-weighted mean of specific leaf area (CWM SLA) regulated the ANPP stability indirectly by promoting species asynchrony, while functional diversity of leaf area and SLA both directly controlled the BNPP stability. Findings of our study demonstrate that different mechanisms drove temporal stability of above- and belowground productivity. Our study has important implications for maintaining the temporal stability of community productivity and for establishing sustainable management practices of semi-arid grasslands under global change and land use scenarios.
Collapse
Affiliation(s)
- Fengwei Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Research Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Grassland Research Center, National Forestry and Grassland Administration, Beijing 100091, China.
| | - Jianjun Li
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liji Wu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Jishuai Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dima Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Chen Q, Wang S, Seabloom EW, MacDougall AS, Borer ET, Bakker JD, Donohue I, Knops JMH, Morgan JW, Carroll O, Crawley M, Bugalho MN, Power SA, Eskelinen A, Virtanen R, Risch AC, Schütz M, Stevens C, Caldeira MC, Bagchi S, Alberti J, Hautier Y. Nutrients and herbivores impact grassland stability across spatial scales through different pathways. GLOBAL CHANGE BIOLOGY 2022; 28:2678-2688. [PMID: 35038782 DOI: 10.1111/gcb.16086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong liverpool University, Suzhou, China
| | - John W Morgan
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Carroll
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mick Crawley
- Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Jungers JM, Yang Y, Fernandez CW, Isbell F, Lehman C, Wyse D, Sheaffer C. Diversifying bioenergy crops increases yield and yield stability by reducing weed abundance. SCIENCE ADVANCES 2021; 7:eabg8531. [PMID: 34714680 PMCID: PMC8555906 DOI: 10.1126/sciadv.abg8531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Relationships between species diversity, productivity, temporal stability of productivity, and plant invasion have been well documented in grasslands, and these relationships could translate to improved agricultural sustainability. However, few studies have explored these relationships in agricultural contexts where fertility and weeds are managed. Using 7 years of biomass yield and species composition data from 12 species mixture treatments varying in native species diversity, we found that species richness increased yield and interannual yield stability by reducing weed abundance. Stability was driven by yield as opposed to temporal variability of yield. Nitrogen fertilization increased yield but at the expense of yield stability. We show how relationships between diversity, species asynchrony, invasion, productivity, and stability observed in natural grasslands can extend into managed agricultural systems. Increasing bioenergy crop diversity can improve farmer economics via increased yield, reduced yield variability, and reduced inputs for weed control, thus promoting perennial vegetation on agricultural lands.
Collapse
Affiliation(s)
- Jacob M. Jungers
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Christopher W. Fernandez
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1985 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Clarence Lehman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1985 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Don Wyse
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Craig Sheaffer
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
| |
Collapse
|
13
|
Ji G, Li B, Yin H, Liu G, Yuan Y, Cui G. Non-utilization Is Not the Best Way to Manage Lowland Meadows in Hulun Buir. FRONTIERS IN PLANT SCIENCE 2021; 12:704511. [PMID: 34335668 PMCID: PMC8322850 DOI: 10.3389/fpls.2021.704511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Carex meyeriana lowland meadow is an important component of natural grasslands in Hulun Buir. However, in Hulun Buir, fewer studies have been conducted on C. meyeriana lowland meadows than on other grassland types. To determine the most appropriate utilization mode for C. meyeriana lowland meadows, an experiment was conducted in Zhalantun city, Hulun Buir. Unused, moderately grazed, heavily grazed and mowed meadow sites were selected as the research objects. The analysis of experimental data from 4 consecutive years showed that relative to the other utilization modes, mowing and moderate grazing significantly increased C. meyeriana biomass. Compared with non-utilization, the other three utilization modes resulted in a higher plant diversity, and the moderately grazed meadow had the highest plant community stability. Moreover, principal component analysis (PCA) showed that among the meadow sites, the mowed meadow had the most stable plant community and soil physicochemical properties. Structural equation modeling (SEM) showed that grazing pressure was less than 0.25 hm2/sheep unit and that plant biomass in C. meyeriana lowland meadow increases with increasing grazing intensity, temperature and precipitation.
Collapse
Affiliation(s)
- Guoxu Ji
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Li
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hang Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guofu Liu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Zhang R, Wang Z, Niu S, Tian D, Wu Q, Gao X, Schellenberg MP, Han G. Diversity of plant and soil microbes mediates the response of ecosystem multifunctionality to grazing disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145730. [PMID: 33639460 DOI: 10.1016/j.scitotenv.2021.145730] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 05/27/2023]
Abstract
Biodiversity drives ecosystem functioning across grassland ecosystems. However, few studies have examined how grazing intensity affects ecosystem multifunctionality (EMF) via its effects on plant diversity and soil microbial diversity in dry grasslands. We conducted a 12-year experiment manipulating sheep grazing intensity in a desert steppe of northern China. Through measuring plant species diversity, soil microbial diversity (bacteria diversity) and multiple ecosystem functions (i.e., aboveground net primary productivity, belowground biomass of plant community, temporal stability of ANPP, soil organic matter, moisture, available nitrogen and phosphorus, ecosystem respiration and gross ecosystem productivity), we aimed to understand how grazing intensity affected EMF via changing the diversity of plants and microbes. Our results showed that increasing grazing intensity significantly reduced EMF and most individual ecosystem functions, as well as the diversity of plants and microbes, while EMF and most individual functions were positively related to plant diversity and soil microbial diversity under all grazing intensities. In particular, soil microbial diversity in shallow soil layers (0-5 cm depth) had stronger positive correlations with plant diversity and EMF than in deeper soil layers. Furthermore, structural equation modeling (SEM) showed that grazing reduced EMF mainly via reducing plant diversity, rather than by reducing soil microbial diversity. Thus, plant diversity played a more important role in mediating the response of EMF to grazing disturbance. This study highlights the critical role of above- and belowground diversity in mediating the response of EMF to grazing intensity, which has important implications for biodiversity conservation and sustainability in arid grasslands.
Collapse
Affiliation(s)
- Ruiyang Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No. 29 Erdos St., Hohhot, Inner Mongolia 010011, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongwu Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No. 29 Erdos St., Hohhot, Inner Mongolia 010011, China.
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No. 29 Erdos St., Hohhot, Inner Mongolia 010011, China
| | - Xuefeng Gao
- College of Life Sciences and Technology, Inner Mongolia Normal University, No. 81 Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia 010020, China
| | - Michael P Schellenberg
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Rd., Box 1030, Swift Current, Saskatchewan S9H 3X2, Canada
| | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No. 29 Erdos St., Hohhot, Inner Mongolia 010011, China
| |
Collapse
|
15
|
Long-Term Enclosure Can Benefit Grassland Community Stability on the Loess Plateau of China. SUSTAINABILITY 2020. [DOI: 10.3390/su13010213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fertilization and grazing are two common anthropogenic disturbances that can lead to unprecedented changes in biodiversity and ecological stability of grassland ecosystems. A few studies, however, have explored the effects of fertilization and grazing on community stability and the underlying mechanisms. We conducted a six-year field experiment to assess the influence of nitrogen (N) fertilization and grazing on the community stability in a long-term enclosure and grazing grassland ecosystems on the Loess Plateau. A structural equation modeling method was used to evaluate how fertilization and grazing altered community stability. Our results indicated that the community stability decreased in the enclosure and grazing grassland ecosystems with the addition of N. The community stability began to decline significantly at 4.68 and 9.36 N g m−2 year−1 for the grazing and enclosure grassland ecosystems, respectively. We also found that the addition of N reduced the community stability through decreasing species richness, but a long-term enclosure can alleviate its negative effect. Overall, species diversity can be a useful predictor of the stability of ecosystems confronted with disturbances. Also, our results showed that long-term enclosure was an effective grassland management practice to ensure community stability on the Loess Plateau of China.
Collapse
|
16
|
Kang S, Niu J, Zhang Q, Zhang X, Han G, Zhao M. Niche differentiation is the underlying mechanism maintaining the relationship between community diversity and stability under grazing pressure. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Ganjurjav H, Zhang Y, Gornish ES, Hu G, Li Y, Wan Y, Gao Q. Differential resistance and resilience of functional groups to livestock grazing maintain ecosystem stability in an alpine steppe on the Qinghai-Tibetan Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109579. [PMID: 31563601 DOI: 10.1016/j.jenvman.2019.109579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Ecosystem stability is one of the main factors maintaining ecosystem functioning and is closely related to temporal variability in productivity. Resistance and resilience reflect tolerance and recovering ability, respectively, of a plant community under perturbation, which are important for maintaining the stability of ecosystems. Generally, heavy grazing reduces the stability of grassland ecosystems, causing grassland degradation. However, how livestock grazing affects ecosystem stability is unclear in alpine steppe ecosystems. We conducted a five-year grazing experiment with Tibetan sheep in a semi-arid alpine steppe on the Qinghai-Tibetan Plateau, China. The experimental treatments included no grazing (NG), light grazing (LG, 2.4 sheep per ha), moderate grazing (MG, 3.6 sheep per ha) and heavy grazing (HG, 6.0 sheep ha). We calculated resistance and resilience of three plant functional groups and ecosystem stability under the three grazing intensities using aboveground primary productivity. The results showed that with increasing grazing intensity, aboveground biomass of each functional group significantly decreased. As grazing intensity increased, the resistance of forbs first increased then decreased. The resilience of graminoids in HG was significantly lower than in LG plots, but the resilience of legumes in HG was higher than in LG and MG plots. The resilience of graminoids was significantly higher than legume and forbs under LG and MG treatments. In HG treatments, resilience of legumes was higher than graminoids and forbs. Ecosystem stability did not change under different grazing intensities, because of dissimilar performance of the resilience and resistance of functional groups. Our results highlight how the differential resistance and resilience of different function groups facilitate the tolerance of alpine steppe to grazing under even a heavy intensity. However, the degradation risk of alpine steppe under heavy grazing still needs to be considered in grassland management due to sharp decreases of productivity.
Collapse
Affiliation(s)
- Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Zhang
- National Plateau Wetlands Research Center, College of Wetlands, Southwest Forestry University, Kunming, 650224, China
| | - Elise S Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, 85821, USA
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunfan Wan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Saruul K, Jiangwen L, Jianming N, Qing Z, Xuefeng Z, Guodong H, Mengli Z, Haifeng B. Typical steppe ecosystems maintain high stability by decreasing the connections among recovery, resistance, and variability under high grazing pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1146-1157. [PMID: 31096328 DOI: 10.1016/j.scitotenv.2018.12.447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Grasslands in Inner Mongolia have been confronted with unprecedented degradation in recent years. Research on ecosystem stability is important to inform evaluation of the health of degraded grassland ecosystems. We examined synthetic stability, which was defined by the relationships between multiple components of stability, known as multidimensional stability, in grasslands at four stages of degradation (undegraded, slightly degraded, moderately degraded, and intensely degraded) in the Xilin River Basin, Inner Mongolia, China. We analyzed the connections between multidimensional stability and its relationship with four stability components, including community resistance and recovery measured on the basis of plant functional traits, and community functional (aboveground net primary productivity) and structural (Jaccard dissimilarity) variability, calculated on the basis of ten plots from different spatial distributions in a study site. Our results showed that (i) 9 of 17 traits displayed a significant trend along the grazing intensity gradient, indicating a clear turnover of species within communities in response to the grazing intensity gradient; (ii) moderately degraded (C) grasslands showed higher recovery, resistance, and synthetic stability than undegraded (A) and slightly degraded (B) grassland communities overall (recovery: p = 0.026, p = 0.032, for pairs of samples from A and C, and B and C, respectively; resistance: p = 0.024, for a pair of samples from A and C), which conformed with the intermediate disturbance hypothesis and positive diversity-stability relationship; and (iii) the multidimensionality of stability varied between different stages of degradation and were strongly dependent upon the correlations between stability components. Our study is expected to enrich the theory of stability maintenance in grassland ecosystems and provide guidance for grassland restoration and biodiversity conservation.
Collapse
Affiliation(s)
- Kang Saruul
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Li Jiangwen
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Niu Jianming
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Zhang Qing
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhang Xuefeng
- College of Resources and Environment, Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Han Guodong
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Zhao Mengli
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Bao Haifeng
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| |
Collapse
|
19
|
Ren H, Taube F, Stein C, Zhang Y, Bai Y, Hu S. Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe. Ecol Evol 2017; 8:231-241. [PMID: 29321866 PMCID: PMC5756891 DOI: 10.1002/ece3.3669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Many biodiversity experiments have demonstrated that plant diversity can stabilize productivity in experimental grasslands. However, less is known about how diversity–stability relationships are mediated by grazing. Grazing is known for causing species losses, but its effects on plant functional groups (PFGs) composition and species asynchrony, which are closely correlated with ecosystem stability, remain unclear. We conducted a six‐year grazing experiment in a semi‐arid steppe, using seven levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep per hectare) and two grazing systems (i.e., a traditional, continuous grazing system during the growing period (TGS), and a mixed one rotating grazing and mowing annually (MGS)), to examine the effects of grazing system and grazing intensity on the abundance and composition of PFGs and diversity–stability relationships. Ecosystem stability was similar between mixed and continuous grazing treatments. However, within the two grazing systems, stability was maintained through different pathways, that is, along with grazing intensity, persistence biomass variations in MGS, and compensatory interactions of PFGs in their biomass variations in TGS. Ecosystem temporal stability was not decreased by species loss but rather remain unchanged by the strong compensatory effects between PFGs, or a higher grazing‐induced decrease in species asynchrony at higher diversity, and a higher grazing‐induced increase in the temporal variation of productivity in diverse communities. Ecosystem stability of aboveground net primary production was not related to species richness in both grazing systems. High grazing intensity weakened the temporal stabilizing effects of diversity in this semi‐arid grassland. Our results demonstrate that the productivity of dominant PFGs is more important than species richness for maximizing stability in this system. This study distinguishes grazing intensity and grazing system from diversity effects on the temporal stability, highlighting the need to better understand how grazing regulates ecosystem stability, plant diversity, and their synergic relationships.
Collapse
Affiliation(s)
- Haiyan Ren
- College of Agro-grassland Science College of Prataculture Science Nanjing Agricultural University Nanjing China.,Institute of Crop Science and Plant Breeding-Grass and Forage Science Christian-Albrechts-University Kiel Germany
| | - Friedhelm Taube
- Institute of Crop Science and Plant Breeding-Grass and Forage Science Christian-Albrechts-University Kiel Germany
| | - Claudia Stein
- Tyson Research Center and Department of Biology Washington University St. Louis St. Louis MO USA
| | - Yingjun Zhang
- Department of Grassland Science China Agricultural University Beijing China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Shuijin Hu
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China.,Department of Entomology and Plant Pathology North Carolina State University Raleigh NC USA
| |
Collapse
|