1
|
Lau SCY, Wilson NG, Watts PC, Silva CNS, Cooke IR, Allcock AL, Mark FC, Linse K, Jernfors T, Strugnell JM. Circumpolar and Regional Seascape Drivers of Genomic Variation in a Southern Ocean Octopus. Mol Ecol 2025; 34:e17601. [PMID: 39628448 DOI: 10.1111/mec.17601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025]
Abstract
Understanding how ecological, environmental and geographic features influence population genetic patterns provides crucial insights into a species' evolutionary history, as well as their vulnerability or resilience under climate change. In the Southern Ocean, population genetic variation is influenced across multiple spatial scales ranging from circum-Antarctic, which encompasses the entire continent, to regional, with varying levels of geographic separation. However, comprehensive analyses testing the relative importance of different environmental and geographic variables on genomic variation across these scales are generally lacking in the Southern Ocean. Here, we examine genome-wide single nucleotide polymorphisms of the Southern Ocean octopus Pareledone turqueti across the Scotia Sea and the Antarctic continental shelf, at depths between 102 and 1342 m, throughout most of this species' range. The circumpolar distribution of P. turqueti is biogeographically structured with a clear signature of isolation-by-geographical distance, but with long-distance genetic connectivity also detected between East and West Antarctica. Genomic variation of P. turqueti was also associated with bottom water temperature at a circumpolar scale, driven by a genotype-temperature association with the warmer sub-Antarctic Shag Rocks and South Georgia. Within the Scotia Sea, geographic distance, oxygen and fine-scale isolation-by-water depth were apparent drivers of genomic variation at regional scales. Putative positive selection of haemocyanin (oxygen transport protein), calcium ion transport and genes linked to RNA modification, detected within the Scotia Sea, suggest physiological adaptation to the regional sharp temperature gradient (~0-+2°C). Overall, we identified seascape drivers of genomic variation in the Southern Ocean at circumpolar and regional scales in P. turqueti and contextualised the role of environmental adaptations in the Southern Ocean.
Collapse
Affiliation(s)
- Sally C Y Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Securing Antarctica's Environmental Future, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Department of Life Sciences, Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Ira R Cooke
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - A Louise Allcock
- School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Toni Jernfors
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Freitas MAMD, Cunha-Ferreira IC, Leal CV, Fernandez JCC, Omachi CY, Campos LS, Masi BP, Krüger RH, Hajdu E, Thompson CC, Thompson FL. Microbiome diversity from sponges biogeographically distributed between South America and Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163256. [PMID: 37011689 DOI: 10.1016/j.scitotenv.2023.163256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.
Collapse
Affiliation(s)
- Mayanne A M de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Camille V Leal
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio C C Fernandez
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Y Omachi
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lucia S Campos
- Department of Zoology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno P Masi
- Laboratory of Marine Ecology and Fishery Oceanography of the Amazon (LEMOPA), Socio environmental and Water Resources Institute (ISARH), Federal Rural University of the Amazon (UFRA), Belém, PA, Brazil
| | - Ricardo H Krüger
- Laboratory of Enzymology, Biology Institute, University of Brasília (UNB), Brasília, Brazil
| | - Eduardo Hajdu
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Rivera-Colón AG, Rayamajhi N, Minhas BF, Madrigal G, Bilyk KT, Yoon V, Hüne M, Gregory S, Cheng CHC, Catchen JM. Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish. Mol Biol Evol 2023; 40:msad029. [PMID: 36806940 PMCID: PMC9985337 DOI: 10.1093/molbev/msad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group.
Collapse
Affiliation(s)
- Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Niraj Rayamajhi
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - Giovanni Madrigal
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kevin T Bilyk
- Department of Biology, Montclair State University, Montclair, NJ
| | - Veronica Yoon
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Mathias Hüne
- Centro de Investigación para la Conservación de los Ecosistemas Australes, Punta Arenas, Chile
| | - Susan Gregory
- British Antarctic Survey, Cambridge, United Kingdom
- Government of South Georgia and the South Sandwich Islands, Stanley, Falklands
| | - C H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
4
|
Limon ACD, Patabendige HMLW, Azhari A, Sun X, Kyle DE, Wilson NG, Baker BJ. Chemistry and Bioactivity of the Deep-Water Antarctic Octocoral Alcyonium sp. Mar Drugs 2022; 20:576. [PMID: 36135765 PMCID: PMC9505732 DOI: 10.3390/md20090576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of an Antarctic deep-water octocoral has led to the isolation of four new compounds, including three illudalane sesquiterpenoids (1-3) related to the alcyopterosins, a highly oxidized steroid, alcyosterone (5), and five known alcyopterosins (4, 6-9). The structures were established by extensive 1D and 2D NMR analyses, while 9 was verified by XRD. Alcyopterosins are unusual for their nitrate ester functionalization and have been characterized with cytotoxicity related to their DNA binding properties. Alcyopterosins V (3) and E (4) demonstrated single-digit micromolar activity against Clostridium difficile, an intestinal bacterium capable of causing severe diarrhea that is increasingly associated with drug resistance. Alcyosterone (5) and several alcyopterosins were similarly potent against the protist Leishmania donovani, the causative agent of leishmaniasis, a disfiguring disease that can be fatal if not treated. While the alcyopterosin family of sesquiterpenes is known for mild cytotoxicity, the observed activity against C. difficile and L. donovani is selective for the infectious agents.
Collapse
Affiliation(s)
- Anne-Claire D. Limon
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620, USA
| | - Hiran M. L. W. Patabendige
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA
| | - Ala Azhari
- USF Center for Global Health and Infectious Diseases Research, University of South Florida, 3010 USF Banyan Circle, IDRB 304, Tampa, FL 33612, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA
| | - Dennis E. Kyle
- USF Center for Global Health and Infectious Diseases Research, University of South Florida, 3010 USF Banyan Circle, IDRB 304, Tampa, FL 33612, USA
| | - Nerida G. Wilson
- Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool 6106, Perth, WA 6106, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bill J. Baker
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Maroni PJ, Wilson NG. Multiple Doris " kerguelenensis" (Nudibranchia) species span the Antarctic Polar Front. Ecol Evol 2022; 12:e9333. [PMID: 36188511 PMCID: PMC9486823 DOI: 10.1002/ece3.9333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
Despite strong historical biogeographical links between benthic faunal assemblages of the Magellan region of South America and the Antarctic Peninsula, very few studies have documented contemporary movement and gene flow in or out of the Southern Ocean, especially across the Antarctic Polar Front (APF). In fact, oceanographic barriers such as the APF and Antarctica's long geologic isolation have substantially separated the continents and facilitated the evolution of endemic marine taxa found within the Antarctic region. The Southern Ocean benthic sea slug complex, Doris "kerguelenensis," are a group of direct-developing, simultaneous hermaphrodites that lack a dispersive larval stage. To date, there are 59 highly divergent species known within this complex. Here, we provide evidence to show intraspecific genetic connectivity occurs across the APF for multiple species within the D. "kerguelenensis" nudibranch species complex. We addressed questions of genetic connectivity by examining the phylogeographic structure of the three best-sampled D. "kerguelenensis" species and another three trans-APF species using the protein coding mtDNA gene, cytochrome oxidase I. We also highlight alternative refugia uses among species with the same life history traits (i.e., benthic and direct developers) and for some species, extremely large distributions are established (e.g., circumpolarity). By improving our sampling of these nudibranchs, we gain better insight into the population structure and connectivity of the Antarctic region. This work also demonstrates how difficult it is to make generalizations across Antarctic marine species, even among ecologically-similar, closely related species.
Collapse
Affiliation(s)
- Paige J. Maroni
- School of Biological Sciences (M092)University of Western AustraliaCrawleyWestern AustraliaAustralia
- Western Australian Museum, Research & CollectionsWelshpoolWestern AustraliaAustralia
| | - Nerida G. Wilson
- School of Biological Sciences (M092)University of Western AustraliaCrawleyWestern AustraliaAustralia
- Western Australian Museum, Research & CollectionsWelshpoolWestern AustraliaAustralia
- Securing Antarctica's Environmental FutureWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| |
Collapse
|
6
|
Cowart DA, Schiaparelli S, Alvaro MC, Cecchetto M, Le Port A, Jollivet D, Hourdez S. Origin, diversity, and biogeography of Antarctic scale worms (Polychaeta: Polynoidae): a wide-scale barcoding approach. Ecol Evol 2022; 12:e9093. [PMID: 35866013 PMCID: PMC9288932 DOI: 10.1002/ece3.9093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
The Antarctic marine environment hosts diversified and highly endemic benthos owing to its unique geologic and climatic history. Current warming trends have increased the urgency of understanding Antarctic species history to predict how environmental changes will impact ecosystem functioning. Antarctic benthic lineages have traditionally been examined under three hypotheses: (1) high endemism and local radiation, (2) emergence of deep-sea taxa through thermohaline circulation, and (3) species migrations across the Polar Front. In this study, we investigated which hypotheses best describe benthic invertebrate origins by examining Antarctic scale worms (Polynoidae). We amassed 691 polynoid sequences from the Southern Ocean and neighboring areas: the Kerguelen and Tierra del Fuego (South America) archipelagos, the Indian Ocean, and waters around New Zealand. We performed phylogenetic reconstructions to identify lineages across geographic regions, aided by mitochondrial markers cytochrome c oxidase subunit I (Cox1) and 16S ribosomal RNA (16S). Additionally, we produced haplotype networks at the species scale to examine genetic diversity, biogeographic separations, and past demography. The Cox1 dataset provided the most illuminating insights into the evolution of polynoids, with a total of 36 lineages identified. Eunoe sp. was present at Tierra del Fuego and Kerguelen, in favor of the latter acting as a migration crossroads. Harmothoe fuligineum, widespread around the Antarctic continent, was also present but isolated at Kerguelen, possibly resulting from historical freeze-thaw cycles. The genus Polyeunoa appears to have diversified prior to colonizing the continent, leading to the co-occurrence of at least three cryptic species around the Southern and Indian Oceans. Analyses identified that nearly all populations are presently expanding following a bottleneck event, possibly caused by habitat reduction from the last glacial episodes. Findings support multiple origins for contemporary Antarctic polynoids, and some species investigated here provide information on ancestral scenarios of (re)colonization. First, it is apparent that species collected from the Antarctic continent are endemic, as the absence of closely related species in the Kerguelen and Tierra del Fuego datasets for most lineages argues in favor of Hypothesis 1 of local origin. Next, Eunoe sp. and H. fuligineum, however, support the possibility of Kerguelen and other sub-Antarctic islands acting as a crossroads for larvae of some species, in support of Hypothesis 3. Finally, the genus Polyeunoa, conversely, is found at depths greater than 150 m and may have a deep origin, in line with Hypothesis 2. These "non endemic" groups, nevertheless, have a distribution that is either north or south of the Antarctic Polar Front, indicating that there is still a barrier to dispersal, even in the deep sea.
Collapse
Affiliation(s)
- Dominique A. Cowart
- Department of Evolution, Ecology, and BehaviorUniversity of Illinois at Urbana – ChampaignUrbanaIllinoisUSA
- Company for Open Ocean Observations and Logging (COOOL)La RéunionFrance
| | - Stefano Schiaparelli
- Department of Earth, Environmental and Life Science (DiSTAV)University of GenoaGenoaItaly
- Italian National Antarctic Museum (MNA, Section of Genoa)University of GenoaGenoaItaly
| | - Maria Chiara Alvaro
- Department of Earth, Environmental and Life Science (DiSTAV)University of GenoaGenoaItaly
| | - Matteo Cecchetto
- Department of Earth, Environmental and Life Science (DiSTAV)University of GenoaGenoaItaly
- Italian National Antarctic Museum (MNA, Section of Genoa)University of GenoaGenoaItaly
| | - Anne‐Sophie Le Port
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Didier Jollivet
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
| | - Stephane Hourdez
- CNRS UMR 7144 ‘Adaptation et Diversité en Milieux Marins’ (AD2M)Team ‘Dynamique de la Diversité Marine’ (DyDiv), Station Biologique de RoscoffSorbonne UniversitéRoscoffFrance
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de BanyulsUMR 8222 CNRS‐Sorbonne UniversitéBanyuls‐sur‐merFrance
| |
Collapse
|
7
|
Schächinger PM, Schrödl M, Wilson NG, Moles J. Crossing the polar front—Antarctic species discovery in the nudibranch genus Tritoniella (Gastropoda). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Maroni PJ, Baker BJ, Moran AL, Woods HA, Avila C, Johnstone GJ, Stark JS, Kocot KM, Lockhart S, Saucède T, Rouse GW, Wilson NG. One Antarctic slug to confuse them all: the underestimated diversity of Doris kerguelenensis. INVERTEBR SYST 2022. [DOI: 10.1071/is21073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lau SCY, Strugnell JM, Sands CJ, Silva CNS, Wilson NG. Evolutionary innovations in Antarctic brittle stars linked to glacial refugia. Ecol Evol 2021; 11:17428-17446. [PMID: 34938519 PMCID: PMC8668817 DOI: 10.1002/ece3.8376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
The drivers behind evolutionary innovations such as contrasting life histories and morphological change are central questions of evolutionary biology. However, the environmental and ecological contexts linked to evolutionary innovations are generally unclear. During the Pleistocene glacial cycles, grounded ice sheets expanded across the Southern Ocean continental shelf. Limited ice-free areas remained, and fauna were isolated from other refugial populations. Survival in Southern Ocean refugia could present opportunities for ecological adaptation and evolutionary innovation. Here, we reconstructed the phylogeographic patterns of circum-Antarctic brittle stars Ophionotus victoriae and O. hexactis with contrasting life histories (broadcasting vs brooding) and morphology (5 vs 6 arms). We examined the evolutionary relationship between the two species using cytochrome c oxidase subunit I (COI) data. COI data suggested that O. victoriae is a single species (rather than a species complex) and is closely related to O. hexactis (a separate species). Since their recent divergence in the mid-Pleistocene, O. victoriae and O. hexactis likely persisted differently throughout glacial maxima, in deep-sea and Antarctic island refugia, respectively. Genetic connectivity, within and between the Antarctic continental shelf and islands, was also observed and could be linked to the Antarctic Circumpolar Current and local oceanographic regimes. Signatures of a probable seascape corridor linking connectivity between the Scotia Sea and Prydz Bay are also highlighted. We suggest that survival in Antarctic island refugia was associated with increase in arm number and a switch from broadcast spawning to brooding in O. hexactis, and propose that it could be linked to environmental changes (such as salinity) associated with intensified interglacial-glacial cycles.
Collapse
Affiliation(s)
- Sally C. Y. Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Department of Ecology, Environment and EvolutionSchool of Life SciencesLa Trobe UniversityMelbourneVicAustralia
- Securing Antarctica's Environmental FutureJames Cook UniversityTownsvilleQldAustralia
| | - Chester J. Sands
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Catarina N. S. Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Nerida G. Wilson
- Collections & ResearchWestern Australian MuseumWelshpoolWAAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
- Securing Antarctica's Environmental FutureWestern Australian MuseumWelshpoolWAAustralia
| |
Collapse
|
10
|
Moles J, Derkarabetian S, Schiaparelli S, Schrödl M, Troncoso JS, Wilson NG, Giribet G. An approach using ddRADseq and machine learning for understanding speciation in Antarctic Antarctophilinidae gastropods. Sci Rep 2021; 11:8473. [PMID: 33875688 PMCID: PMC8055997 DOI: 10.1038/s41598-021-87244-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Sampling impediments and paucity of suitable material for molecular analyses have precluded the study of speciation and radiation of deep-sea species in Antarctica. We analyzed barcodes together with genome-wide single nucleotide polymorphisms obtained from double digestion restriction site-associated DNA sequencing (ddRADseq) for species in the family Antarctophilinidae. We also reevaluated the fossil record associated with this taxon to provide further insights into the origin of the group. Novel approaches to identify distinctive genetic lineages, including unsupervised machine learning variational autoencoder plots, were used to establish species hypothesis frameworks. In this sense, three undescribed species and a complex of cryptic species were identified, suggesting allopatric speciation connected to geographic or bathymetric isolation. We further observed that the shallow waters around the Scotia Arc and on the continental shelf in the Weddell Sea present high endemism and diversity. In contrast, likely due to the glacial pressure during the Cenozoic, a deep-sea group with fewer species emerged expanding over great areas in the South-Atlantic Antarctic Ridge. Our study agrees on how diachronic paleoclimatic and current environmental factors shaped Antarctic communities both at the shallow and deep-sea levels, promoting Antarctica as the center of origin for numerous taxa such as gastropod mollusks.
Collapse
Affiliation(s)
- Juan Moles
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
- SNSB-Bavarian State Collection of Zoology, Münchhausenstrasse 21, 81247, Munich, Germany.
- Biozentrum Ludwig Maximilians University and GeoBio-Center LMU Munich, Munich, Germany.
| | - Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Stefano Schiaparelli
- DiSTAV, University of Genoa, C.so Europa 26, 16132, Genoa, Italy
- Italian National Antarctic Museum (MNA, Section of Genoa), Viale Benedetto XV n. 5, 16132, Genoa, Italy
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstrasse 21, 81247, Munich, Germany
- Biozentrum Ludwig Maximilians University and GeoBio-Center LMU Munich, Munich, Germany
| | - Jesús S Troncoso
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36200, Vigo, Spain
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool DC, Locked Bag 49, Perth, WA, 6986, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Levicoy D, Flores K, Rosenfeld S, Cárdenas L. Phylogeography and genetic diversity of the microbivalve Kidderia subquadrata, reveals new data from West Antarctic Peninsula. Sci Rep 2021; 11:5705. [PMID: 33707560 PMCID: PMC7952419 DOI: 10.1038/s41598-021-85042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
It is well established that Antarctic biodiversity has been strongly influenced by rapid climatic fluctuations during the Quaternary. Marine invertebrates from Antarctica constitute an interesting lens through which to study the impacts of the last glacial periods as glaciation impacted the distribution and intraspecific genetic variation of these animals. However, the impact on the spatial genetic distribution and historical demography of local processes in areas adjacent to the West Antarctic Peninsula (WAP) is less clear. Here we present new genetic information on the bivalve Kidderia subquadrata, a small mollusk that inhabits intertidal rocky island ecosystems throughout the WAP. Using a phylogeographical approach, we examined the spatial patterns of genetic diversity in this brooder species to test the hypothesis of strong genetic structure in incubating organisms and the hypothesis of glacial refugia in organisms with limited dispersion. We found evidence of strong genetic structure among populations of the WAP and a recent expansion in the South Shetland Islands. Our findings are concordant with the predictions that incubating organisms, abundant in Antarctica, present a strong genetic structure among their populations and also support the hypothesis of glacial refugia in organisms with limited dispersion. The effect of the coastal current pattern in the WAP is suggested as a driver to the local spatial dynamics of the genetic diversity distribution. Although genetic information about this microbivalve is still scarce, the knowledge reported here has increased our understanding of the evolutionary patterns of this organism that is endemic to the Southern Ocean.
Collapse
Affiliation(s)
- Daniela Levicoy
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Kamilla Flores
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Sebastián Rosenfeld
- Laboratorio de Ecosistemas Marinos Antárticos Y Subantárticos, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile.,Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Las Palmeras # 3425, Ñuñoa, Santiago, Chile
| | - Leyla Cárdenas
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile.
| |
Collapse
|
12
|
Verheye ML, D’Udekem D’Acoz C. Integrative taxonomy of giant crested Eusirus in the Southern Ocean, including the description of a new species (Crustacea: Amphipoda: Eusiridae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Among Antarctic amphipods of the genus Eusirus, a highly distinctive clade of giant species is characterized by a dorsal, blade-shaped tooth on pereionites 5–7 and pleonites 1–3. This lineage, herein named ‘crested Eusirus’, includes two potential species complexes, the Eusirus perdentatus and Eusirus giganteus complexes, in addition to the more distinctive Eusirus propeperdentatus. Molecular phylogenies and statistical parsimony networks (COI, CytB and ITS2) of crested Eusirus are herein reconstructed. This study aims to formally revise species diversity within crested Eusirus by applying several species delimitation methods (Bayesian implementation of the Poisson tree processes model, general mixed Yule coalescent, multi-rate Poisson tree processes and automatic barcode gap discovery) on the resulting phylogenies. In addition, results from the DNA-based methods are benchmarked against a detailed morphological analysis of all available specimens of the E. perdentatus complex. Our results indicate that species diversity of crested Eusirus is underestimated. Overall, DNA-based methods suggest that the E. perdentatus complex is composed of three putative species and that the E. giganteus complex includes four or five putative species. The morphological analysis of available specimens from the E. perdentatus complex corroborates molecular results by identifying two differentiable species, the genuine E. perdentatus and a new species, herein described as Eusirus pontomedon sp. nov.
Collapse
Affiliation(s)
- Marie L Verheye
- Royal Belgian Institute of Natural Sciences, O.D. Nature, Rue Vautier, Brussels, Belgium
- Université de Liège, Laboratoire d’Océanologie, Quartier Agora, Allée du 6 Août, Liège, Belgium
| | - Cédric D’Udekem D’Acoz
- Royal Belgian Institute of Natural Sciences, O.D. Nature, Rue Vautier, Brussels, Belgium
| |
Collapse
|
13
|
Energetics and development modes of Asteroidea (Echinodermata) from the Southwestern Atlantic Ocean including Burdwood Bank/MPA Namuncurá. Polar Biol 2020. [DOI: 10.1007/s00300-020-02621-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|