1
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
2
|
Dudney J, Latimer AM, van Mantgem P, Zald H, Willing CE, Nesmith JCB, Cribbs J, Milano E. The energy-water limitation threshold explains divergent drought responses in tree growth, needle length, and stable isotope ratios. GLOBAL CHANGE BIOLOGY 2023; 29:4368-4382. [PMID: 37089078 DOI: 10.1111/gcb.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12-9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13 C) and nitrogen (δ15 N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E-W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada.
Collapse
Affiliation(s)
- Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Phillip van Mantgem
- U.S. Geological Survey, Western Ecological Research Center, Sacramento, California, USA
| | - Harold Zald
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Claire E Willing
- Department of Biology, Stanford University, Stanford, California, USA
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | | | - Jennifer Cribbs
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Elizabeth Milano
- U.S. Geological Survey, Western Ecological Research Center, Sacramento, California, USA
- USDA Forest Service, Rocky Mountain Research Station, Moscow, Idaho, USA
| |
Collapse
|
3
|
Buck R, Ortega-Del Vecchyo D, Gehring C, Michelson R, Flores-Rentería D, Klein B, Whipple AV, Flores-Rentería L. Sequential hybridization may have facilitated ecological transitions in the Southwestern pinyon pine syngameon. THE NEW PHYTOLOGIST 2023; 237:2435-2449. [PMID: 36251538 DOI: 10.1111/nph.18543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multispecies interbreeding networks, or syngameons, have been increasingly reported in natural systems. However, the formation, structure, and maintenance of syngameons have received little attention. Through gene flow, syngameons can increase genetic diversity, facilitate the colonization of new environments, and contribute to hybrid speciation. In this study, we evaluated the history, patterns, and consequences of hybridization in a pinyon pine syngameon using morphological and genomic data to assess genetic structure, demographic history, and geographic and climatic data to determine niche differentiation. We demonstrated that Pinus edulis, a dominant species in the Southwestern US and a barometer of climate change, is a core participant in the syngameon, involved in the formation of two drought-adapted hybrid lineages including the parapatric and taxonomically controversial fallax-type. We found that species remain morphologically and genetically distinct at range cores, maintaining species boundaries while undergoing extensive gene flow in areas of sympatry at range peripheries. Our study shows that sequential hybridization may have caused relatively rapid speciation and facilitated the colonization of different niches, resulting in the rapid formation of two new lineages. Participation in the syngameon may allow adaptive traits to be introgressed across species barriers and provide the changes needed to survive future climate scenarios.
Collapse
Affiliation(s)
- Ryan Buck
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, 76230, Mexico
| | - Catherine Gehring
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Rhett Michelson
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, NV, 89146, USA
| | - Dulce Flores-Rentería
- CONACYT-CINVESTAV Unidad Saltillo, Grupo de Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, Mexico
| | - Barbara Klein
- Diné College, School of Science, Technology, Engineering and Mathematics, Tsaile, AZ, 86556, USA
| | - Amy V Whipple
- Department of Biological Sciences and Center for Adaptive Western Landscapes, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | |
Collapse
|
4
|
Petrik P, Petek-Petrik A, Kurjak D, Mukarram M, Klein T, Gömöry D, Střelcová K, Frýdl J, Konôpková A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1287-1296. [PMID: 35238138 DOI: 10.1111/plb.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Collapse
Affiliation(s)
- P Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - A Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany CAS, Brno, Czech Republic
| | - D Kurjak
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Mukarram
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - T Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - K Střelcová
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - J Frýdl
- Forestry and Game Management Research Institute, Jíloviště, Czech Republic
| | - A Konôpková
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
5
|
Petit G, Zambonini D, Hesse BD, Häberle K. No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after 5 years of throughfall precipitation exclusion. GLOBAL CHANGE BIOLOGY 2022; 28:4668-4683. [PMID: 35555836 PMCID: PMC9325500 DOI: 10.1111/gcb.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Forest trees are experiencing increasing frequency and intensity of drought events with climate change. We investigated xylem and phloem traits from mature Fagus sylvatica and Picea abies trees after 5 years of complete exclusion of throughfall precipitation during the growing season. Xylem and phloem anatomy, leaf and branch biomass were analysed along top branches of ~1.5 m lenght in 5 throughfall precipitation excluded (TE) and 5 control (CO) trees of both beech and spruce. Xylem traits were analysed on wood cores extracted from the stem at breast height. In the top branches of both species, the lumen diameter (or area) of xylem and phloem conduits did not differ between TE and CO trees. At breast height, TE trees of both species produced narrower xylem rings and conduits. While allocation to branch (BM) and needle biomass (LM) did not change between TE and CO in P. abies, TE F. sylvatica trees allocated proportionally more biomass to leaves (LM) than BM compared with CO. Despite artificial drought increased the mortality in the TE plots, our results revealed no changes in both xylem and phloem anatomies, undermining the hypothesis that successful acclimation to drought would primarily involve increased resistance against air embolism.
Collapse
Affiliation(s)
- Giai Petit
- Dipartimento Territorio e Sistemi Agro‐Forestali (TESAF)University of PadovaPadovaItaly
| | - Dario Zambonini
- Dipartimento Territorio e Sistemi Agro‐Forestali (TESAF)University of PadovaPadovaItaly
| | - Benjamin D. Hesse
- Land Surface‐Atmosphere InteractionsTechnical University of Munich, School of Life SciencesFreisingGermany
| | - Karl‐Heinz Häberle
- Chair of Restoration EcologyTechnical University of Munich, School of Life SciencesFreisingGermany
| |
Collapse
|
6
|
Asbjornsen H, McIntire CD, Vadeboncoeur MA, Jennings KA, Coble AP, Berry ZC. Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally occurring severe droughts. TREE PHYSIOLOGY 2021; 41:1819-1835. [PMID: 33904579 DOI: 10.1093/treephys/tpab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.
Collapse
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Cameron D McIntire
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- State and Private Forestry, USDA Forest Service, 271 Mast Road, Durham, NH 03824, USA
| | - Matthew A Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Katie A Jennings
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Adam P Coble
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Private Forests Division, Oregon Department of Forestry, 2600 State St, Salem, OR 97310, USA
| | - Z Carter Berry
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
7
|
Zweifel R, Etzold S, Sterck F, Gessler A, Anfodillo T, Mencuccini M, von Arx G, Lazzarin M, Haeni M, Feichtinger L, Meusburger K, Knuesel S, Walthert L, Salmon Y, Bose AK, Schoenbeck L, Hug C, De Girardi N, Giuggiola A, Schaub M, Rigling A. Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment. THE NEW PHYTOLOGIST 2020; 227:1081-1096. [PMID: 32259280 PMCID: PMC7383578 DOI: 10.1111/nph.16582] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 05/02/2023]
Abstract
Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Frank Sterck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forest Ecology and Management GroupWageningen University6701Wageningenthe Netherlands
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Tommaso Anfodillo
- Dipartimento Territorio e Sistemi Agro‐ForestaliUniversity of Padova35020LegnaroItaly
| | - Maurizio Mencuccini
- ICREA08010BarcelonaSpain
- CREAFUniversidad Autonoma de Barcelona08193BarcelonaSpain
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Martina Lazzarin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Horticulture and Product PhysiologyWageningen UniversityWageningen6701the Netherlands
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Linda Feichtinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Simon Knuesel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/PhysicsUniversity of Helsinki00100HelsinkiFinland
- Institute for Atmospheric and Earth System Research/Forest SciencesUniversity of Helsinki00100HelsinkiFinland
| | - Arun K. Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
- Forestry and Wood Technology DisciplineKhulna University9208KhulnaBangladesh
| | - Leonie Schoenbeck
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Christian Hug
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Nicolas De Girardi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Arnaud Giuggiola
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| | - Andreas Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmensdorfSwitzerland
| |
Collapse
|
8
|
Guérin M, von Arx G, Martin-Benito D, Andreu-Hayles L, Griffin KL, McDowell NG, Pockman W, Gentine P. Distinct xylem responses to acute vs prolonged drought in pine trees. TREE PHYSIOLOGY 2020; 40:605-620. [PMID: 31976523 DOI: 10.1093/treephys/tpz144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Increasing dryness challenges trees' ability to maintain water transport to the leaves. Most plant hydraulics models use a static xylem response to water stress. Yet, in reality, lower soil moisture and warmer temperatures during growing seasons feed back onto xylem development. In turn, adjustments to water stress in the newly built xylem influence future physiological responses to droughts. In this study, we investigate the annual variation of anatomical traits in branch xylem in response to different soil and atmospheric moisture conditions and tree stress levels, as indicated by seasonal predawn leaf water potential (ΨL,pd). We used a 6-year field experiment in southwestern USA with three soil water treatments applied to Pinus edulis Engelm trees-ambient, drought (45% rain reduction) and irrigation (15-35% annual water addition). All trees were also subject to a natural 1-year acute drought (soil and atmospheric) that occurred during the experiment. The irrigated trees showed only moderate changes in anatomy-derived hydraulic traits compared with the ambient trees, suggesting a generally stable, well-balanced xylem structure under unstressed conditions. The artificial prolonged soil drought increased hydraulic efficiency but lowered xylem construction costs and decreased tracheid implosion safety ((t/b)2), suggesting that annual adjustments of xylem structure follow a safety-efficiency trade-off. The acute drought plunged hydraulic efficiency across all treatments. The combination of acute and prolonged drought resulted in vulnerable and inefficient new xylem, disrupting the stability of the anatomical trade-off observed in the rest of the years. The xylem hydraulic traits showed no consistent direct link to ΨL,pd. In the future, changes in seasonality of soil and atmospheric moisture are likely to have a critical impact on the ability of P. edulis to acclimate its xylem to warmer climate. Furthermore, the increasing frequency of acute droughts might reduce hydraulic resilience of P. edulis by repeatedly creating vulnerable and less efficient anatomical structure.
Collapse
Affiliation(s)
- Marceau Guérin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Georg von Arx
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111 CH-8903 Birmensdorf, Switzerland
| | - Dario Martin-Benito
- INIA, CIFOR, Ctra La Coruña km 7.5, 28040 Madrid, Spain
- Forest Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Laia Andreu-Hayles
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964, USA
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
| | - William Pockman
- Biology Department, MSC03 202, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Earth Institute, Columbia University, Hogan Hall, 2910 Broadway, New York, NY 10027, USA
| |
Collapse
|
9
|
Wang MH, Wang JR, Zhang XW, Zhang AP, Sun S, Zhao CM. Phenotypic plasticity of stomatal and photosynthetic features of four Picea species in two contrasting common gardens. AOB PLANTS 2019; 11:plz034. [PMID: 31308925 PMCID: PMC6621916 DOI: 10.1093/aobpla/plz034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 05/15/2023]
Abstract
Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species' original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.
Collapse
Affiliation(s)
- Ming Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Ru Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Wei Zhang
- Forestry College, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ai Ping Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Shan Sun
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Chang Ming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
- Corresponding author’s e-mail address:
| |
Collapse
|
10
|
Whipple AV, Cobb NS, Gehring CA, Mopper S, Flores-Rentería L, Whitham TG. Long-Term Studies Reveal Differential Responses to Climate Change for Trees Under Soil- or Herbivore-Related Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:132. [PMID: 30833952 PMCID: PMC6387935 DOI: 10.3389/fpls.2019.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Worldwide, trees are confronting increased temperature and aridity, exacerbating susceptibility to herbivory. Long-term studies comparing patterns of plant performance through drought can help identify variation among and within populations in vulnerability to climate change and herbivory. We use long-term monitoring data to examine our overarching hypothesis that the negative impacts of poor soil and herbivore susceptibility would be compounded by severe drought. We studied pinyon pine, Pinus edulis, a widespread southwestern tree species that has suffered extensive climate-change related mortality. We analyzed data on mortality, growth, male reproduction, and herbivory collected for 14-32 years in three areas with distinct soil-types. We used standardized precipitation-evapotranspiration index (SPEI) as a climate proxy that summarizes the impacts of drought due to precipitation and temperature variation on semi-arid forests. Several key findings emerged: (1) Plant performance measurements did not support our hypothesis that trees growing in stressful, coarse-textured soils would suffer more than trees growing in finer-textured soils. Stem growth at the area with coarse, young cinder soils (area one) responded only weakly to drought, while stem growth on more developed soils with sedimentary (area two) and volcanic (area three) substrates, was strongly negatively affected by drought. Male reproduction declined less with drought at area one and more at areas two and three. Overall mortality was 30% on coarse cinder soils (area one) and averaged 55% on finer soil types (areas two and three). (2) Although moth herbivore susceptible trees were hypothesized to suffer more with drought than moth resistant trees, the opposite occurred. Annual stem growth was negatively affected by drought for moth resistant trees, but much less strongly for moth susceptible trees. (3) In contrast to our hypothesis, moths declined with drought. Overall, chronically water-stressed and herbivore-susceptible trees had smaller declines in performance relative to less-stressed trees during drought years. These long-term findings support the idea that stressed trees might be more resistant to drought since they may have adapted or acclimated to resist drought-related mortality.
Collapse
Affiliation(s)
- Amy V. Whipple
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Neil S. Cobb
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A. Gehring
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Susan Mopper
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | | | - Thomas G. Whitham
- Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
11
|
Petit G, von Arx G, Kiorapostolou N, Lechthaler S, Prendin AL, Anfodillo T, Caldeira MC, Cochard H, Copini P, Crivellaro A, Delzon S, Gebauer R, Gričar J, Grönholm L, Hölttä T, Jyske T, Lavrič M, Lintunen A, Lobo-do-Vale R, Peltoniemi M, Peters RL, Robert EMR, Roig Juan S, Senfeldr M, Steppe K, Urban J, Van Camp J, Sterck F. Tree differences in primary and secondary growth drive convergent scaling in leaf area to sapwood area across Europe. THE NEW PHYTOLOGIST 2018; 218:1383-1392. [PMID: 29655212 DOI: 10.1111/nph.15118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL : AX balance in response to climate conditions, but whether trees of different species acclimate in AL : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b ˜ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.
Collapse
Affiliation(s)
- Giai Petit
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Institute for Environmental Sciences, University of Geneva, 24 rue du Général-Dufour, 1211, Geneva, Switzerland
| | - Natasa Kiorapostolou
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, NL, 6700 AA, Wageningen, the Netherlands
| | - Silvia Lechthaler
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Angela Luisa Prendin
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Tommaso Anfodillo
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Maria C Caldeira
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Site de Crouël 5, chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Paul Copini
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, NL, 6700 AA, Wageningen, the Netherlands
- Wageningen Environmental Research (Alterra), Wageningen University & Research Wageningen, Droevendaalsesteeg 3, NL 6700 AA, Wageningen, the Netherlands
| | - Alan Crivellaro
- Departamento TeSAF, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Sylvain Delzon
- INRA, University of Bordeaux, UMR BIOGECO, Avenue des Facultés, Talence, FR 33405, France
| | - Roman Gebauer
- Dept. of Forest, Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic
| | - Jožica Gričar
- Slovenian Forestry Institute, Vecna pot 2, SI - 1000, Ljubljana, Slovenia
| | - Leila Grönholm
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI 00014, Helsinki, Finland
| | - Teemu Hölttä
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI 00014, Helsinki, Finland
| | - Tuula Jyske
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Vantaa, Finland
| | - Martina Lavrič
- Slovenian Forestry Institute, Vecna pot 2, SI - 1000, Ljubljana, Slovenia
| | - Anna Lintunen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI 00014, Helsinki, Finland
| | - Raquel Lobo-do-Vale
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Mikko Peltoniemi
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Vantaa, Finland
| | - Richard L Peters
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | | | - Sílvia Roig Juan
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Vantaa, Finland
| | - Martin Senfeldr
- Dept. of Forest, Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, BE-9000, Ghent, Belgium
| | - Josef Urban
- Dept. of Forest, Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, 61300, Brno, Czech Republic
- Siberian Federal University, Svobodnyy Ave 79, 660041, Krasnoyarsk, Russia
| | - Janne Van Camp
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, BE-9000, Ghent, Belgium
| | - Frank Sterck
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3, NL, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|