1
|
Zhou D, Xia Y, Li C, Huang M, Huang Y. Influence pathways of vanadium stress to microbial community in soil-tailings-groundwater systems. J Environ Sci (China) 2025; 154:264-276. [PMID: 40049872 DOI: 10.1016/j.jes.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2025]
Abstract
The large-scale exploitation of vanadium (V) bearing minerals has led to a massive accumulation of V tailings, of which V pollution poses severe ecological risks. Although the mechanisms of V stress to the microbial community have been reported, the influential pathways in a multi-medium-containing system, for example, the soil-tailings-groundwater system, are unknown. The dynamic redox conditions and substance exchange within the system exhibited complex V stress on the local microbial communities. In this study, the influence pathways of V stress to the microbial community in the soil-tailings-groundwater system were first investigated. High V contents were observed in groundwater (139.2 ± 0.15 µg/L) and soil (98.0-323.8 ± 0.02 mg/kg), respectively. Distinct microbial composition was observed for soil and groundwater, where soil showed the highest level of diversity and richness. Firmicutes, Proteobacteria, Actinobacteria, and Acidobacteria were dominant in soil and groundwater with a sum relative abundance of around 80 %. Based on redundancy analysis and structural equation models, V was one of the vital driving factors affecting microbial communities. Groundwater microbial communities were influenced by V via Cr, dissolved oxygen, and total nitrogen, while Fe, Mn, and total phosphorus were the key mediators for V to affect soil microbial communities. V affected the microbial community via metabolic pathways related to carbonaceous matter, which was involved in the establishment of survival strategies for metal stress. This study provides novel insights into the influence pathways of V on the microorganisms in tailings reservoir for pollution bioremediation.
Collapse
Affiliation(s)
- Dan Zhou
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Yonglian Xia
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Mingzheng Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
2
|
Wang S, Li T, Yuan X, Yu J, Luan Z, Guo Z, Yu Y, Liu C, Duan C. Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137818. [PMID: 40054196 DOI: 10.1016/j.jhazmat.2025.137818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes.
Collapse
Affiliation(s)
- Sichen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Ting Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Xinqi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Ji Yu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Zhifei Luan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Zhaolai Guo
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Yadong Yu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China.
| |
Collapse
|
3
|
Duan R, Zhang Y, Dai Q, Yang L, Yang H, Meng F, Hu W, Zhang P. Phanerochaete chrysosporium reduces heavy metal uptake in rice by affecting rhizosphere microbes and root metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118403. [PMID: 40424724 DOI: 10.1016/j.ecoenv.2025.118403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025]
Abstract
The addition of functional microorganisms is a common approach for remediating farmland contaminated with heavy metals, but the mechanisms underlying their reduction of crop absorption of these metals require further investigation. Here, the effect of adding Phanerochaete chrysosporium (PC) on the accumulation of heavy metals, including antimony (Sb), arsenic (As), chromium (Cr), lead (Pb) and zinc (Zn), in rice was investigated, and the possible mechanisms behind these effects were explored. The results revealed that PC treatment significantly decreased the concentrations of Sb, As, Cr, Pb and Zn in rice grains, while increasing the abundance of four beneficial bacterial genera, including Mycobacterium, Desulfovirga, Methylosarcina, and Ferruginibacter. Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis showed that adding PC significantly altered the concentrations of root metabolites, including organic acids, choline, and amino acids. The affected metabolic pathways were mainly concentrated in four pathways: (1) histidine metabolism, (2) pyrimidine metabolism, (3) alanine, aspartate, and glutamate metabolism, and (4) glycine, serine, and threonine metabolism. These findings suggest that PC reduces the uptake of heavy metals in rice by altering root metabolism and the composition of the rhizosphere microbiome, providing valuable insights for the remediation of farmland contaminated with heavy metals.
Collapse
Affiliation(s)
- Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, Hunan 417000, China.
| | - Yu Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Qian Dai
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Li Yang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Hui Yang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Fumin Meng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Wei Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Ping Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| |
Collapse
|
4
|
Kushwaha P, Murawska-Wlodarczyk K, Stanek M, Stefanowicz AM, Seget B, Babst-Kostecka A. Trade-offs and adaptation to metalliferous soils: The role of soil microbiome in metal tolerance and uptake in Arabidopsis halleri ecotypes from a reciprocal transplant experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177470. [PMID: 39547387 DOI: 10.1016/j.scitotenv.2024.177470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Soil contamination with trace metal elements is a worldwide issue, prompting research on plant species capable of hyperaccumulating metals to reduce soil toxicity. Previous research suggests that both plant species and their populations can affect soil microbial communities, yet little is known about how different populations of hyperaccumulator species influence these microbial communities to enhance metal-uptake and tolerance. This study evaluated the effect of soil origin, soil microbiome, and plant population on phytoextraction efficiencies of Cd and Zn among four A. halleri populations: two each from metalliferous and non-metalliferous sites. In a controlled transplant experiment, clonal replicates of A. halleri were grown in native and three non-native soils for six months. Biogeochemical analyses of plants and soils were conducted, alongside sequencing of root-associated soil bacterial/archaeal and fungal DNA. Soil treatments primarily differed in pH, total Cd, Pb, and Zn, as well as acid and alkaline phosphatase enzyme activities. A combined effect of soil origin and population was noted for arylsulfatase and β-glucosidase activities, as well as ammonium and nitrate concentrations. Both non-metallicolous and metallicolous populations accumulated high levels of Cd and Zn in metalliferous soils with the non-metallicolous population NM_PL14 outperforming the metallicolous populations in Zn hyperaccumulation. Interestingly, non-metallicolous populations grown in metalliferous soils exhibited no trade-offs in plant performance despite higher Cd and Zn accumulation. Soil origin had a stronger effect on the bacterial/archaeal and fungal community composition than plant ecotype. Partial least square regression models explained 66 % and 79 % of the variability in A. halleri Cd and Zn hyperaccumulation. There was a positive association between Zn-uptake and specific microbial taxa (e.g., Cornebacteriales, Microbacteriaceae, Propionibacteriales, Rhizobiaceae, Basidiomycota, Oidiodendron, Phallaceae) and functional activity (e.g., arylsulfatase, S oxidation) in metalliferous soils. Taken together, our findings suggest that non-metallicolous A. halleri populations may be better suited for Zn phytoextraction applications.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA.
| | | | - Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland
| | - Anna M Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Bočaj V, Pongrac P, Grčman H, Šala M, Likar M. Rhizobiome diversity of field-collected hyperaccumulating Noccaea sp. BMC PLANT BIOLOGY 2024; 24:922. [PMID: 39358696 PMCID: PMC11448065 DOI: 10.1186/s12870-024-05605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N. caerulescens from the non-metalliferous site and N. praecox from the metalliferous site. We investigated the effect of metal enrichment on microbial communities and explored the interactions within microbial groups and their environment. The abundance of bacterial phyla was more homogeneous than fungal classes across all three Noccaea populations and across the three root-associated compartments (roots, rhizosphere, and bulk soil). While most fungal and bacterial Operational Taxonomic Units (OTUs) were found at both sites, the metalliferous site comprised more unique OTUs in the root and rhizosphere compartments than the non-metalliferous site. In contrast to fungi, bacteria exhibited differentially significant abundance between the metalliferous and non-metalliferous sites as well as statistically significant correlations with most of the soil parameters. Results revealed N. caerulescens had the highest number of negative correlations between the bacterial phyla, whereas the population from the metalliferous site had the fewest. This decrease was accompanied by a big perturbation in the bacterial community at the metalliferous site, indicating increased selection between the bacterial taxa and the formation of potentially less stable rhizobiomes. These findings provide fundamentals for future research on the dynamics between hyperaccumulators and their associated microbiome.
Collapse
Affiliation(s)
- Valentina Bočaj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
- Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia
| | - Helena Grčman
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
6
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
7
|
Wu ZH, Li F, Wang F, Jin R, Li Y, Li S, Zhou Z, Jia P, Li JT. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116691. [PMID: 38981391 DOI: 10.1016/j.ecoenv.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Feifan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rongzhou Jin
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shilin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuang Zhou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
8
|
Wang Y, Hu Y, Liu Y, Chen Q, Xu J, Zhang F, Mao J, Shi Q, He C, Cai R, Lønborg C, Liu L, Guo A, Jiao N, Zheng Q. Heavy metal induced shifts in microbial community composition and interactions with dissolved organic matter in coastal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172003. [PMID: 38569948 DOI: 10.1016/j.scitotenv.2024.172003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Heavy metals can impact the structure and function of coastal sediment. The dissolved organic matter (DOM) pool plays an important role in determining both the heavy metal toxicity and microbial community composition in coastal sediments. However, how heavy metals affect the interactions between microbial communities and DOM remains unclear. Here, we investigated the influence of heavy metals on the microbial community structure (including bacteria and archaea) and DOM composition in surface sediments of Beibu Gulf, China. Our results revealed firstly that chromium, zinc, cadmium, and lead were the heavy metals contributing to pollution in our studied area. Furthermore, the DOM chemical composition was distinctly different in the contaminated area from the uncontaminated area, characterized by a higher average O/C ratio and increased prevalence of carboxyl-rich alicyclic molecules (CRAM) and highly unsaturated compounds (HUC). This indicates that DOM in the contaminated area was more recalcitrant compared to the uncontaminated area. Except for differences in archaeal diversity between the two areas, there were no significant variations observed in the structure of archaea and bacteria, as well as the diversity of bacteria, across the two areas. Nevertheless, our co-occurrence network analysis revealed that the B2M28 and Euryarchaeota, dominating bacterial and archaeal groups in the contaminated area were strongly related to CRAM. The network analysis also unveiled correlations between active bacteria and elevated proportions of nitrogen-containing DOM molecules. In contrast, the archaea-DOM network exhibited strong associations with nitrogen- and sulfur-containing molecules. Collectively, these findings suggest that heavy metals indeed influence the interaction between microbial communities and DOM, potentially affecting the accumulation of recalcitrant compounds in coastal sediments.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China; College of Environmental and Ecology, Xiamen University, Xiamen, China
| | - Yuxing Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Yanting Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Qi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jinxin Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Fei Zhang
- Third Institute of Oceanography Ministry of Natural Resources, Xiamen, China
| | - Jinhua Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Quan Shi
- College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing, China
| | - Chen He
- College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Christian Lønborg
- Department of Ecoscience, Section for Marine Diversity and Experimental Ecology, University of Aarhus, Roskilde, Denmark
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen, China
| | - Aixing Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
10
|
Zhou YH, Huang WX, Nie ZY, Liu HC, Liu Y, Wang C, Xia JL, Shu WS. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions. J Environ Sci (China) 2024; 137:681-700. [PMID: 37980051 DOI: 10.1016/j.jes.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Arsenic (As) speciation transformation in acid mine drainage (AMD) is comprehensively affected by biological and abiotic factors, such as microbially mediated Fe/S redox reactions and changes in environmental conditions (pH and oxidation-reduction potential). However, their combined impacts on arsenic speciation transformation remain poorly studied. Therefore, we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions. The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture, pH 2.0, 2.5, and 3.0 are more conducive to the formation of jarosites and ferric arsenate, which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation. The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure, further influencing the biodissolution of pyrite and the release and oxidation process of Fe/S. The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe, S, and As in solution is mainly regulated by pH and potential values, which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization. The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation, and this correlation is critically regulated by the pH conditions of the system.
Collapse
Affiliation(s)
- Yu-Hang Zhou
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei-Xi Huang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhen-Yuan Nie
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hong-Chang Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Yue Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Can Wang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jin-Lan Xia
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
11
|
Sun H, Chen M, Wei L, Xue P, Zhao Q, Gao P, Geng L, Wen Q, Liu W. Roots recruited distinct rhizo-microbial communities to adapt to long-term Cd and As co-contaminated soil in wheat-maize rotation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123053. [PMID: 38042468 DOI: 10.1016/j.envpol.2023.123053] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Cd and As accumulation in staple crops poses potential risks to food safety and human health. Rhizo-microbial communities are involved in their behaviors from soil to crops. However, the responses of rhizo-microbial communities to different Cd and As co-contaminated soils in wheat‒maize rotation are still unclear. This study explored whether wheat or maize could recruit distinct rhizo-microbial communities to adapt to long-term co-contaminated soils with low or high levels of Cd and As (LS or HS). It was apparent that the average wheat grain-Cd/As concentrations were 17.96-fold/4.81-fold in LS and 5.64-fold/7.70-fold in HS higher than those in maize grains, significantly depending on the mobility of Cd/As in soil-crop system, especially from soil to root and from straw to grain. Meanwhile, wheat or maize roots recruited specific bacteria and fungi in LS and HS, which were substantially associated with Cd/As bioavailability in rhizosphere. Wheat roots recruited specific bacterial genera norank_c__MB-A2-108 (Actinobacteria), norank_f__JG30-KF-CM45 (Chloroflexi), and norank_o__Rokubacteriales (Methylomirabilota) and fungal genera Metarhizium and Olpidium under HS, and their relative abundances were positively correlated with soil Cd/As bioavailability and were resistant to Cd and As co-contamination. However, bacterial genera Arthrobacter, Nocardioides, Devosia, Skermanella, and Pedobacter were sensitive to Cd and As co-contamination and were specifically enriched in wheat rhizospheres under LS. Meanwhile, the bacterial genus norank_c__KD4-96 (Chloroflexi) was resistant to Cd and As co-contamination under HS and was distinctly enriched in maize rhizosphere. Furthermore, the roots of wheat and maize recruited the bacterial genus Marmoricola in LS, which was sensitive to Cd and As co-contamination, and recruited specific fungal genus Fusicolla in HS, which was tolerant to Cd and As co-contamination. These results confirmed that HS and LS shifted the composition and structure of the rhizo-microbial communities in the wheat-maize rotation to promote crops survival in different long-term Cd and As co-contaminated soils.
Collapse
Affiliation(s)
- Hongxin Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China; Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai, 054000, China
| | - Miaomiao Chen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China
| | - Liang Wei
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Peiying Xue
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Quanli Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China
| | - Peipei Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Liping Geng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Qingxi Wen
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Resources and Environmental Sciences, Hebei Agricultural University, Hebei, Baoding, 071000, China; Key Laboratory for Farmland Eco-environment of Hebei Province, Hebei, Baoding, 071000, China.
| |
Collapse
|
12
|
Li D, Zhang X, Chen J, Li J. Toxicity factors to assess the ecological risk for soil microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115867. [PMID: 38142592 DOI: 10.1016/j.ecoenv.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
13
|
Chen W, Li M, Huang P, Meng D, Ying J, Yang Y, Qiu R, Li H. The application of mixed stabilizing materials promotes the feasibility of the intercropping system of Gynostemma pentaphyllum/Helianthus annuus L. on arsenic contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119284. [PMID: 37839203 DOI: 10.1016/j.jenvman.2023.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Intercropping technology and stabilizing materials are common remediation techniques for soils contaminated with heavy metals. This study investigated the feasibility of the Gynostemma pentaphyllum (G. pentaphyllum)/Helianthus annuus L. (H. annuus) intercropping system on arsenic (As) contaminated farmland through field and pot experiments and the regulation of plant As absorption by the application of mixed stabilizing materials in this intercropping system. Field experiments demonstrated that intercropping with H. annuus increased the As concentration in G. pentaphyllum leaves to 1.79 mg kg-1 but still met the requirements of the national food standard of China (2 mg kg-1) (GB2762-2017). Meanwhile, G. pentaphyllum yield in the intercropping system decreased by 15.09%, but the difference was insignificant (P > 0.05). Additionally, the As bioconcentration (BCA) per H. annuus plant in the intercropping system was significantly higher than that in the monoculture system, increasing by 76.37% (P < 0.05). The pot experiment demonstrated that when granite powder, iron sulfate mineral, and "Weidikang" soil conditioner were applied to the soil collectively, G. pentaphyllum leaf As concentration in the intercropping system could be significantly reduced by 42.17%. Rhizosphere pH is the most crucial factor affecting As absorption by G. pentaphyllum in intercropping systems. When these three stabilizing materials were applied simultaneously, the As bioaccumulation (BCA) per H. annuus plant was significantly higher than that of normal intercropping treatment, which increased by 71.12% (P < 0.05), indicating that the application of these stabilizing materials significantly improved the As removal efficiency of the intercropping system. Dissolved organic carbon (DOC) concentration in the rhizosphere soil is the most pivotal factor affecting As absorption by H. annuus. In summary, the G. pentaphyllum-H. annuus intercropping model is worthy of being promoted in moderately As polluted farmland. The application of granite powder, iron sulfate mineral, and "Weidikang" soil conditioner collectively to the soil can effectively enhance the potential of this intercropping model to achieve "production while repairing" in the As polluted farmland.
Collapse
Affiliation(s)
- Weizhen Chen
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Peiyi Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Dele Meng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Jidong Ying
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Yanan Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
14
|
Darma A, Yang J, Feng Y, Xia X, Zandi P, Sani A, Bloem E, Ibrahim S. The impact of maize straw incorporation on arsenic and cadmium availability, transformation and microbial communities in alkaline-contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118390. [PMID: 37364492 DOI: 10.1016/j.jenvman.2023.118390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Increasing evidence of the uncertainty of crop straw returning in heavy metal-contaminated soil is a significant concern. The present study investigated the influence of 1 and 2% maize straws (MS) amendment on As and Cd bioavailability in two different alkaline soils (A-industrial and B-irrigation) after 56 days of ageing. Adding MS to the two soils decreased the pH by 1.28 (A soil) and 1.13 (B soil) and increased the concentration of dissolved organic carbon (DOC) by 54.40 mg/kg (A soil) and 100.00 mg/kg (B soil) during the study period. After 56 days of ageing, the overall NaHCO3-As and DTPA-Cd increased by 40% and 33% (A) and 39% and 41% (B) soils, respectively. The MS additions increased the alteration of As and Cd exchangeable and residual fractions, whereas advanced solid-state 13C nuclear magnetic resonance (NMR) revealed that alkyl C and alkyl O-C-O in A soil and alkyl C, Methoxy C/N-alkyl, and alkyl O-C-O in B soil significantly contributed to the As and Cd mobilisation. Collectively, 16 S rRNA analyses revealed Acidobacteria, Firmicutes, Chloroflexi, Actinobacteria and Bacillus promoted the As and Cd mobilisation following the MS addition, while principle component analysis (PCA) demonstrated that bacterial proliferation significantly influenced MS decomposition, resulting in As and Cd mobilisation in the two soils. Overall, the study highlights the implications of applying MS to As- and Cd-contaminated alkaline soil and offers the framework for conditions to be considered during As- and Cd-remediation efforts, especially when MS is the sole remediation component.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China).
| | - Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, PR China
| | - Ali Sani
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano, Nigeria
| | - Elke Bloem
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science , Bundesallee 69, 38116, Braunschweig, Germany
| | - Sani Ibrahim
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano, Nigeria
| |
Collapse
|
15
|
Wang J, Li Z, Zhu Q, Wang C, Tang X. Review on arsenic environment behaviors in aqueous solution and soil. CHEMOSPHERE 2023; 333:138869. [PMID: 37156290 DOI: 10.1016/j.chemosphere.2023.138869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Arsenic pollution in environment has always been an important environmental problem that has attracted wide attention in recent years. Adsorption is one of the main methods of treatment for arsenic in the aqueous solution and soil because of the advantages of high efficiency, low cost and wide application. Firstly, this report summarizes the commonly and widely used adsorbent materials such as metal-organic frameworks, layered bimetallic hydroxides, chitosan, biochar and their derivatives. The adsorption effects and mechanisms of these materials are further discussed, and the application prospects of these adsorbents are considered. Meanwhile, the gaps and deficiencies in the study of adsorption mechanism was pointed out. Then, this study comprehensively evaluated the effects of various factors on arsenic transport, including (i) the effects of pH and redox potential on the existing form of As; (ii) complexation mechanism of dissolved organic matter and As; (iii) factors affecting the plant enrichment of As. Finally, the latest scientific researches on microbial remediation of arsenic and the mechanisms were summarized. The review finally enlightens the subsequent development of more efficient and practical adsorption material.
Collapse
Affiliation(s)
- Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Zihao Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
16
|
Wang Y, Zeng X, Zhang Y, Zhang N, Xu L, Wu C. Responses of potential ammonia oxidation and ammonia oxidizers community to arsenic stress in seven types of soil. J Environ Sci (China) 2023; 127:15-29. [PMID: 36522049 DOI: 10.1016/j.jes.2022.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/17/2023]
Abstract
Soil arsenic contamination is of great concern because of its toxicity to human, crops, and soil microorganisms. However, the impacts of arsenic on soil ammonia oxidizers communities remain unclear. Seven types of soil spiked with 0 or 100 mg arsenic per kg soil were incubated for 180 days and sampled at days 1, 15, 30, 90 and 180. The changes in the community composition and abundance of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis, clone library sequencing, and quantitative PCR (qPCR) targeting amoA gene. Results revealed considerable variations in the potential ammonia oxidation (PAO) rates in different soils, but soil PAO was not consistently significantly inhibited by arsenic, probably due to the low bioavailable arsenic contents or the existence of functional redundancy between AOB and AOA. The variations in AOB and AOA communities were closely associated with the changes in arsenic fractionations. The amoA gene abundances of AOA increased after arsenic addition, whereas AOB decreased, which corroborated the notion that AOA and AOB might occupy different niches in arsenic-contaminated soils. Phylogenetic analysis of amoA gene-encoded proteins revealed that all AOB clone sequences belonged to the genus Nitrosospira, among which those belonging to Nitrosospira cluster 3a were dominant. The main AOA sequence detected belonged to Thaumarchaeal Group 1.1b, which was considered to have a high ability to adapt to environmental changes. Our results provide new insights into the impacts of arsenic on the soil nitrogen cycling.
Collapse
Affiliation(s)
- Yanan Wang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Xibai Zeng
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China.
| | - Yang Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Nan Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Liyang Xu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| | - Cuixia Wu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Institute of Environment and Sustainable Development in Agriculture, Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100081, China
| |
Collapse
|
17
|
Shen Q, Fu W, Chen B, Zhang X, Xing S, Ji C, Zhang X. Community response of soil microorganisms to combined contamination of polycyclic aromatic hydrocarbons and potentially toxic elements in a typical coking plant. Front Microbiol 2023; 14:1143742. [PMID: 36950156 PMCID: PMC10025358 DOI: 10.3389/fmicb.2023.1143742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) of coking industries impose negative effects on the stability of soil ecosystem. Soil microbes are regarded as an essential moderator of biochemical processes and soil remediation, while their responses to PAHs-PTEs combined contamination are largely unknown. In the present study, soil microbial diversity and community composition in the typical coking plant under the chronic co-exposure of PAHs and PTEs were investigated and microbial interaction networks were built to reveal microbial co-occurrence patterns. The results indicated that the concentrations of PAHs in the soil inside the coking plant were significantly higher than those outside the plant. The mean concentration of ∑16PAHs was 2894.4 ng·g-1, which is 5.58 times higher than that outside the plant. The average Hg concentration inside the coking plant was 22 times higher than the background value of Hebei province. The soil fungal community inside the coking plant showed lower richness compared with that of outside community, and there are significant difference in the bacterial and fungal community composition between inside and outside of coking plant (p < 0.01). Predicted contribution of different environmental factors to each dominant species based on random forest identified 20 and 25 biomarkers in bacteria and fungi, respectively, that were highly sensitive to coking plant soil in operation, such as Betaproteobacteria,Sordariomycetes and Dothideomycetes. Bacterial and fungal communities were shaped by the soil chemical properties (pH), PTEs (Hg), and PAHs together in the coking plant soils. Furthermore, the bacterial and fungal interaction patterns were investigated separately or jointly by intradomain and interdomain networks. Competition is the main strategy based on the co-exclusion pattern in fungal community, and the competitive relationship inside the coking plant is more complex than that outside the plant. In contrast, cooperation is the dominant strategy in bacterial networks based on the co-occurrence pattern. The present study provided insights into microbial response strategies and the interactions between bacteria and fungi under long-term combined contamination.
Collapse
Affiliation(s)
- Qihui Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuning Ji
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Dan Y, Wang X, Ji M, Sang W, Shen Z, Zhang Y. Influence of temperature change on the immobilization of soil Pb and Zn by hydrochar: Roles of soil microbial modulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121109. [PMID: 36669718 DOI: 10.1016/j.envpol.2023.121109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Considering the potential effect of the ambient temperature on soil microorganisms during heavy metal immobilization by hydrochar, 60 days of soil incubation was conducted to explore the impact of ambient temperature (5, 25, and 35 °C) on the immobilization of Pb and Zn by chitosan-magnetic sawdust hydrochar (CMSH) and magnetic chitosan hydrochar (MCH). The results showed that soil pH was relatively high and total organic carbon (TOC) was slightly lower in the 35 °C treatment. The diethylenetriaminepentaacetic acid (DTPA) available state content decreased significantly with the temperature increasing. Meanwhile, the ratios of stable Pb and Zn in the sequential extraction method proposed by the European Community Bureau of Reference (BCR) gradually increased with increasing temperature. The heatmap based on microbial community showed that elevated temperature not only favored the enrichment of metal-stable phyla, such as Chloroflexi, but was also involved in inhibiting the growth of Firmicutes, Actinobacteriota, and Proteobacteria. Meanwhile, different genera (Fonticella and Bacillus) in the Firmicutes phylum had distinct responses to temperature as well as to heavy metal immobilization effects. Subsequently, redundancy analysis confirmed that Chloroflexi and Fonticella were positively correlated with temperature and stable state metal content, while Actinobacteriota and Bacillus were negatively correlated with temperature and were positively correlated with DTPA available metal content. Moreover, Pb and Zn indicators displayed significant correlations for the dominant genera (R2 > 0.8, p < 0.02).
Collapse
Affiliation(s)
- Yitong Dan
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxia Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mengyuan Ji
- Department of Biology, University of Padua, 35131, Padova, Italy
| | - Wenjing Sang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zheng Shen
- Institute of New Rural Development, Tongji University, Shanghai, 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
19
|
Peng D, Zhang R, Chen Y, Jiang L, Lei L, Xu H, Feng S. Effects of secondary release of chromium and vanadium on soil properties, nutrient cycling and bacterial communities in contaminated acidic paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116725. [PMID: 36375431 DOI: 10.1016/j.jenvman.2022.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Although the contamination situation of chromium (Cr) and vanadium (V) have been revealed, the effects of their re-release on ecological risk in contaminated acidic paddy soil are unclear. To evaluate the effects, we assigned soil microcosms across three different concentration (100, 200, 300 mg/L) and introduced Cr and V alone or combination into an already slightly contaminated acidic soil. We found that Cr and V alone or interacted to increased soil bioavailable-metals, changed soil properties and nutrients to varying degrees. Meanwhile, soil ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents, nitrogen (N) -cycling enzyme activities, microbial mass N were significantly influenced by Cr addition. Which demonstrated that Cr re-release may disturb soil N cycle. However, V alone significantly improved soil NO3--N contents, cellulase and dehydrogenase activities, soil respiration intensity and microbial mass carbon: nitrogen. Meanwhile, V addition also decreased bacterial diversity while Cr addition increased bacterial diversity and shaped new bacterial community, some V(V) and Cr (VI) reducing bacteria were identified. Heatmap of Pearson correlation and Redundancy analysis showed that NH4+-N, NO3--N, Potassium, Phosphorus, and Cr played an important role in bacterial community structure. These findings suggested that re-release of Cr and V disturbed soil function and raised ecological risks, and the power to destroy the ecosystem stability originated from Cr was much stronger than V. This study was contributed to understand the effects of Cr and V re-release on microecology in contaminated acidic agricultural soil.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Yahui Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Lili Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Su Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
20
|
Rojas-Solis D, Larsen J, Lindig-Cisneros R. Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils. PeerJ 2023; 11:e14697. [PMID: 36650835 PMCID: PMC9840862 DOI: 10.7717/peerj.14697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Mining deposits often contain high levels of toxic elements such as mercury (Hg) and arsenic (As) representing strong environmental hazards. The purpose of this study was the isolation for plant growth promoting bacteria (PGPBs) that can improve phytoremediation of such mine waste deposits. Methods We isolated native soil bacteria from the rhizosphere of plants of mine waste deposits and agricultural land that was previously mine tailings from Tlalpujahua Michoacán, Mexico, and were identified by their fatty acid profile according to the MIDI Sherlock system. Plant growth promoting traits of all bacterial isolates were examined including production of 3-indoleacetic acid (IAA), siderophores, biofilm formation, and phosphate solubilization. Finally, the response of selected bacteria to mercury and arsenic was examined an in-vitro assay. Results A total 99 bacterial strains were isolated and 48 identified, representing 34 species belonging to 23 genera. Sixty six percent of the isolates produced IAA of which Pseudomonas fluorescens TL97 produced the most. Herbaspirillum huttiense TL36 performed best in terms of phosphate solubilization and production of siderophores. In terms of biofilm formation, Bacillus atrophaeus TL76 was the best. Discussion Most of the bacteria isolates showed high level of tolerance to the arsenic (as HAsNa2O4 and AsNaO2), whereas most isolates were susceptible to HgCl2. Three of the selected bacteria with PGP traits Herbispirillum huttiense TL36, Klebsiella oxytoca TL49 and Rhizobium radiobacter TL52 were also tolerant to high concentrations of mercury chloride, this might could be used for restoring or phytoremediating the adverse environmental conditions present in mine waste deposits.
Collapse
|
21
|
Li Q, Pei L, Huang Z, Shu W, Li Q, Song Y, Zhao H, Schäfer M, Nordhaus I. Ecological risk assessment of heavy metals in the sediments and their impacts on bacterial community structure: A case study of Bamen Bay in China. MARINE POLLUTION BULLETIN 2023; 186:114482. [PMID: 36565579 DOI: 10.1016/j.marpolbul.2022.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution associated with human activity is of big concern in tropical bays. Microorganisms may be highly sensitive to heavy metals. Nonetheless, little is known about effects of heavy metals on microbial structure in tropical bay sediments. In this study, 16S rRNA gene sequencing and potential ecological risk index analysis were used to analyze the relationships between nine metals (arsenic, lead, cadmium, cobalt, chromium, copper, zinc, manganese, and nickel) and bacterial communities in the sediments of Bamen Bay, China. Our results showed that Bamen Bay was under a considerable ecological risk and cadmium had the highest monomial potential ecological risk. In addition, individual metal contamination correlated with bacterial community composition but not with bacterial α-diversity. Arsenic was the metal influencing bacterial community structure the most. Our findings provide a novel insight into the monitoring and remediation of heavy metal pollution in tropical bays.
Collapse
Affiliation(s)
- Qipei Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Wei Shu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Qiuli Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Marvin Schäfer
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen 28359, Germany
| | - Inga Nordhaus
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen 28359, Germany
| |
Collapse
|
22
|
Wang C, Ju J, Zhang H, Liu P, Song Z, Hu X, Zheng Q. Exploring the variation of bacterial community and nitrogen transformation functional genes under the pressure of heavy metals in different coastal mariculture patterns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116365. [PMID: 36202038 DOI: 10.1016/j.jenvman.2022.116365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Equilibrium in microbial dynamics and nitrogen transformation in the sediment is critical for maintaining healthy mariculture environment. However, our understanding about the impact of heavy metals on the bacterial community and nitrogen transformation functional genes in different mariculture patterns is still limited. Here, we analyzed 30 sediment samples in the vertical distribution from three different mariculture patterns mainly include open mariculture zone (K), closed mariculture pond (F) and pristine marine area (Q). Illumina MiSeq Sequencing was applied to investigate the bacterial community and structure in the sediment. Quantitative polymerase chain reaction (qPCR) was used to determine the effect of heavy metals on nitrogen transformation functional genes. Results showed that bacterial community and structure varied greatly in different mariculture patterns. Chloroflexi, Proteobacteria and Desulfobacterota were predominant phyla in the coastal mariculture area. High concentrations of heavy metals mainly enriched in the up layer (5-40 cm) of the sediment in the mariculture zone. The abundance of functional genes in the closed mariculture pond was much higher than the open mariculture zone and pristine marine area. And the high abundance of nitrification and denitrification functional genes mainly accumulated at the depth from 5 cm to 40 cm. Heavy metals content such as Fe, Cr, Mn, Ni, As, Cd, Pb and nutrient content NH4+-N, NO3--N and NO2--N were highly associated with bacterial community and nitrogen transformation functional genes. This study comprehensively elaborated the effect of heavy metals on the bacterial community and nitrogen transformation functional genes in different coastal mariculture patterns, indicating the possible role of closed mariculture pond in reducing nitrogen transformation efficiency, which will provide useful information for preventing pollution risk in the mariculture area.
Collapse
Affiliation(s)
- Caixia Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Jiujun Ju
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Pengyuan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenglei Song
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
23
|
Ma S, Qiao L, Liu X, Zhang S, Zhang L, Qiu Z, Yu C. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways. ENVIRONMENTAL RESEARCH 2022; 214:113822. [PMID: 35803340 DOI: 10.1016/j.envres.2022.113822] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Currently, understanding the structure and function of the microbial community is the key step in artificially constructing microbial communities to control soil heavy metal pollution. Abundant/rare microbial communities play different roles in different levels of concentrations. However, the correlation between heavy metals and rare/abundant subgroups is poorly understood. In this study, we used a metagenomics approach to comprehensively investigate the evolutionary changes in microbial diversity, structure, and function under different heavy metal concentration stress in soils surrounding gold tailings. The results show that the main pollutants were Pb, As, and Zn. Indigenous microorganisms have different responses to heavy metal concentrations. Bacteria are the main components of indigenous microorganisms, mainly including Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. With the increase of heavy metal pollution, the relative abundance of Proteobacteria increased, and that of Actinobacteria decreased. Archaea was significantly inhibited by heavy metal stress and was more sensitive to heavy metal concentration. The response of fungi to heavy metal concentration was not obvious. The results of KEGG pathways showed that carbon fixation was inhibited with increasing heavy metal concentrations, while nitrogen metabolism was in contrast. Abundant subcommunity had a greater correlation mainly with metal resistance mechanisms, and rare subcommunity plays a key role for soil nutrient cycling such as N, S cycling in soils contaminated. Overall, this study provides a comprehensive analysis of the effects of heavy metal stress at different concentrations on microorganisms in farmland around gold tailings and reveals the relationship between heavy metals on KEGG pathways.
Collapse
Affiliation(s)
- Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, 100032 Beijing, China
| | - Shuo Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Luying Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Ziliang Qiu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China.
| |
Collapse
|
24
|
Neethu CS, Saravanakumar C, Purvaja R, Robin RS, Ramesh R. Arsenic resistance and horizontal gene transfer are associated with carbon and nitrogen enrichment in bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119937. [PMID: 35977641 DOI: 10.1016/j.envpol.2022.119937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/14/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Coastal waters are confluences receiving large amounts of point and non-point sources of pollution. An attempt was made to explore microbial community interactions in response to carbon, nitrogen and metal pollution. Additionally, experiments were designed to analyze the influence of these factors on horizontal gene transfer (HGT). Shift in bacterial diversity dynamics by arsenic stress and nutrient addition in coastal waters was explored by metagenomics of microcosm setups. Phylogenetic analysis revealed equal distribution of Gammaproteobacteria (29%) and Betaproteobacteria (28%) in control microcosm. This proportional diversity from control switched to unique distribution of Gammaproteobacteria (44.5%)> Flavobacteria (17.7%)> Bacteriodia (11.92%)> Betaproteobacteria (11.52%) in microcosm supplemented with carbon, nitrogen and metal (C + N + M). Among metal-stressed systems, alpha diversity analysis indicated highest diversity of genera in C + N + M followed by N + M > C+M> metal alone. Arsenic and ampicillin sensitive E. coli XL1 blue and environmental strains (Vibrio tubiashii W85 and E. coli W101) were tested for efficiency of uptake of plasmid (P) pUCminusMCS (arsBRampR) under varying stress conditions. Transformation experiments revealed that combined effect of carbon, nitrogen and metal on horizontal gene transfer (HGT) was significantly higher (p < 0.01) than individual factors. The effect of carbon on HGT was proved to be superior to nitrogen under metal stressed conditions. Presence of arsenic in experimental setups (P + M, P + N + M and P + C + M) enhanced the HGT compared to non-metal counterparts supplemented with carbon or nitrogen. Arsenic resistant bacterial isolates (n = 200) were tested for the ability to utilize various carbon and nitrogen substrates and distinct positive correlation (p < 0.001) was found between arsenic resistance and utilization of urea and nitrate. However, evident positive correlation was not found between carbon sources and arsenic resistance. Our findings suggest that carbon and nitrogen pollution in aquatic habitats under arsenic stress determine the microbial community dynamics and critically influence uptake of genetic material from the surrounding environment.
Collapse
Affiliation(s)
- C S Neethu
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - C Saravanakumar
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (MoEFCC), Chennai 600025, India.
| |
Collapse
|
25
|
Wróbel M, Trzyna A, Zeynalli F, Rybak J. The Comprehensive Health Risk Assessment of Polish Smelters with Ecotoxicological Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12634. [PMID: 36231934 PMCID: PMC9564705 DOI: 10.3390/ijerph191912634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Air pollution connected to smelter activity can significantly deteriorate the quality of soil due to the precipitation of rain or simple deposition of the air particulates into the ground. Hence, in this study, we focused on the analysis of the soil which can inform us about the general state of the environment in the area and the possible health hazard for humans. If the top layer of the soil is in bad condition, it can indicate that air pollution in the area is also not in good condition, and the lives of the inhabitants of these areas can be at serious risk. To comprehensively identify the level of contamination in the soils from the areas of Polish smelters, studies of the concentration of potentially toxic elements (PTEs) in the soil were conducted. On the basis of the obtained results, health risk assessment was performed to verify the possible influence on human health. The results showed that the non-carcinogenic risk existed only for Oława, while the possibility of the carcinogenic risk occurred in all of the studied places. The outcome is very disturbing and certain steps must be undertaken in order to protect the lives of the inhabitants. Additionally, in order to assess the suitability of soils for the cultivation of edible plants, phytotoxicity tests were conducted. The obtained results revealed that in all the studied areas, a visible inhibition of roots and shoots can be observed. The conducted study indicated the most polluted regions and the possible health hazard, and it can provide the general information about the impact of smelters on the environment.
Collapse
|
26
|
Signorini M, Midolo G, Cesco S, Mimmo T, Borruso L. A Matter of Metals: Copper but Not Cadmium Affects the Microbial Alpha-Diversity of Soils and Sediments - a Meta-analysis. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02115-4. [PMID: 36180621 DOI: 10.1007/s00248-022-02115-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) accumulation in soil affects plants and soil fauna, yet the effect on microbial alpha-diversity remains unclear, mainly due to the absence of dedicated research synthesis (e.g. meta-analysis). Here, we report the first meta-analysis of the response of soil microbial alpha-diversity to the experimental addition of cadmium (Cd) and copper (Cu). We considered studies conducted between 2013 and 2022 using DNA metabarcoding of bacterial and fungal communities to overcome limitations of other cultivation- and electrophoresis-based techniques. Fungi were discarded due to the limited study number (i.e. 6 studies). Bacterial studies resulted in 66 independent experiments reported in 32 primary papers from four continents. We found a negative dose-dependent response for Cu but not for Cd for bacterial alpha-diversity in the environments, only for Cu additions exceeding 29.6 mg kg-1 (first loss of - 0.06% at 30 mg kg-1). The maximal loss of bacterial alpha-diversity registered was 13.89% at 3837 mg kg-1. Our results first highlight that bacterial communities behave differently to soil pollution depending on the metal. Secondly, our study suggests that even extreme doses of Cu do not cause a dramatic loss in alpha-diversity, highlighting how the behaviour of bacterial communities diverges from soil macro-organisms.
Collapse
Affiliation(s)
- Marco Signorini
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy.
| | - Gabriele Midolo
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy.
| |
Collapse
|
27
|
The Effect of Heavy Metals on Microbial Communities in Industrial Soil in the Area of Piekary Śląskie and Bukowno (Poland). MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the activity and structure of microbial communities in soils contaminated with heavy metals (HMs). To achieve this goal, soil samples were taken from two contaminated sites (i.e., Piekary Śląskie and Bukowno) in Poland. A wide range of methods were applied, including: total and metal-tolerant culturable bacteria enumeration; microbial community structure analysis using the phospholipid fatty acid method (PLFA); denaturing gradient gel electrophoresis (PCR-DGGE); and metabolic activity using BIOLOG and EcoPlateTM. Our studies showed that HMs negatively affected microbial community structure and activity in polluted soils. Apart from the contamination with HMs, other soil parameters like soil pH and water also impacted microbial community structure and growth. Metal-tolerant bacterial strains were isolated, identified and tested for presence of genes encoding HM tolerance using the polymerase chain reaction (PCR) methodology. Contamination with HMs in the tested areas was found to lead to development of metallotolerant bacteria with multiple tolerances toward Zn, Ni, Cd and Cu. Different genes (e.g., czcA, cadA and nccA) encoding HM efflux pumps were detected within isolated bacteria. Culturable bacteria isolated belonged to Proteobacteria, Actinobacteria and Bacteroidetes genera. Among non-culturable bacteria in soil samples, a significant fraction of the total bacteria and phyla, such as Gemmatimonadetes and Acidobacteria, were found to be present in all studied soils. In addition, bacteria of the Chloroflexi genus was present in soil samples from Piekary Śląskie, while bacteria of the Firmicutes genus were found in soil samples from Bukowno.
Collapse
|
28
|
Yang T, Tang G, Li L, Ma L, Zhao Y, Guo Z. Interactions between bacteria and eukaryotic microorganisms and their response to soil properties and heavy metal exchangeability nearby a coal-fired power plant. CHEMOSPHERE 2022; 302:134829. [PMID: 35523290 DOI: 10.1016/j.chemosphere.2022.134829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Persistent heavy metal (HM) contaminated soil provides special habitat for microorganisms, HM stress and complex abiotic factors bring great uncertainty for the development of bacteria and eukaryotic microbes. Despite numerous studies about HMs' effect on soil microorganisms, the key factors affecting microbial communities in severe HM contaminated soil and their interactions are still not definite. In this study, the effect of HM fractions and soil properties on the interaction between bacterial communities and eukaryotic microorganisms was studied by high-throughput Illumina sequencing and simplified continuous extraction of HM in severe HM contaminated soil. Based on amplification and sequencing of the 18S rRNA gene, this study revealed that protists and algae were the most predominant eukaryotic microorganisms, and the dominant phyla were SAR, Opisthokonta and Archaeplastida in HM seriously polluted soil. These results also showed that exchangeable As was negatively correlated with bacterial Shannon and Simpson indexes, while exchangeable Zn was positively correlated with Shannon and Simpson indexes of eukaryotic microbes. Moreover, the structural equation model illustrated that pH, moisture content, available potassium and phosphorus, and exchangeable Cd, As and Zn were the dominant factors shaping bacterial communities, while total organic carbon and exchangeable Zn made the predominant contributions to variations in eukaryotic microbes. In addition, eukaryotic microbes were intensely affected by the bacterial communities, with a standardized regression weight of 0.53, which exceeded the influence of other abiotic factors. It was suggested that community-level adaptions through cooperative interactions under serious HM stress in soil.
Collapse
Affiliation(s)
- Tongyi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Guoteng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Ling Li
- Zhenjiang Customs District, Integrated Technology Center, Zhenjiang 212000, PR China
| | - Liuchang Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yuyuan Zhao
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212000, China
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| |
Collapse
|
29
|
Yang S, Chen Q, Zheng T, Chen Y, Zhao X, He Y, Sun W, Zhong S, Li Z, Wang J. Multiple metal(loid) contamination reshaped the structure and function of soil archaeal community. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129186. [PMID: 35643011 DOI: 10.1016/j.jhazmat.2022.129186] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Archaea are important participants in biogeochemical cycles of metal(loid)-polluted ecosystems, whereas archaeal structure and function in response to metal(loid) contamination remain poorly understood. Here, the effects of multiple metal(loid) pollution on the structure and function of archaeal communities were investigated in three zones within an abandoned sewage reservoir. We found that the high-contamination zone (Zone I) had higher archaeal diversity but a lower habitat niche breadth, relative to the mid-contamination zone (Zone II) and low-contamination zone (Zone III). Particularly, metal-resistant species represented by potential methanogens were markedly enriched in Zone I (cumulative relative abundance: 32.24%) compared to Zone II (1.93%) and Zone III (0.10%), and closer inter-taxon connections and higher network complexity (based on node number, edge number, and degree) were also observed compared to other zones. Meanwhile, the higher abundances of potential metal-resistant and methanogenic functions in Zone I (0.24% and 9.24%, respectively) than in Zone II (0.08% and 7.52%) and Zone III (0.01% and 1.03%) suggested archaeal functional adaptation to complex metal(loid) contamination. More importantly, six bioavailable metal(loid)s (titanium, tin, nickel, chromium, cobalt, and zinc) were the main contributors to archaeal community variations, and metal(loid) pollution reinforced the role of deterministic processes, particularly homogeneous selection, in the archaeal community assembly. Overall, this study provides the first integrated insight into the survival strategies of archaeal communities under multiple metal(loid) contamination, which will be of significant guidance for future bioremediation and environmental governance of metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Ying Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan He
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Sining Zhong
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fuzhou 350002, China
| | - Zhilong Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
30
|
Wang S, Niu X, Di D, Huang D. Nitrogen and sulfur fertilizers promote the absorption of lead and cadmium with Salix integra Thunb. by increasing the bioavailability of heavy metals and regulating rhizosphere microbes. Front Microbiol 2022; 13:945847. [PMID: 35992685 PMCID: PMC9383694 DOI: 10.3389/fmicb.2022.945847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Fertilization is an effective agronomic strategy to improve the efficiency of phytoextraction by Salix integra Thunb. However, the specific effects of the simultaneous application of nitrogen (N) and sulfur (S) fertilizers in the rhizosphere remain unclear. We investigated the bioavailability of lead (Pb) and Cadmium (Cd) along with the microbial metabolic functions and community structure in the rhizosphere soil of S. integra after the application of N (0, 100, and 200 kg·ha−1·year−1) and S (0, 100, and 200 kg·ha−1·year−1) fertilizers for 180 days. The simultaneous application of N and S fertilizers significantly enhanced the absorption of Pb and Cd by S. integra, whereas this effect was not observed for the single application of N or S fertilizer. The contents of acid-soluble Pb and Cd in the rhizosphere soil significantly increased after either single or combined fertilize applications. The microbial metabolic activity was enhanced by the N and S fertilizers, whereas the microbial diversity markedly decreased. The metabolic patterns were mainly affected by the concentration of N fertilizer. The dominant fungi and bacteria were similar under each treatment, although the relative abundances of the dominant and special species differed. Compared to the N200S100 and N200S200 treatments, the N100S100 and N100S200 treatments resulted in fewer pathogenic fungi and more rhizosphere growth-promoting bacteria, which promoted phytoremediation by S. integra. Redundancy analysis indicated that the pH and nitrate content were the key factors affecting the structure of the microbial community. Collectively, the results suggest interactive effects between N and S fertilizers on the rhizosphere soil, providing a potential strategy for plant-microbial remediation by S. integra.
Collapse
Affiliation(s)
- Shaokun Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaoyun Niu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
- *Correspondence: Xiaoyun Niu,
| | - Dongliu Di
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- Dazhuang Huang,
| |
Collapse
|
31
|
Du M, Zheng M, Liu A, Wang L, Pan X, Liu J, Ran X. Effects of emerging contaminants and heavy metals on variation in bacterial communities in estuarine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155118. [PMID: 35398136 DOI: 10.1016/j.scitotenv.2022.155118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Emerging contaminants (ECs) and heavy metals (HMs) are universally present together in estuarine sediments; despite this, their effects on microbial communities have been widely studied separately, rather than in consort. In this study, the combined effects of ECs and HMs on microbial communities were investigated in sediments from 11 major river estuaries around the Bohai Sea, China. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla in the sediments. Using Shannon indices, total phosphorus and total organic carbon were shown to affect microbial community structure. Redundancy analysis of microbial variation implicated Cd and As as the greatest pollutants, followed by Mn, Fe, Zn and Cu; no impacts from galaxolide (HHCB) and tonalide (AHTN) were found. Correlation analysis demonstrated that the concentration of ECs increased the abundance of certain bacteria (e.g., Haliangium, Altererythrobacter, Gaiella and Erythrobacter), and therefore these can be used as potential contamination indicators. Shannon indices and Chao1 indices showed that there were differences in the richness and diversity of bacterial communities in the sediments of 11 rivers. The principal coordinate analysis displayed higher similarity of bacterial community composition in estuarine sediments in Liaoning province than other regions. The results can be used to predict changes in estuary ecosystems to maintain their ecological balance and health.
Collapse
Affiliation(s)
- Ming Du
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Aifeng Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xin Pan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Liu
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Xiangbin Ran
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| |
Collapse
|
32
|
The Geochemical Drivers of Bacterial Community Diversity in the Watershed Sediments of the Heihe River (Northern China). WATER 2022. [DOI: 10.3390/w14121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The city of Zhangye (Gansu Region, China) has been subjected to several changes related to the development of new profitable human activities. Unfortunately, this growth has led to a general decrease in water quality due to the release of several toxic wastes and pollutants (e.g., heavy metals) into the Heihe River. In order to assess the environmental exposure and the potential threat to human health, microbiological diversity for the monitoring of water pollution by biotic and abiotic impact factors was investigated. In particular, we analysed samples collected on different sites using 454 pyrotag sequencing of the 16S ribosomal genes. Then, we focused on alpha-diversity indices to test the hypothesis that communities featuring lower diversity show higher resistance to the disturbance events. The findings report that a wide range of environmental factors such as pH, nutrients and chemicals (heavy metals (HMs)), affected microbial diversity by stimulating mutualistic relationships among bacteria. Furthermore, a selection in bacterial taxa related to the different concentrations of polluting compounds was highlighted. Supporting the hypothesis, our investigation highlights the importance of microbial communities as sentinels for ecological status diagnosis.
Collapse
|
33
|
Nagarajan V, Tsai HC, Chen JS, Hussain B, Koner S, Hseu ZY, Hsu BM. Comparison of bacterial communities and their functional profiling using 16S rRNA gene sequencing between the inherent serpentine-associated sites, hyper-accumulator, downgradient agricultural farmlands, and distal non-serpentine soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128557. [PMID: 35247742 DOI: 10.1016/j.jhazmat.2022.128557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
This study aims to determine and compare the bacterial community and functional profiles associated with serpentine sites, innate hyper-accumulating weed, downgradient agricultural farmlands and non-serpentine sites using 16S rRNA gene sequencing. Elemental analysis revealed that the serpentine rock and weathered soil have higher magnesium, nickel, chromium, magnesium/calcium and lower calcium/magnesium ratios and agricultural farmlands have recorded elevated chromium. Proteobacteria were found predominant, except the non-serpentine site which was rich in Cyanobacteria. PCA analysis at the genus level indicates the uniqueness of different experimental groups, except the hyperaccumulators which exhibited relatively less dissimilarity. The shift analysis showed the serpentine sites were characterized by the abundance of bacteria having heavy metal effluxion. The hyper-accumulating weeds were higher in plant growth-promoting bacteria expressing tolerance against heavy metals toxicity such as nickel, chromium, cobalt and arsenic. Besides, the agricultural lands were abundant in wetland-associated methanogens and metal (manganese, iron and zinc) transporting function related bacteria. The results suggest that the inherent edaphic factors including heavy metal content, the interacting behavior of hyperaccumulator's rhizosphere microbiota with soil and anthropogenic activities such as agricultural practices could be a major determinant of the variation in the bacterial community selection and abundance in the respective study sites.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
34
|
Liu H, Wei M, Huang H, Wu B, Shangguan Y. Integrative analyses of geochemical parameters-microbe interactions reveal the variation of bacterial community assembly in multiple metal(loid)s contaminated arable regions. ENVIRONMENTAL RESEARCH 2022; 208:112621. [PMID: 34990612 DOI: 10.1016/j.envres.2021.112621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Soil microbes play crucial roles in biochemical and geochemical processes in contaminated arable ecosystems. However, what factors determine the assembling process of soil bacterial community under multiple heavy metal (loid)s (HMs) stress and how communities respond to geochemical changes have rarely been understood. Therefore, a number of contaminated soils were sampled to explore the interactions among geochemical parameters, HMs and innate bacterial community. The results showed that soil biochemical activities were inhibited obviously with the increase of HMs. Significant differences were observed in bacterial composition and abundance in studied areas, with Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Firmicutes governing the bacterial community structure. Redundancy analysis and variation partition analysis revealed that about 67.33% of the variation in bacterial assemblages could be explained by physiochemical parameters (21.59%), biochemical parameters (11.64%), toxic metal (loid)s (9.11%) and the interaction effect of these variables (24.99%), among which total-arsenic and moisture were the main factors. Spearman correlation analysis also demonstrated that dehydrogenase, moisture and TOC have a positive correlation with bacterial community structure with As-Cd-Pb gradient. Altogether, this study would provide a comprehensive relationship between major environmental factors and bacterial assemblages, which could offer some baseline data to investigate the mechanisms of how communities respond to physiochemical changes.
Collapse
Affiliation(s)
- Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Mingyang Wei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Bohan Wu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
35
|
Boregowda N, Jogigowda SC, Bhavya G, Sunilkumar CR, Geetha N, Udikeri SS, Chowdappa S, Govarthanan M, Jogaiah S. Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118728. [PMID: 34974084 DOI: 10.1016/j.envpol.2021.118728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Agriculture is one of the foremost significant human activities, which symbolizes the key source for food, fuel and fibers. This activity results in a lot of ecological harms particularly with the excessive usage of chemical fertilizers and pesticides. Different agricultural practices have remained industrialized to advance food production, due to the growth in the world population and to meet the food demand through the routine use of more effective fertilizers and pesticides. Soil is intensely embellished by environmental contamination and it can be stated as "universal incline." Soil pollution usually occurs from sewage wastes, accidental discharges or as byproducts of chemical residues of unrestrained production of numerous materials. Soil pollution with hazardous materials alters the physical, chemical, and biological properties, causing undesirable changes in soil fertility and ecosystem. Engineered nanomaterials offer various solutions for remediation of contaminated soils. Engineered nanomaterial-enable technologies are able to prevent the uncontrolled release of harmful materials into the environment along with capabilities to combat soil and groundwater borne pollutants. Currently, nanobiotechnology signifies a hopeful attitude to advance agronomic production and remediate polluted soils. Studies have outlined the way of nanomaterial applications to restore the eminence of the environment and assist the detection of polluted sites, along with potential remedies. This review focuses on the latest developments in agricultural nanobiotechnology and the tools developed to combat soil or land and or terrestrial pollution, as well as the benefits of using these tools to increase soil fertility and reduce potential toxicity.
Collapse
Affiliation(s)
- Nandini Boregowda
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Sanjay C Jogigowda
- Department of Oral Medicine & Radiology, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Channarayapatna Ramesh Sunilkumar
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India; Global Association of Scientific Young Minds, GASYM, Mysuru, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
36
|
Wan Y, Devereux R, George SE, Chen J, Gao B, Noerpel M, Scheckel K. Interactive effects of biochar amendment and lead toxicity on soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127921. [PMID: 34986562 PMCID: PMC9815664 DOI: 10.1016/j.jhazmat.2021.127921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 05/29/2023]
Abstract
This study determined the interactive effects of biochar and lead toxicity on the soil microbial community in a phytoextraction experiment. Arranged with a completely randomized design in a greenhouse, banana liners were planted singly in a sandy soil spiked with Pb(NO3)2 at 0, 400 and 1200 mg kg-1 and amended with bamboo biochar (pyrolyzing at 600 °C) at 0, 1, 3%. Soil samples were taken from triplicated pots five months after planting and measured for (i) content of lead and organic carbon; (ii) lead speciation; and (iii) microbial community composition through 16S rRNA gene sequencing. DNA sequencing results showed that lead and biochar treatments had significant individual and interactive effects on soil microbial dissimilarities from taxonomic levels of phyla to genera. While some specific taxa were lead resistant, biochar addition apparently alleviated lead toxicity and increased their richness (e.g., Alkanibacter, Muciaginibacter, Burkholderiaceae, and Beggiatoaceae). Soil analysis data indicated that biochar not only helped retain more lead in the soil matrix but created a soil environment inducive for transformation of lead into highly insoluble pyromorphite. This study highlights the effectiveness of biochar for lead remediation and the sensitivity of soil microorganisms in sensing changes in soil environment and lead bioavailability.
Collapse
Affiliation(s)
- Yongshan Wan
- US EPA Center for Environmental Measurement and Modeling, Gulf Breeze, FL 32561, USA.
| | - Richard Devereux
- US EPA Center for Environmental Measurement and Modeling, Gulf Breeze, FL 32561, USA
| | - S Elizabeth George
- US EPA Center for Environmental Measurement and Modeling, Gulf Breeze, FL 32561, USA
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research & Education Center, University of Florida, Apopka, FL 32703, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Matthew Noerpel
- US EPA Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45224, USA
| | - Kirk Scheckel
- US EPA Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45224, USA
| |
Collapse
|
37
|
Responses of Bacterial Taxonomical Diversity Indicators to Pollutant Loadings in Experimental Wetland Microcosms. WATER 2022. [DOI: 10.3390/w14020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Urbanization results in higher stormwater loadings of pollutants such as metals and nutrients into surface waters. This directly impacts organisms in aquatic ecosystems, including microbes. Sediment microbes are known for pollution reduction in the face of contamination, making bacterial communities an important area for bioindicator research. This study explores the pattern of bacterial responses to metal and nutrient pollution loading and seeks to evaluate whether bacterial indicators can be effective as a biomonitoring risk assessment tool for wetland ecosystems. Microcosms were built containing sediments collected from wetlands in the urbanizing Pike River watershed in southeastern Wisconsin, USA, with metals and nutrients added at 7 day intervals. Bacterial DNA was extracted from the microcosm sediments, and taxonomical profiles of bacterial communities were identified up to the genera level by sequencing 16S bacterial rRNA gene (V3–V4 region). Reduction of metals (example: 90% for Pb) and nutrients (example: 98% for NO3−) added in water were observed. The study found correlations between diversity indices of genera with metal and nutrient pollution as well as identified specific genera (including Fusibacter, Aeromonas, Arthrobacter, Bacillus, Bdellovibrio, and Chlorobium) as predictive bioindicators for ecological risk assessment for metal pollution.
Collapse
|
38
|
Kushwaha P, Neilson JW, Maier RM, Babst-Kostecka A. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150006. [PMID: 34487902 PMCID: PMC8595848 DOI: 10.1016/j.scitotenv.2021.150006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 05/14/2023]
Abstract
Soil contamination with trace metal(loid) elements (TME) is a global concern. This has focused interest on TME-tolerant plants, some of which can hyperaccumulate extraordinary amounts of TME into above-ground tissues, for potential treatment of these soils. However, intra-species variability in TME hyperaccumulation is not yet sufficiently understood to fully harness this potential. Particularly, little is known about the rhizosphere microbial communities associated with hyperaccumulating plants and whether or not they facilitate TME uptake. The aim of this study is to characterize the diversity and structure of Arabidopsis halleri rhizosphere-influenced and background (i.e., non-Arabidopsis) soil microbial communities in four plant populations with contrasting Zn and Cd hyperaccumulation traits, two each from contaminated and uncontaminated sites. Microbial community properties were assessed along with geographic location, climate, abiotic soil properties, and plant parameters to explain variation in Zn and Cd hyperaccumulation. Site type (TME-contaminated vs. uncontaminated) and location explained 44% of bacterial/archaeal and 28% of fungal community variability. A linear discriminant effect size (LEfSe) analysis identified a greater number of taxa defining rhizosphere microbial communities than associated background soils. Further, in TME-contaminated soils, the number of rhizosphere-defining taxa was 6-fold greater than in the background soils. In contrast, the corresponding ratio for uncontaminated sites, was 3 and 1.6 for bacteria/archaea and fungi, respectively. The variables analyzed explained 71% and 76% of the variance in Zn and Cd hyperaccumulation, respectively; however, each hyperaccumulation pattern was associated with different variables. A. halleri rhizosphere fungal richness and diversity associated most strongly with Zn hyperaccumulation, whereas soil Cd and Zn bioavailability had the strongest associations with Cd hyperaccumulation. Our results indicate strong associations between A. halleri TME hyperaccumulation and rhizosphere microbial community properties, a finding that needs to be further explored to optimize phytoremediation technology that is based on hyperaccumulation.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Julia W Neilson
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA; W. Szafer Institute of Botany, Polish Academy of Sciences, Department of Ecology, Lubicz 46, 31-512 Krakow, Poland.
| |
Collapse
|
39
|
Sun F, Xu Z, Fan L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113754. [PMID: 34543965 DOI: 10.1016/j.jenvman.2021.113754] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
With the recent growing interest of antibiotic resistance genes (ARGs) and their co-selection with heavy metal resistance genes (HMRGs), their relationship to heavy metals needs further analysis. This study examined the response of heavy metal resistant microorganisms (HMRMs) and antibiotic resistant microorganisms (ARMs) and their resistance genes (HMRGs and ARGs) to Cu and Cr stresses using metagenome. Results showed that Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, and Nitrospirae are the dominant HMRMs and ARMs, with majority of HMRMs taxa presenting changes similar to ARMs under heavy metal stresses. Types of HMRGs and ARGs changed (increased or decreased) under Cu and Cr stresses, and a significant relationship was noted between HMRGs and ARGs and their related microbe (p < 0.05). Network analysis revealed synergistic relationships between majority of HMRGs and ARGs; however, negative correlations were also noted between them. Co-occurrence of HMRGs and ARGs was mainly observed in chromosomes, and plasmids were found to provide limited opportunities for heavy metals to promote antibiotic resistance through co-selection. These findings imply that the response of HMRMs and ARMs is induced by heavy metals, and that the changes in these microbial communities are the main factor driving the diversity and abundance of HMRGs and ARGs.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, 518121, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Zhantang Xu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Leilei Fan
- Department of Resources and Environment, Zunyi Normal College, Zunyi, 563002, China
| |
Collapse
|
40
|
He Y, Huang D, Li S, Shi L, Sun W, Sanford RA, Fan H, Wang M, Li B, Li Y, Tang X, Dong Y. Profiling of Microbial Communities in the Sediments of Jinsha River Watershed Exposed to Different Levels of Impacts by the Vanadium Industry, Panzhihua, China. MICROBIAL ECOLOGY 2021; 82:623-637. [PMID: 33580272 DOI: 10.1007/s00248-021-01708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 05/25/2023]
Abstract
The mining, smelting, manufacturing, and disposal of vanadium (V) and associated products have caused serious environmental problems. Although the microbial ecology in V-contaminated soils has been intensively studied, the impacted watershed ecosystems have not been systematically investigated. In this study, geochemistry and microbial structure were analyzed along ~30 km of the Jinsha River and its two tributaries across the industrial areas in Panzhihua, one of the primary V mining and production cities in China. Geochemical analyses showed different levels of contamination by metals and metalloids in the sediments, with high degrees of contamination observed in one of the tributaries close to the industrial park. Analyses of the V4 hypervariable region of 16S rRNA genes of the microbial communities in the sediments showed significant decrease in microbial diversity and microbial structure in response to the environmental gradient (e.g., heavy metals, total sulfur, and total nitrogen). Strong association of the taxa (e.g., Thauera, Algoriphagus, Denitromonas, and Fontibacter species) with the metals suggested selection for these potential metal-resistant and/or metabolizing populations. Further co-occurrence network analysis showed that many identified potential metal-mediating species were among the keystone taxa that were closely associated in the same module, suggesting their strong inter-species interactions but relative independence from other microorganisms in the hydrodynamic ecosystems. This study provided new insight into the microbe-environment interactions in watershed ecosystems differently impacted by the V industries. Some of the phylotypes identified in the highly contaminated samples exhibited potential for bioremediation of toxic metals (e.g., V and Cr).
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, Champaign, USA
| | - Hao Fan
- Changjiang Water Resources Protection Institute, Wuhan, China
| | - Meng Wang
- Changjiang Water Resources Protection Institute, Wuhan, China
| | - Baoqin Li
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Ye Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiliang Tang
- China Three Gorges Projects Development Co., Ltd, Beijing, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
41
|
Zhao Y, Duan FA, Cui Z, Hong J, Ni SQ. Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147338. [PMID: 33971607 DOI: 10.1016/j.scitotenv.2021.147338] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 05/14/2023]
Abstract
Both potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) are widely present in soil contaminated by steel industries. This study assessed the vertical variation (at 20 cm, 40 cm, 60 cm, 80 cm, 120 cm, and 150 cm depth) of bacterial abundance, community structure, functional genes related to PAHs degradation, and community co-occurrence patterns in an old steel plant soils which contaminated by PTEs and PAHs for 60 years. The excessive PAHs and PTEs in steel plant soils were benzo (a) pyrene, benzo (b) fluoranthene, dibenzo (a, h) anthracene, indeno (1,2,3-c, d) pyrene, and lead (Pb). The abundance and composition of bacterial community considerably changed with soil depth in two study areas with different pollution degrees. The results of co-occurrence network analysis indicated that the top genera in blast furnace zone identified as the potential keystone taxa were Haliangium, Blastococcus, Nitrospira, and Sulfurifustis. And in coking zone, the top genera were Gaiella. The predictions of bacterial metabolism function using PICRUSt showed that the PAHs-PTEs contaminated soil still had the potential for PAHs degradation, but most PTEs negatively correlated with PAHs degradation genes. The total sulfur (TS), acenaphthene (ANA), and Zinc (Zn) were the key factors to drive development of bacterial communities in the steel plant soils. As far as we know, this is the first investigation of vertical distribution and interaction of the bacterial microbiota in the aging soils of steel plant contaminated with PTEs and PAHs.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Fu-Ang Duan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaojie Cui
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Jinglan Hong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
42
|
Hu X, Wang J, Lv Y, Liu X, Zhong J, Cui X, Zhang M, Ma D, Yan X, Zhu X. Effects of Heavy Metals/Metalloids and Soil Properties on Microbial Communities in Farmland in the Vicinity of a Metals Smelter. Front Microbiol 2021; 12:707786. [PMID: 34489896 PMCID: PMC8417379 DOI: 10.3389/fmicb.2021.707786] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play a fundamental role in biogeochemical cycling and are highly sensitive to environmental factors, including the physiochemical properties of the soils and the concentrations of heavy metals/metalloids. In this study, high-throughput sequencing of the 16S rRNA gene was used to study the microbial communities of farmland soils in farmland in the vicinity of a lead–zinc smelter. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes were the predominant phyla in the sites of interest. Sphingomonas, Gemmatimonas, Lysobacter, Flavisolibacter, and Chitinophaga were heavy metal-/metalloid-tolerant microbial groups with potential for bioremediation of the heavy metal/metalloid contaminated soils. However, the bacterial diversity was different for the different sites. The contents of heavy metal/metalloid species and the soil properties were studied to evaluate the effect on the soil bacterial communities. The Mantel test revealed that soil pH, total cadmium (T-Cd), and available arsenic played a vital role in determining the structure of the microbial communities. Further, we analyzed statistically the heavy metals/metalloids and the soil properties, and the results revealed that the microbial richness and diversity were regulated mainly by the soil properties, which correlated positively with organic matter and available nitrogen, while available phosphorus and available potassium were negatively correlated. The functional annotation of the prokaryotic taxa (FAPROTAX) method was used to predict the function of the microbial communities. Chemoheterotrophy and airborne chemoheterotrophy of the main microbial community functions were inhibited by soil pH and the heavy metals/metalloids, except in the case of available lead. Mantel tests revealed that T-Cd and available zinc were the dominant factors affecting the functions of the microbial communities. Overall, the research indicated that in contaminated soils, the presence of multiple heavy metals/metalloids, and the soil properties synergistically shaped the structure and function of the microbial communities.
Collapse
Affiliation(s)
- Xuewu Hu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China.,GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Jianlei Wang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Ying Lv
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China.,GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Juan Zhong
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Xinglan Cui
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Daozhi Ma
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Xiao Yan
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| | - Xuezhe Zhu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, China.,GRINM Resources and Environment Tech. Co., Ltd., Beijing, China.,General Research Institute for Non-Ferrous Metals, Beijing, China
| |
Collapse
|
43
|
Endophytic and rhizospheric bacterial communities are affected differently by the host plant species and environmental contamination. Symbiosis 2021. [DOI: 10.1007/s13199-021-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Du Y, Zhang D, Zhou D, Liu L, Wu J, Chen H, Jin D, Yan M. The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil-plant system. AMB Express 2021; 11:103. [PMID: 34245386 PMCID: PMC8272791 DOI: 10.1186/s13568-021-01264-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022] Open
Abstract
Concentrations of heavy metals continue to increase in soil environments as a result of both anthropogenic activities and natural processes. Cadmium (Cd) is one of the most toxic heavy metals and poses health risks to both humans and the ecosystem. Herein, we explore the impacts of Cd on a soil-plant system composed of oilseed rapes (Brassica napus and Brassica juncea) and bacteria. The results showed that Cd accumulation within tissues of two species of oilseed rapes enhanced with increasing concentrations of Cd in soils, and Cd treatment decreased their chlorophyll content and suppressed rapeseeds growth. Meanwhile, Cd stress induced the changes of antioxidative enzymes activities of both B. napus and B. juncea. Response to Cd of bacterial community was similar in soil-two species of oilseed rapes system. The impact of Cd on the bacterial communities of soils was greater than bacterial communities of plants (phyllosphere and endophyte). The α-diversity of bacterial community in soils declined significantly under higher Cd concentration (30 mg/kg). In addition, soil bacterial communities composition and structure were altered in the presence of higher Cd concentration. Meanwhile, the bacterial communities of bulk soils were significantly correlated with Cd, while the variation of rhizosphere soils bacterial communities were markedly correlated with Cd and other environmental factors of both soils and plants. These results suggested that Cd could affect both the growth of plants and the indigenous bacterial community in soil-plant system, which might further change ecosystem functions in soils.
Collapse
|
45
|
Gurmessa B, Ashworth AJ, Yang Y, Savin M, Moore PA, Ricke SC, Corti G, Pedretti EF, Cocco S. Variations in bacterial community structure and antimicrobial resistance gene abundance in cattle manure and poultry litter. ENVIRONMENTAL RESEARCH 2021; 197:111011. [PMID: 33774017 DOI: 10.1016/j.envres.2021.111011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Cattle manure and poultry litter are widely used as fertilizers as they are excellent sources of nutrients; however, potential adverse environmental effects exist during land applications, due to the release of zoonotic bacteria and antimicrobial resistance (AMR) genes. This study was conducted to understand linkages between physiochemical composition, bacterial diversity, and AMR gene presence of cattle manure and poultry litter using quantitative polymerase chain reaction to enumerate four AMR genes (ermB, sulI, intlI, and blactx-m-32), Illumina sequencing of the 16 S region, and analysis of physical and chemical properties. Principal coordinate analysis of Bray-Curtis distance revealed distinct bacterial community structures between the two manure sources. Greater alpha diversity occurred in cattle manure compared to poultry litter (P < 0.05). Redundancy analysis showed a strong relationship between manure physiochemical and composition and bacterial abundance, with positive relationships occurring among electrical conductivity and carbon/nitrogen, and negative associations for total solids and soluble fractions of heavy metals. Cattle manure exhibited greater abundance of macrolide (ermB) and sulfonamide (sulI) resistant genes. Consequently, fresh cattle manure applications may result in greater potential spread of AMR genes to the soil-water environment (relative to poultry litter) and novel best management strategies (such as composting) may reduce the release of AMR genes to the soil-water environment.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Amanda J Ashworth
- USDA-ARS, Poultry Production and Product Safety Research Unit, 1260 W. Maple St, Fayetteville, AR, 72701, USA.
| | - Yichao Yang
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Mary Savin
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Philip A Moore
- USDA-ARS, Poultry Production and Product Safety Research Unit, 1260 W. Maple St, Fayetteville, AR, 72701, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program (MSABD), Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1933 Observatory Drive, Madison, WI, 53706, USA
| | - Giuseppe Corti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Ester Foppa Pedretti
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Stefania Cocco
- Department of Agriculture, Food and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche 10, 60131, Ancona, Italy
| |
Collapse
|
46
|
Xu D, Ji P, Wang L, Zhao X, Hu X, Huang X, Zhao H, Liu F. Effect of modified fly ash on environmental safety of two soils contaminated with cadmium and lead. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112175. [PMID: 33773148 DOI: 10.1016/j.ecoenv.2021.112175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In this study, a low-temperature roasting and hydrothermal methods were used to modify the fly ash resulting in two new types of adsorption materials - modified fly ash (MFA) and artificial zeolite (ZE). These modified fly ashes, as well as a natural zeolite (ZO) were applied to two types of contaminated soils to explore their effects and mechanisms on the behavior of Cd and Pb through leaching column experiments. The bioavailable of Pb, Cd, pH, dissolved organic carbon (DOC), organic matter, as well as the microbial community changings were detected. The results showed that, 2% ZE has a significant stabilizing effect on Cd and the bioavailable fraction contents in Guanzhong (GZ) and Hunan (HN) soils decreased by 40.5% and 53.2%, respectively. However, for Pb, the 2% MFA showed a better result than that of ZE and ZO; the contents of bioavailable Pb in HN and GZ decreased by 48.3% and 30%, respectively. Furthermore, based on the Illumina NovaSep sequencing platform, 18 soil samples of GZ and HN were sequenced for microbial communities. As compared to the control blank(CK) treatment, the abundance of soil microbial communities was significantly improved in the amended soils.
Collapse
Affiliation(s)
- Dong Xu
- Beijing Key Laboratory of Power Generation System Functional Material, China Energy New Energy Technology Institute, Beijing 102209, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Hanghang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
47
|
Gallego S, Esbrí JM, Campos JA, Peco JD, Martin-Laurent F, Higueras P. Microbial diversity and activity assessment in a 100-year-old lead mine. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124618. [PMID: 33250311 DOI: 10.1016/j.jhazmat.2020.124618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Mining activities frequently leave a legacy of residues that remain in the area for long periods causing the pollution of surroundings. We studied on a 100 year-old mine, the behavior of potentially toxic elements (PTEs) and their ecotoxicological impact on activity and diversity of microorganisms. The PTEs contamination assessment allowed the classification of the materials as highly (reference- and contaminated-samples) and very highly polluted (illegal spill of olive mill wastes (OMW), tailings, and dumps). OMW presented the lowest enzymatic activities while tailings and dumps had low dehydrogenase and arylsulfatase activities. All the α-diversity indices studied were negatively impacted in dumps. Tailings had lower Chao1 and PD whole tree values as compared to those of reference-samples. β-diversity analysis showed similar bacterial community composition for reference- and contaminated-samples, significantly differing from that of tailings and dumps. The relative abundance of Gemmatimonadetes, Bacteroidetes, and Verrucomicrobia was lower in OMW, tailings, and dumps as compared to reference-samples. Fifty-seven operational taxonomic units were selected as responsible for the changes observed between samples. This study highlights that assessing the relationship between physicochemical properties and microbial diversity and activity gives clues about ongoing regulating processes that can be helpful for stakeholders to define an appropriate management strategy.
Collapse
Affiliation(s)
- Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France.
| | - José María Esbrí
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingeniería Minera e Industrial de Almadén, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain
| | - Juan Antonio Campos
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Jesús Daniel Peco
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Pablo Higueras
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingeniería Minera e Industrial de Almadén, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain
| |
Collapse
|
48
|
Ji X, Abakumov E, Chigray S, Saparova S, Polyakov V, Wang W, Wu D, Li C, Huang Y, Xie X. Response of carbon and microbial properties to risk elements pollution in arctic soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124430. [PMID: 33176958 DOI: 10.1016/j.jhazmat.2020.124430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
A 180-day incubation study was conducted to evaluate the effects of risk elements (REs) on organic carbon use and microbial activities in organic soils in the Arctic during the summer snowmelt period. Soils were artificially spiked with Cd, Pb, Cr, Ni, Cu, As, and a combination of these REs according to the levels measured in Arctic soils from REs-polluted industrial sites. During the incubation period, microbial activities and microbial biomass carbon (MBC) formation were inhibited, and microbial quotient (qCO2) values were relatively high in the spiked soils indicating that more energy was used by microbes for maintenance under REs stress. Meanwhile, microbial metabolism was significantly restrained. Microbial Specific phospholipid fatty acids (PLFAs) were reduced in RE spiked soils relative to the control, especially in the As- and multi-RE-spiked soils. The abundance of both fungi and bacteria was reduced in response to RE amendments by 14-24% and 1-55%, respectively. PLFA biomarkers indicated a shift in soil microbial community structure and activities influenced by REs, consequently having a negative effect on soil organic carbon degradation. This study addresses the knowledge gap regarding the alternation of biochemical reactions in Arctic soils under anthropogenic REs with relevant contamination levels.
Collapse
Affiliation(s)
- Xiaowen Ji
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China; Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation; School of Environment and Sustainability, University of Saskatchewan, Saskatoon SK, S7N 5B3, Canada
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Svetlana Chigray
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Sheker Saparova
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Vyacheslav Polyakov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation; Arctic and Antarctic Research Institute, Saint Petersburg, 199397, Russian Federation; Department of Soil Science and Agrochemistry, Saint-Petersburg State Agrarian University, Pushkin, Saint Petersburg 19660, Russian Federation
| | - Wenjuan Wang
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg 199178, Russian Federation
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Chunlan Li
- Institute for Global Innovation and Development, East China Normal University, Shanghai 200062, PR China; School of Urban and Regional Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yu Huang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, PR China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
49
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Acenaphthene biodegradation and structural and functional metagenomics of the microbial community of an acenaphthene-enriched animal charcoal polluted soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Massello FL, Donati E. Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115709. [PMID: 33010675 DOI: 10.1016/j.envpol.2020.115709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.
Collapse
Affiliation(s)
- Francisco L Massello
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|