1
|
Creemers J, Eens M, Ulenaers E, Lathouwers M, Evens R. Skyglow facilitates prey detection in a crepuscular insectivore: Distant light sources create bright skies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125821. [PMID: 39922414 DOI: 10.1016/j.envpol.2025.125821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Light profoundly shapes ecosystems, influencing the behaviour and niche specialisation of many species. This is especially true for visual predators, particularly crepuscular and nocturnal animals, whose foraging depends on adequate illumination. Despite this, research on how animals perceive light sources and position themselves relative to these sources is scarce. Using a modified dead-reckoning protocol based on GPS, accelerometer, and magnetic compass data, we investigated the body orientation of foraging European Nightjars (Caprimulgus europaeus, hereafter nightjar) to determine their line of sight relative to bright sections of the nocturnal sky, created by natural or artificial light. We found that nightjars are more likely to align themselves with brighter sections of the sky, although not necessarily with the brightest patch. On full moon nights, they positioned the moon within their line of sight when it was low on the horizon, but this likelihood decreased as the moon rose higher. During other moon phases, the likelihood of having the moon within line of sight increased linearly with moon altitude. During moonless parts of the night, nightjars appeared to use skyglow as a background for prey detection, but only when it was sufficiently bright. When both moonlight and skyglow were present, nightjars showed a preference for moonlight. This study shows that European Nightjars use illuminated sections of the sky, including skyglow, as bright backgrounds to detect flying prey. This suggests that, in the absence of the moon, nightjars can actively take advantage of this form of light pollution while foraging. However, the success of their hunting under skyglow-induced lighting remains unclear. We hypothesise that the effectiveness of these backgrounds depends on their brightness and colour composition. Further research is needed to better understand the complex dynamics of contrast detection under varying lighting conditions.
Collapse
Affiliation(s)
- Jitse Creemers
- Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384, Louvain-la-Neuve, Belgium; University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium.
| | - Marcel Eens
- University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Havenlaan 88 bus 75, Herman Teirlinckgebouw, 1000, Brussels, Belgium
| | - Michiel Lathouwers
- Hasselt University, Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Campus Diepenbeek, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium; University of Namur, Department of Geography, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Ruben Evens
- Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384, Louvain-la-Neuve, Belgium; University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
2
|
Eberhardt L, Doria HB, Bulut B, Feldmeyer B, Pfenninger M. Transcriptomics predicts artificial light at night's (ALAN) negative fitness effects and altered gene expression patterns in the midge Chironomus riparius (Diptera:Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125827. [PMID: 39923976 DOI: 10.1016/j.envpol.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
The emission of artificial light at night (ALAN) is rapidly increasing worldwide. Yet, evidence for its detrimental effects on various species is accumulating. While the effects of ALAN on phenotypic traits have been widely investigated, effects on the molecular level are less well understood. Here we aimed to integrate the effects of ALAN at the transcriptomic and the phenotypic level. We tested these effects on Chironomus riparius, a multivoltine, holometabolous midge with high ecological relevance for which genomic resources are available. We performed life-cycle experiments in which we exposed midges to constant light and control conditions for one generation. We observed reduced fertility under ALAN from which we predicted the population size to decline to 1% after 200 days. The transcriptomic analysis revealed expression changes of genes related to circadian rhythmicity, moulting, catabolism and oxidative stress. From the transcriptomic analysis we hypothesised that under ALAN, oxidative stress is increased, and that moulting begins earlier. We were able to confirm both hypotheses in two posthoc experiments, showing that transcriptomics can be a powerful tool for predicting effects on higher level phenotypic traits.
Collapse
Affiliation(s)
- Linda Eberhardt
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany.
| | - Halina Binde Doria
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Burak Bulut
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Barbara Feldmeyer
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128, Mainz, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Alqubori OM, Bearup D, Petrovskii S. Using mathematical modelling to highlight challenges in understanding trap counts obtained by a baited trap. Sci Rep 2025; 15:8765. [PMID: 40082466 PMCID: PMC11906655 DOI: 10.1038/s41598-025-91581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Baited traps are routinely used in many ecological and agricultural applications, in particular when information about pest insects is required. However, interpretation of trap counts is challenging, as consistent methods or algorithms relating trap counts to the population abundance in the area around the trap are largely missing. Thus, interpretation of trap counts is usually relative rather than absolute, i.e., a larger average trap count is regarded as an indication of a larger population. In this paper, we challenge this assumption. We show that the key missing point is the animal movement behaviour, which is known to be modified in the presence of attractant (bait), in particular being dependent on the attractant strength. Using an individual-based simulation model of animal movement, we show that an increase in trap counts can happen simply because of changes in the animal movement behaviour even when the population size is constant or even decreasing. Our simulation results are in good qualitative agreement with some available field data. We conclude that, unless reliable biological information about the dependence of animal movement pattern on the type and strength of attractant is available, an increase in trap counts can send a grossly misleading message, resulting in wrong conclusions about the pest population dynamics and hence inadequate conservation or pest management decisions.
Collapse
Affiliation(s)
- Omar Mazen Alqubori
- Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Daniel Bearup
- School of Computing and Mathematical Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, UK
| | - Sergei Petrovskii
- School of Computing and Mathematical Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, UK.
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, Russian Federation, 117198.
| |
Collapse
|
4
|
Levy K, Aidan YY, Paz D, Medlij H, Ayali A. Light alters calling-song characteristics in crickets. J Exp Biol 2025; 228:JEB249404. [PMID: 39876823 PMCID: PMC11928050 DOI: 10.1242/jeb.249404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Communication is crucial for mate choice and thus for the survival and fitness of most species. In the cricket, females choose males according to their calling-song attractiveness and, exhibiting positive phonotaxis, they approach the chosen male. Light has been widely reported to induce changes in crickets' daily activity patterns, including the males' stridulation behavior. It had remained unknown, however, whether light also affects the calling-song properties and thus may consequently also alter female choice. Here, we present a novel semi-automated process, enabling the analysis of calling-song properties in an extremely large sample size of recording sections from males subjected to lifelong light:dark (LD) or constant light (LL) conditions. Our findings revealed that the LD calling songs consisted of longer chirps, longer inter-syllable intervals and a higher proportion of 4-syllable chirps compared with those of LL males. We also conducted some preliminary female choice experiments suggesting that females (reared in LD conditions) exposed to playbacks of male calling songs exhibit a preference towards LD over LL recordings. We therefore conclude that illumination conditions such as constant light affect the male crickets' calling-song properties in a manner that may be discernible to the females. It remains unclear, however, how and to what extent female mate choice and the species' overall fitness are affected by these changes.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
| | | | - Dror Paz
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Heba Medlij
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Amir Ayali
- School of Zoology,Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience,Tel Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
5
|
Mathiaparanam KJ, Mulder RA, Hale R. Anthropogenic double jeopardy: Urban noise and artificial light at night interact synergistically to influence abundance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125078. [PMID: 39369865 DOI: 10.1016/j.envpol.2024.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Artificial light at night (ALAN) and urban noise are increasing globally and can have a range of impacts on wildlife. While ALAN and noise often co-occur and can affect wildlife in similar ways, their impacts have generally been studied in isolation. Information about possible interactive impacts, which can be more serious, is critical to guide conservation. We studied how noise and ALAN impact a common urban waterbird (Eurasian coot Fulica atra) around the city of Melbourne in south-eastern Australia. We aimed to examine: (1) the individual and (2) interactive impacts of noise and ALAN on abundance, and (3) the relative influence of these stressors and other environmental predictors. To do so, we used data from a large-scale (1,463 surveys across an area of 9,250 km2 with significant heterogeneity in noise and ALAN conditions), long-term (2008-2018) monitoring program, overlaid with georeferenced noise and light data. We used generalized linear mixed effects models and boosted regression trees to model individual and interactive effects of ALAN and noise on abundance. Abundance was negatively correlated with noise and ALAN individually. Furthermore, the two stressors had a negative synergistic effect, ultimately resulting in the absence of coots at the highest observed ALAN and noise levels. We also estimate that the combined influence of the two stressors on abundance was larger than that of other examined environmental factors. Our findings that noise and ALAN have detrimental interactive impacts is worrying for two reasons. First, Eurasian coots are thought to be tolerant to urbanisation, so impacts may be more severe for less tolerant species. Second, noise and ALAN commonly co-occur around cities, so similar impacts are likely elsewhere. By adopting more biologically and ecologically realistic analytical frameworks, future studies can better estimate the cumulative impacts of multiple stressors to facilitate improved conservation and management.
Collapse
Affiliation(s)
| | - Raoul A Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Robin Hale
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
6
|
Fiorta MA, Fyie LR, Meuti ME. Light pollution disrupts seasonal reproductive phenotypes and reduces lifespan in the West Nile vector, Culex pipiens. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104725. [PMID: 39551153 DOI: 10.1016/j.jinsphys.2024.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Females of the Northern House mosquito, Culex pipiens, are important disease vectors as they transmit pathogens including West Nile virus. These females survive the winter by entering diapause, a state of dormancy, characterized by the accumulation of lipids, cessation of blood-feeding, and reproductive arrest. Diapause is cued by photoperiod, so as days become short in late summer and early fall, female Cx. pipiens prepare to overwinter and disease transmission decreases. We previously demonstrated that Artificial light at night (ALAN) causes female Cx. pipiens to avert diapause and continue to blood-feed when reared under short-day conditions. Additionally, light pollution alters seasonal differences in mosquito activity and nutrient reserves. However, it is unclear how exposure to ALAN affects blood-feeding and fecundity in long-day reared females, as well as the survival of Cx. pipiens exposed under both short and long-day conditions. In this study, we hypothesized that females exposed to ALAN in long-day conditions would have a lower proclivity to blood-feed, reduced fecundity, and reduced survival. Results from our lab-based experiments demonstrate that females exposed to ALAN in long-day conditions were less likely to blood-feed but were more fecund than long-day reared females that were not exposed to ALAN, and that ALAN exposure did not affect lifespan of long-day reared females. Additionally, we hypothesized ALAN exposure under short-day conditions would reduce survival, and our data supports this hypothesis. Overall, our results demonstrate that ALAN is an important urban stressor that has the potential to affect reproduction and lifespan in mosquitoes, and therefore has the potential to create evolutionary tradeoffs.
Collapse
Affiliation(s)
- Maria A Fiorta
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Columbus, OH 43210, USA; Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32608, USA.
| | - Lydia R Fyie
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Columbus, OH 43210, USA; School of Biology and Ecology, University of Maine, 23 Flagstaff Rd., Orono, ME 04469, USA.
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Degen J, Storms M, Lee CB, Jechow A, Stöckl AL, Hölker F, Jakhar A, Walter T, Walter S, Mitesser O, Hovestadt T, Degen T. Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Natl Acad Sci U S A 2024; 121:e2401215121. [PMID: 39378094 PMCID: PMC11494349 DOI: 10.1073/pnas.2401215121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 10/10/2024] Open
Abstract
One of the most dramatic changes occurring on our planet is the ever-increasing extensive use of artificial light at night, which drastically altered the environment to which nocturnal animals are adapted. Such light pollution has been identified as a driver in the dramatic insect decline of the past years. One nocturnal species group experiencing marked declines are moths, which play a key role in food webs and ecosystem services such as plant pollination. Moths can be easily monitored within the illuminated area of a streetlight, where they typically exhibit disoriented behavior. Yet, little is known about their behavior beyond the illuminated area. Harmonic radar tracking enabled us to close this knowledge gap. We found a significant change in flight behavior beyond the illuminated area of a streetlight. A detailed analysis of the recorded trajectories revealed a barrier effect of streetlights on lappet moths whenever the moon was not available as a natural celestial cue. Furthermore, streetlights increased the tortuosity of flights for both hawk moths and lappet moths. Surprisingly, we had to reject our fundamental hypothesis that most individuals would fly toward a streetlight. Instead, this was true for only 4% of the tested individuals, indicating that the impact of light pollution might be more severe than assumed to date. Our results provide experimental evidence for the fragmentation of landscapes by streetlights and demonstrate that light pollution affects movement patterns of moths beyond what was previously assumed, potentially affecting their reproductive success and hampering a vital ecosystem service.
Collapse
Affiliation(s)
- Jacqueline Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Mona Storms
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
| | - Chengfa Benjamin Lee
- Department of Remote Sensing, University of Würzburg, Würzburg97074, Germany
- Photogrammetry and Image Analysis Department, German Aerospace Center, Remote Sensing Technology Institute, Berlin12489, Germany
| | - Andreas Jechow
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel14770, Germany
| | - Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz78457, Germany
- Zukunftskolleg, University of Konstanz, Konstanz78457, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Aryan Jakhar
- Department of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram695551, India
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
- Institute at Brown for Environment and Society, Brown University, Providence, RI02912
| | - Thomas Walter
- Department of Computer Science, University of Würzburg, Würzburg97074, Germany
| | - Stefan Walter
- Department of Biology, Freie Universität Berlin, Berlin14195, Germany
| | - Oliver Mitesser
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | - Tobias Degen
- Department of Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg97074, Germany
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| |
Collapse
|
8
|
Jones TM, McNamara KB. Harmonic radar suggests greater impact of light pollution for nocturnal insects. Proc Natl Acad Sci U S A 2024; 121:e2417219121. [PMID: 39378082 PMCID: PMC11494286 DOI: 10.1073/pnas.2417219121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Affiliation(s)
- Therésa M. Jones
- School of BioSciences, The University of Melbourne, Melbourne, Victoria3010, Australia
| | - Kathryn B. McNamara
- School of BioSciences, The University of Melbourne, Melbourne, Victoria3010, Australia
| |
Collapse
|
9
|
Chen Z, Ren L, Li J, Fu N, Yun Q, Luo Y. Chromosomal-level genome assembly of Hylurgus ligniperda: insights into host adaptation and environmental tolerance. BMC Genomics 2024; 25:792. [PMID: 39164658 PMCID: PMC11337627 DOI: 10.1186/s12864-024-10711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Hylurgus ligniperda (Coleoptera: Curculionidae) is a worldwide forest quarantine pest. It is widely distributed, has many host tree species, and possesses strong adaptability. To explore its environmental adaptability and the related molecular mechanisms, we conducted chromosome-level genome sequencing and analyzed the transcriptome under different environmental factors, identifying key expressed genes. RESULTS We employed PacBio, Illumina, and Hi-C sequencing techniques to assemble a 520 Mb chromosomal-level genome of H. ligniperda, obtaining an N50 of 39.97 Mb across 138 scaffolds. A total of 10,765 protein-coding genes were annotated after repeat masking. Fourteen chromosomes were identified, among which Hyli14 was determined to be the sex chromosome. Survival statistics were tested over various growth periods under high temperature and low humidity conditions. The maximum survival period of adults reached 292 days at 25 °C, 65% relative humidity. In comparison, the maximum survival period was 14 days under 35 °C, 65% relative humidity, and 106 days under 25°C, 40% relative humidity. This indicated that environmental stress conditions significantly reduced adults' survival period. We further conducted transcriptome analysis to screen for potentially influential differentially expressed genes, such as CYP450 and Histone. Subsequently, we performed gene family analysis to gain insights into their functions and interactions, such as CYP450 and Histone. CYP450 genes affected the detoxification metabolism of enzymes in the Cytochrome P450 pathway to adapt to different environments. Histone genes are involved in insect hormone biosynthesis and longevity-regulating pathways in H. ligniperda to adapt to environmental stress. CONCLUSIONS The genome at the chromosome level of H. ligniperda was assembled for the first time. The mortality of H. ligniperda increased significantly at 35 ℃, 65% RH, and 25 ℃, 40% RH. CYP450 and Histone genes played an important role in response to environmental stress. This genome offers a substantial genetic resource for investigating the molecular mechanisms behind beetle invasion and spread.
Collapse
Affiliation(s)
- Zhiqian Chen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, 071033, China
| | | | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
French F, Bwye P, Carrigan L, Coe JC, Kelly R, Leek T, Lynch EC, Mahan E, Mingee C. Welfare and Enrichment of Managed Nocturnal Species, Supported by Technology. Animals (Basel) 2024; 14:2378. [PMID: 39199912 PMCID: PMC11350655 DOI: 10.3390/ani14162378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This paper addresses the potential for technology to support husbandry and enrichment opportunities that enhance the welfare of zoo and sanctuary-housed nocturnal and crepuscular species. This topic was investigated through the medium of a multidisciplinary workshop (Moon Jam) that brought together species experts, zoo designers, Animal-Computer Interaction researchers and post-graduate students in collaborative discussions and design sessions. We explain the context through an examination of existing research and current practices, and report on specific challenges raised and addressed during the Moon Jam, highlighting and discussing key themes that emerged. Finally, we offer a set of guidelines to support the integration of technology into the design of animal husbandry and enrichment that support wellbeing, to advance the best practices in keeping and managing nocturnal and crepuscular animals.
Collapse
Affiliation(s)
- Fiona French
- School of Computing and Digital Media, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Paige Bwye
- Bristol Zoological Society, Hollywood Lane, Bristol BS10 7TW, UK;
| | | | | | - Robert Kelly
- Centre for Research in Animal Behaviour, University of Exeter, Rennes Drive, Exeter EX4 4RN, UK;
| | - Tiff Leek
- Faculty of Science, Technology, Engineering and Maths, The Open University, Milton Keynes MK7 6AA, UK;
| | - Emily C. Lynch
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC 27205, USA; (E.C.L.); (E.M.); (C.M.)
| | - Eric Mahan
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC 27205, USA; (E.C.L.); (E.M.); (C.M.)
| | - Cathy Mingee
- North Carolina Zoo, 4401 Zoo Parkway, Asheboro, NC 27205, USA; (E.C.L.); (E.M.); (C.M.)
| |
Collapse
|
11
|
van Koppenhagen N, Haller J, Kappeler J, Gossner MM, Bolliger J. LED streetlight characteristics alter the functional composition of ground-dwelling invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124209. [PMID: 38795821 DOI: 10.1016/j.envpol.2024.124209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Artificial Light at Night (ALAN) has been identified as a primary driver of environmental change in the 21st century with key impacts on ecosystems. At the same time, developments of LED lighting systems with adjustable parameters-such as color temperature and light intensity-may provide an opportunity to mitigate the negative effects of ALAN. To test the potential effects of LED properties, we conducted a comprehensive field study over two summers at three forest sites in Switzerland. We investigated the impact of three key attributes of LED lights (color temperature, brightness, and luminaire shape) on the abundance and community structure of ground-dwelling invertebrate functional groups (predators, omnivores, and detritivores). We found a significantly increased nocturnal attraction of omnivores (+275%) and predators (+70%), but not detritivores, to ALAN, altering arthropod community composition and trophic interactions in forests. LED color temperature and luminaire shape showed minimal effects on all three functional groups, while reducing light level from 100% to 50% attracted fewer individuals in all groups with a significant effect in omnivores (-57%). In addition, we observed significant interactions of color temperatures and luminaire shapes with light intensity, with a decrease in numbers when dimming the light to 50% intensity combined with a color temperature of 3700 K for predators (-53%), with diffusing luminaire shapes for omnivores (-77%) and with standard luminaire shape for detritivores (-27%). The predator-detritivore ratio showed a significant color temperature - light level interaction, with increased numbers of predators around streetlights with 3700 K and 100% intensity, resulting in an elevated top-down pressure on detritivores. These results suggest the importance of considering combined light characteristics in future outdoor lighting designs.
Collapse
Affiliation(s)
- Nicola van Koppenhagen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Jörg Haller
- EKZ, Dreikönigstrasse 18, CH-8022, Zürich, Switzerland
| | - Julia Kappeler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, CH-8092, Zurich, Switzerland
| | - Janine Bolliger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Longcore T, Villanueva SAMB, Nguyen-Ngo K, Ghiani CA, Harrison B, Colwell CS. Relative importance of intensity and spectrum of artificial light at night in disrupting behavior of a nocturnal rodent. J Exp Biol 2024; 227:jeb247235. [PMID: 38873751 PMCID: PMC11418196 DOI: 10.1242/jeb.247235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.
Collapse
Affiliation(s)
- Travis Longcore
- UCLA Institute of the Environment and Sustainability, 619 Charles E. Young Drive East, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Sophia Anne Marie B. Villanueva
- UCLA Department of Integrative Biology and Physiology, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, USA
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kyle Nguyen-Ngo
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Cristina A. Ghiani
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
- UCLA Department of Pathology and Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | - Benjamin Harrison
- Korrus, Inc., 837 North Spring Street, Suite 103, Los Angeles, CA 90012, USA
| | - Christopher S. Colwell
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Amaral DT, Kaplan RA, Takishita TKE, de Souza DR, Oliveira AG, Rosa SP. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 2024; 23:1373-1392. [PMID: 38733516 DOI: 10.1007/s43630-024-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), Santo André, São Paulo, Brazil.
- Programa de Pós Graduação Em Biotecnociência, Universidade Federal Do ABC (UFABC), Avenida Dos Estados, Bloco A, Room 504-3. ZIP 09210-580, Santo André, São Paulo, 5001, Brazil.
| | - Rachel A Kaplan
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | | | - Daniel R de Souza
- Laboratório de Estudos Avançados Em Jornalismo, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Simone Policena Rosa
- Instituto de Recursos Naturais (IRN), Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| |
Collapse
|
14
|
Dietenberger M, Jechow A, Kalinkat G, Schroer S, Saathoff B, Hölker F. Reducing the fatal attraction of nocturnal insects using tailored and shielded road lights. Commun Biol 2024; 7:671. [PMID: 38822081 PMCID: PMC11143364 DOI: 10.1038/s42003-024-06304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/02/2024] Open
Abstract
The attraction of insects to artificial light is a global environmental problem with far-reaching implications for ecosystems. Since light pollution is rarely integrated into conservation approaches, effective mitigation strategies towards environmentally friendly lighting that drastically reduce insect attraction are urgently needed. Here, we tested novel luminaires in two experiments (i) at a controlled experimental field site and (ii) on streets within three municipalities. The luminaires are individually tailored to only emit light onto the target area and to reduce spill light. In addition, a customized shielding renders the light source nearly invisible beyond the lit area. We show that these novel luminaires significantly reduce the attraction effect on flying insects compared to different conventional luminaires with the same illuminance on the ground. This underlines the huge potential of spatially optimized lighting to help to bend the curve of global insect decline without compromising human safety aspects. A customized light distribution should therefore be part of sustainable future lighting concepts, most relevant in the vicinity of protected areas.
Collapse
Affiliation(s)
- Manuel Dietenberger
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 76, 79104, Freiburg, Germany.
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Birte Saathoff
- Institute of Energy and Automation Technology, Technische Universität Berlin, Marchstraße 23, 10587, Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| |
Collapse
|
15
|
Silva FS, da Costa Viana J, de França da Costa F, Araújo GB, Brito JM, Neta BMC. Field comparison of broad-spectrum white LED-baited traps with narrow-spectrum green LED-baited traps in the capture of Anopheles mosquitoes (Diptera: Culicidae). Parasitol Res 2024; 123:194. [PMID: 38656453 DOI: 10.1007/s00436-024-08217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Light-Emitting Diodes (LEDs) have been effective light sources in attracting Anopheles mosquitoes, but the broad-spectrum white light, even with a wide-ranging application in lighting, have not been evaluated yet. In this study, the white light was field evaluated against the green one in the light trapping of anopheline mosquitoes by using two non-suction Silva traps and two CDC-type suction light traps. Anopheline mosquitoes were captured for two 21-night periods of collecting (2022 and 2023). In the first period, two LEDs were used per Silva trap, but three were used in the second one to increase the luminance/illuminance at traps. A CDC-type suction light trap equipped with an incandescent lamp was used in 2022 and a CDC-type suction light trap equipped with a 6 V-white light (higher luminance/illuminance) in 2023. A total of eight species and 3,289 specimens were captured in both periods. The most frequent species were Anopheles triannulatus s.l., An. goeldii, An. evansae and An. argyritarsis. In 2022, white LEDs were less attractive to anopheline mosquitoes than the other light sources, but without statistical difference among treatments (F = 2.703; P = 0.0752; df = 2). In 2023, even with an increased luminance/illuminance at traps, no statistical difference was found between the two LED-baited Silva traps (F = 6.690; P = 0.0024; df = 2), but rather between the 6 V-white-baited CDC-type suction light trap and green-baited Silva traps. Due to some drawbacks and the lower abundance of individuals caught by using white LEDs, the narrow-banded green LEDs is preferable to white ones for attracting anophelines.
Collapse
Affiliation(s)
- Francinaldo Soares Silva
- Laboratório de Entomologia Médica, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, 65500-000, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, CEP: 65080-805, São Luís, Maranhão, Brazil.
- Programa de Pós-Graduação em Ciências Ambientais, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, CEP: 65500-000, Brazil.
| | - Joany da Costa Viana
- Laboratório de Entomologia Médica, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, 65500-000, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, CEP: 65500-000, Brazil
| | - Francisco de França da Costa
- Laboratório de Entomologia Médica, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, 65500-000, Brazil
| | - Geolane Barbosa Araújo
- Laboratório de Entomologia Médica, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, 65500-000, Brazil
- Programa de Pós-Graduação em Ciências Ambientais, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, CEP: 65500-000, Brazil
| | - Jefferson Mesquita Brito
- Laboratório de Entomologia Médica, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, 65500-000, Brazil
| | - Benedita Maria Costa Neta
- Laboratório de Entomologia Médica, Centro de Ciências de Chapadinha, Universidade Federal do Maranhão, Chapadinha, MA, 65500-000, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, CEP: 65080-805, São Luís, Maranhão, Brazil
| |
Collapse
|
16
|
He Y, Ganguly A, Lindgren S, Quispe L, Suvanto C, Zhao K, Candolin U. Carry-over effect of artificial light at night on daytime mating activity in an ecologically important detritivore, the amphipod Gammarus pulex. J Exp Biol 2024; 227:jeb246682. [PMID: 38516876 DOI: 10.1242/jeb.246682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Artificial light at night (ALAN) is a growing environmental problem influencing the fitness of individuals through effects on their physiology and behaviour. Research on animals has primarily focused on effects on behaviour during the night, whereas less is known about effects transferred to daytime. Here, we investigated in the lab the impact of ALAN on the mating behaviour of an ecologically important freshwater amphipod, Gammarus pulex, during both daytime and nighttime. We manipulated the presence of ALAN and the intensity of male-male competition for access to females, and found the impact of ALAN on mating activity to be stronger during daytime than during nighttime, independent of male-male competition. At night, ALAN only reduced the probability of precopula pair formation, while during the daytime, it both decreased general activity and increased the probability of pair separation after pair formation. Thus, ALAN reduced mating success in G. pulex not only directly, through effects on mating behaviour at night, but also indirectly through a carry-over effect on daytime activity and the ability to remain in precopula. These results emphasise the importance of considering delayed effects of ALAN on organisms, including daytime activities that can be more important fitness determinants than nighttime activities.
Collapse
Affiliation(s)
- Yuhan He
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Anirban Ganguly
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Susan Lindgren
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Laura Quispe
- Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Corinne Suvanto
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
17
|
Janes JK, van der Voort GE, Huber DPW. We know very little about pollination in the Platanthera Rich (Orchidaceae: Orchidoideae). Ecol Evol 2024; 14:e11223. [PMID: 38606342 PMCID: PMC11007262 DOI: 10.1002/ece3.11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
The Platanthera Rich. (Orchidoideae) comprise a speciose genus of orchids primarily in the northern hemisphere, with up to 200 known species worldwide. Individual species are known to self-pollinate, but many rely on insect pollinators with characteristics such as floral color, timing of floral odor emissions, nectar rewards, and spur length associated with particular pollination syndromes. As with many orchids, some orchid-pollinator associations are likely highly co-evolved, but we also know that some Platanthera spp. are the result of hybridization events, which implies a lack of pollinator fidelity in some cases. Some Platanthera spp. occur in large numbers which, coupled with the numerous Platanthera-pollinator systems, make them accessible as study species and useful for co-evolutionary studies. Due to the likely effects of climate change and ongoing development on Platanthera spp. habitats, these orchids and their associated pollinators should be a focus of conservation attention and management. However, while there is a fairly substantial literature coverage of Platanthera-pollinator occurrence and interactions, there are still wide gaps in our understanding of the species involved in these systems. In this systematic review, we outline what is current knowledge and provide guidance on further research that will increase our understanding of orchid-insect co-evolutionary relationships. Our review covers 157 orchid species and about 233 pollinator species interacting with 30 Platanthera spp. We provide analyses on aspects of these interactions such as flower morphology, known insect partners of Platanthera species, insect-Platanthera specificity, pollination visitor timing (diurnal vs. nocturnal), floral rewards, and insect behavior affecting pollination outcomes (e.g., pollinia placement). A substantial number of Platanthera spp. and at least a few of their known pollinators are of official (IUCN) conservation concern - and many of their pollinators remain unassessed or even currently unknown - which adds to the urgency of further research on these co-evolved relationships.
Collapse
Affiliation(s)
- Jasmine K Janes
- Biology Department Vancouver Island University Nanaimo British Columbia Canada
- Faculty of Environment University of Northern British Columbia Prince George British Columbia Canada
- IUCN, Species Survival Commission, Orchid Specialist Group
| | - Genevieve E van der Voort
- Faculty of Environment University of Northern British Columbia Prince George British Columbia Canada
| | - Dezene P W Huber
- Faculty of Environment University of Northern British Columbia Prince George British Columbia Canada
| |
Collapse
|
18
|
Adams CA, Clair CCS, Knight EC, Bayne EM. Behaviour and landscape contexts determine the effects of artificial light on two crepuscular bird species. LANDSCAPE ECOLOGY 2024; 39:83. [PMID: 38550967 PMCID: PMC10965584 DOI: 10.1007/s10980-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 04/29/2024]
Abstract
Context Artificial light at night (ALAN) is increasing worldwide, with many ecological effects. Aerial insectivores may benefit from foraging on insects congregating at light sources. However, ALAN could negatively impact them by increasing nest visibility and predation risk, especially for ground-nesting species like nightjars (Caprimulgidae). Objectives We tested predictions based on these two alternative hypotheses, potential foraging benefits vs potential predation costs of ALAN, for two nightjar species in British Columbia: Common Nighthawks (Chordeiles minor) and Common Poorwills (Phalaenoptilus nuttallii). Methods We modeled the relationship between ALAN and relative abundance using count data from the Canadian Nightjar Survey. We distinguished territorial from extra-territorial Common Nighthawks based on their wingboom behaviour. Results We found limited support for the foraging benefit hypothesis: there was an increase in relative abundance of extra-territorial Common Nighthawks in areas with higher ALAN but only in areas with little to no urban land cover. Common Nighthawks' association with ALAN became negative in areas with 18% or more urban land cover. We found support for the nest predation hypothesis: the were strong negative associations with ALAN for both Common Poorwills and territorial Common Nighthawks. Conclusions The positive effects of ALAN on foraging nightjars may be limited to species that can forage outside their nesting territory and to non-urban areas, while the negative effects of ALAN on nesting nightjars may persist across species and landscape contexts. Reducing light pollution in breeding habitat may be important for nightjars and other bird species that nest on the ground. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-024-01875-3.
Collapse
Affiliation(s)
- Carrie Ann Adams
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO USA
| | - Colleen Cassady St. Clair
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
| | - Elly C. Knight
- Alberta Biodiversity Monitoring Institute, 1-107 Centennial Centre for Interdisciplinary Studies (CCIS), University of Alberta, Edmonton, AB Canada
| | - Erin M. Bayne
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
| |
Collapse
|
19
|
Trigos-Peral G, Maák IE, Schmid S, Chudzik P, Czaczkes TJ, Witek M, Casacci LP, Sánchez-García D, Lőrincz Á, Kochanowski M, Heinze J. Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170157. [PMID: 38242447 DOI: 10.1016/j.scitotenv.2024.170157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Changes in habitat characteristics are known to have profound effects on biotic communities and their functional traits. In the context of an urban-rural gradient, urbanisation drastically alters abiotic characteristics, e.g., by increasing environmental temperatures and through light pollution. These abiotic changes significantly impact the functional traits of organisms, particularly insects. Furthermore, changes in habitat characteristics also drive changes in the behavioural traits of animals, allowing them to adapt and thrive in new environments. In our study, we focused on the synanthropic ant species Lasius niger as a model organism. We conducted nocturnal field observations and complemented them with laboratory experiments to investigate the influence of night warming (NW) associated with Urban Heat Islands (UHI), light pollution (ALAN), and habitat type on ant foraging behaviour. In addition, we investigated the influence of elevated temperatures on brood development and worker mortality. Our findings revealed that urban populations of L. niger were generally more active during the night compared to their rural counterparts, although the magnitude of this difference varied with specific city characteristics. In laboratory settings, higher temperatures and continuous illumination were associated with increased activity level in ants, again differing between urban and rural populations. Rural ants exhibited more locomotion compared to their urban counterparts when maintained under identical conditions, which might enable them to forage more effectively in a potentially more challenging environment. High temperatures decreased the developmental time of brood from both habitat types and increased worker mortality, although rural colonies were more strongly affected. Overall, our study provides novel insights into the influence of urban environmental stressors on the foraging activity pattern and colony development of ants. Such stressors can be important for the establishment and spread of synanthropic ant species, including invasive ones, and the biotic homogenization of anthropogenic ecosystems.
Collapse
Affiliation(s)
- G Trigos-Peral
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland.
| | - I E Maák
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland; University of Szeged, Szeged, Hungary
| | - S Schmid
- University of Regensburg, Regensburg, Germany
| | - P Chudzik
- Han University of Applied Sciences, Nijmegen, Netherlands
| | | | - M Witek
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - L P Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Sánchez-García
- Museum and Institute of Zoology - Polish Academy of Sciences, Warsaw, Poland
| | - Á Lőrincz
- University of Szeged, Szeged, Hungary
| | | | - J Heinze
- University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Levy K, Barnea A, Tauber E, Ayali A. Crickets in the spotlight: exploring the impact of light on circadian behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:267-279. [PMID: 38252321 PMCID: PMC10994875 DOI: 10.1007/s00359-023-01686-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, 4353701, Ra'anana, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 3103301, Haifa, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
21
|
Van de Schoot E, Merckx T, Ebert D, Wesselingh RA, Altermatt F, Van Dyck H. Evolutionary change in flight-to-light response in urban moths comes with changes in wing morphology. Biol Lett 2024; 20:20230486. [PMID: 38471566 PMCID: PMC10932693 DOI: 10.1098/rsbl.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Moths and other insects are attracted by artificial light sources. This flight-to-light behaviour disrupts their general activity focused on finding resources, such as mating partners, and increases predation risk. It thus has substantial fitness costs. In illuminated urban areas, spindle ermine moths Yponomeuta cagnagella were reported to have evolved a reduced flight-to-light response. Yet, the specific mechanism remained unknown, and was hypothesized to involve either changes in visual perception or general flight ability or overall mobility traits. Here, we test whether spindle ermine moths from urban and rural populations-with known differences in flight-to-light responses-differ in flight-related morphological traits. Urban individuals were found to have on average smaller wings than rural moths, which in turn correlated with a lower probability of being attracted to an artificial light source. Our finding supports the reduced mobility hypothesis, which states that reduced mobility in urban areas is associated with specific morphological changes in the flight apparatus.
Collapse
Affiliation(s)
| | - Thomas Merckx
- WILD, Biology Department, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | | | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hans Van Dyck
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
22
|
Yang H, Lu J, Zhu P, Sun Y, Hu Z, Li D, Huang J. Blue Light Attracts More Spodoptera frugiperda Moths and Promotes Their Flight Speed. INSECTS 2024; 15:129. [PMID: 38392548 PMCID: PMC10889122 DOI: 10.3390/insects15020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Light traps are a useful method for monitoring and controlling the important migratory pest, the fall armyworm, Spodoptera frugiperda. Studies have shown that S. frugiperda is sensitive to blue, green, or ultraviolet (UV) light, but the conclusions are inconsistent. Furthermore, conventional black light traps are less effective for trapping S. frugiperda. To improve the trapping efficiency of this pest, it is crucial to determine the specific wavelength to which S. frugiperda is sensitive and measure its flight capability under that wavelength. This study investigated the effects of light wavelength on the phototaxis and flight performance of S. frugiperda. The results showed that blue light was the most sensitive wavelength among the three different LED lights and was unaffected by gender. The flight capability of S. frugiperda varied significantly in different light conditions, especially for flight speed. The fastest flight speed was observed in blue light, whereas the slowest was observed in UV light compared to dark conditions. During a 12 h flight period, speed declined more rapidly in blue light and more slowly in UV, whereas speed remained stable in dark conditions. Meanwhile, the proportion of fast-flying individuals was highest under blue light, which was significantly higher than under UV light. Therefore, the use of light traps equipped with blue LED lights can improve the trapping efficiency of S. frugiperda. These results also provide insights for further research on the effects of light pollution on migratory insects.
Collapse
Affiliation(s)
- Haibo Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Jing Lu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Pinhong Zhu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Yalan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhenjie Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Dingxu Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Jianrong Huang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
23
|
Martin O, Nguyen C, Sarfati R, Chowdhury M, Iuzzolino ML, Nguyen DMT, Layer RM, Peleg O. Embracing firefly flash pattern variability with data-driven species classification. Sci Rep 2024; 14:3432. [PMID: 38341450 PMCID: PMC10858911 DOI: 10.1038/s41598-024-53671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Many nocturnally active fireflies use precisely timed bioluminescent patterns to identify mates, making them especially vulnerable to light pollution. As urbanization continues to brighten the night sky, firefly populations are under constant stress, and close to half of the species are now threatened. Ensuring the survival of firefly biodiversity depends on a large-scale conservation effort to monitor and protect thousands of populations. While species can be identified by their flash patterns, current methods require expert measurement and manual classification and are infeasible given the number and geographic distribution of fireflies. Here we present the application of a recurrent neural network (RNN) for accurate automated firefly flash pattern classification. Using recordings from commodity cameras, we can extract flash trajectories of individuals within a swarm and classify their species with an accuracy of approximately seventy percent. In addition to its potential in population monitoring, automated classification provides the means to study firefly behavior at the population level. We employ the classifier to measure and characterize the variability within and between swarms, unlocking a new dimension of their behavior. Our method is open source, and deployment in community science applications could revolutionize our ability to monitor and understand firefly populations.
Collapse
Affiliation(s)
- Owen Martin
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Chantal Nguyen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Raphael Sarfati
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Murad Chowdhury
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Michael L Iuzzolino
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
| | - Dieu My T Nguyen
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan M Layer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Orit Peleg
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
- Department of Physics, University of Colorado, Boulder, CO, USA.
- Department of Applied Math, University of Colorado, Boulder, CO, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
24
|
Fabian ST, Sondhi Y, Allen PE, Theobald JC, Lin HT. Why flying insects gather at artificial light. Nat Commun 2024; 15:689. [PMID: 38291028 PMCID: PMC10827719 DOI: 10.1038/s41467-024-44785-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of "lunar navigation" and "escape to the light". However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights.
Collapse
Affiliation(s)
- Samuel T Fabian
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Yash Sondhi
- Institute for Environment, Department of Biology, Florida International University, Miami, FL, 33174, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Pablo E Allen
- Council on International Educational Exchange, Monteverde Apto, 43-5655, Costa Rica
| | - Jamie C Theobald
- Institute for Environment, Department of Biology, Florida International University, Miami, FL, 33174, USA
| | - Huai-Ti Lin
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
25
|
Lewis SM, Jusoh WFA, Walker AC, Fallon CE, Joyce R, Yiu V. Illuminating Firefly Diversity: Trends, Threats and Conservation Strategies. INSECTS 2024; 15:71. [PMID: 38276820 PMCID: PMC10815995 DOI: 10.3390/insects15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Fireflies are a diverse group of bioluminescent beetles belonging to the family Lampyridae. Recent research on their diversity, evolution, behavior and conservation has greatly advanced our scientific understanding of these charismatic insects. In this review, we first summarize new discoveries about their taxonomic and ecological diversity, then focus on recent endeavors to identify and protect threatened fireflies around the world. We outline the main threats linked to recent population declines (habitat loss and degradation, light pollution, pesticide overuse, climate change and tourism) and describe relevant risk factors that predict which species will be particularly vulnerable to these threats. Although global coordination of firefly conservation efforts has begun only recently, considerable progress has already been made. We describe work by the IUCN SSC Firefly Specialist Group to identify species currently facing elevated extinction risks and to devise conservation strategies to protect them. To date, IUCN Red List assessments have been completed for 150 firefly taxa, about 20% of which face heightened extinction risks. The conservation status for many species has yet to be determined due to insufficient information, although targeted surveys and community science projects have contributed valuable new data. Finally, we highlight some examples of successful firefly habitat protection and restoration efforts, and we use the framework of the IUCN SSC Species Conservation Cycle to point out high-priority actions for future firefly conservation efforts.
Collapse
Affiliation(s)
- Sara M. Lewis
- IUCN SSC Firefly Specialist Group, Gland, Switzerland; (W.F.A.J.); (C.E.F.)
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Wan F. A. Jusoh
- IUCN SSC Firefly Specialist Group, Gland, Switzerland; (W.F.A.J.); (C.E.F.)
- School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Anna C. Walker
- IUCN SSC Firefly Specialist Group, Gland, Switzerland; (W.F.A.J.); (C.E.F.)
- New Mexico BioPark Society, Albuquerque, NM 87102, USA
| | - Candace E. Fallon
- IUCN SSC Firefly Specialist Group, Gland, Switzerland; (W.F.A.J.); (C.E.F.)
- The Xerces Society for Invertebrate Conservation, Portland, OR 97232, USA
| | - Richard Joyce
- IUCN SSC Firefly Specialist Group, Gland, Switzerland; (W.F.A.J.); (C.E.F.)
- The Xerces Society for Invertebrate Conservation, Portland, OR 97232, USA
| | - Vor Yiu
- IUCN SSC Firefly Specialist Group, Gland, Switzerland; (W.F.A.J.); (C.E.F.)
- Hong Kong Entomological Society, Hong Kong, China
| |
Collapse
|
26
|
Méndez A, Prieto B, Aguirre I Font JM, Sanmartín P. Better, not more, lighting: Policies in urban areas towards environmentally-sound illumination of historical stone buildings that also halts biological colonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167560. [PMID: 37797770 DOI: 10.1016/j.scitotenv.2023.167560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Anthropogenic or Artificial light at night (ALAN) pollution, or more simply light pollution, is an issue of increasing concern to the general public, as well as to scientists and politicians. However, although advances have been made in terms of scientific knowledge, these advances have not been fully transferred to or considered by politicians. In addition, illumination of stone monuments in urban areas is an emerging contribution to ALAN pollution that has scarcely been considered to date. This paper presents a literature review of the topic of light pollution and related policies, including a bibliometric analysis of studies published between 2020 and 2022. The prevailing legislation in Europe regarding the regulation of outdoor lighting, which emphasises the complexity of controlling light pollution, is summarised and the regulation of monumental lighting in Spain is discussed. Findings concerning the impact of ALAN on biodiversity in urban areas, and the promising biostatic effect of ornamental lighting (halting biological colonization on stone monuments, mainly caused by algae and cyanobacteria) are described. Finally, trends in monument illumination and policymaking towards environmentally sustainable management are considered.
Collapse
Affiliation(s)
- Anxo Méndez
- GEMAP (GI-1243), Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; CISPAC, Cidade da Cultura, Santiago de Compostela, Spain
| | - Beatriz Prieto
- GEMAP (GI-1243), Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; CISPAC, Cidade da Cultura, Santiago de Compostela, Spain
| | | | - Patricia Sanmartín
- GEMAP (GI-1243), Departamento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Liu Y, Tao YD, Zhang LB, Wang F, Xu J, Zhang JZ, Fu DY. Blue Light Exposure Caused Large-Scale Transcriptional Changes in the Abdomen and Reduced the Reproductive Fitness of the Fall Armyworm Spodoptera frugiperda. INSECTS 2023; 15:10. [PMID: 38249016 PMCID: PMC10816951 DOI: 10.3390/insects15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
In the present study, we found that blue light stress negatively affected the development periods, body weight, survival and reproduction of Spodoptera frugiperda, and it showed a dose-dependent reaction, as longer irradiation caused severer effects. Further transcriptome analysis found blue light stress induced fast and large-scale transcriptional changes in the head, thorax and, particularly, the abdomen of female S. frugiperda adults. A functional enrichment analysis indicated that shorter durations of blue light irradiation induced the upregulation of more stress response- and defense-related genes or pathways, such as abiotic stimuli detection and response, oxidative stress, ion channels and protein-kinase-based signal pathways. In the abdomen, however, different durations of blue-light-exposure treatments all induced the downregulation of a large number genes and pathways related to cellular processes, metabolism, catalysis and reproduction, which may be a trade-off between antistress defense and other processes or a strategy to escape stressful conditions. These results indicate irradiation duration- and tissue-specific blue light stress responses and consequences, as well as suggest that the stress that results in transcriptional alterations is associated with the stress that causes a fitness reduction in S. frugiperda females.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Yi-Dong Tao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Li-Bao Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Fen Wang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Tianbao Customs Comprehensive Technical Center, Wenshan 663603, China
| | - Jin Xu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| | - Da-Ying Fu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.-D.T.); (F.W.)
| |
Collapse
|
28
|
Grenis K, Nufio C, Wimp GM, Murphy SM. Does artificial light at night alter moth community composition? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220365. [PMID: 37899018 PMCID: PMC10613536 DOI: 10.1098/rstb.2022.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/28/2023] [Indexed: 10/31/2023] Open
Abstract
Ecological studies investigating the effects of artificial light at night (ALAN) have primarily focused on single or a few species, and seldom on community-level dynamics. As ALAN is a potential cause of insect and biodiversity declines, community-level perspectives are essential. We empirically tested the hypothesis that moth species differentially respond to ALAN and that these responses can cause shifts in community composition. We sampled moths from prairie fragments in Colorado, USA. We tested whether local light sources, sky glow, site area and/or vegetation affected moth community diversity. We found that increased sky glow decreased moth abundance and species richness and shifted community composition. Increased sky glow shifted moth community composition when light and bait traps were combined; notably this result appears to be driven entirely by moths sampled at bait traps, which is an unbiased sampling technique. Our results show that ALAN has significant effects on moth communities and that local light sources have contrasting effects on moth community composition compared to sky glow. It is imperative that we better understand the contrasting effects of types of ALAN to comprehend the overall impacts of light pollution on biodiversity declines. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Kylee Grenis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - César Nufio
- University of Colorado Museum of Natural History, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioInteractive Department, Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Gina M. Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Shannon M. Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| |
Collapse
|
29
|
Coetzee BWT, Burke AM, Koekemoer LL, Robertson MP, Smit IPJ. Scaling artificial light at night and disease vector interactions into socio-ecological systems: a conceptual appraisal. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220371. [PMID: 37899011 PMCID: PMC10613543 DOI: 10.1098/rstb.2022.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 10/31/2023] Open
Abstract
There is burgeoning interest in how artificial light at night (ALAN) interacts with disease vectors, particularly mosquitoes. ALAN can alter mosquito behaviour and biting propensity, and so must alter disease transfer rates. However, most studies to date have been laboratory-based, and it remains unclear how ALAN modulates disease vector risk. Here, we identify five priorities to assess how artificial light can influence disease vectors in socio-ecological systems. These are to (i) clarify the mechanistic role of artificial light on mosquitoes, (ii) determine how ALAN interacts with other drivers of global change to influence vector disease dynamics across species, (iii) determine how ALAN interacts with other vector suppression strategies, (iv) measure and quantify the impact of ALAN at scales relevant for vectors, and (v) overcome the political and social barriers in implementing it as a novel vector suppression strategy. These priorities must be addressed to evaluate the costs and benefits of employing appropriate ALAN regimes in complex socio-ecological systems if it is to reduce disease burdens, especially in the developing world. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Bernard W. T. Coetzee
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Ashley M. Burke
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, 2131, South Africa
| | - Mark P. Robertson
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
| | - Izak P. J. Smit
- Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield 0028, South Africa
- Scientific Services, South African National Parks, George, South Africa
- Sustainability Research Unit, Nelson Mandela University (NMU), George Campus, Madiba drive, 6531 George, South Africa
| |
Collapse
|
30
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
31
|
Dyer A, Ryser R, Brose U, Amyntas A, Bodnar N, Boy T, Franziska Bucher S, Cesarz S, Eisenhauer N, Gebler A, Hines J, Kyba CCM, Menz MHM, Rackwitz K, Shatwell T, Terlau JF, Hirt MR. Insect communities under skyglow: diffuse night-time illuminance induces spatio-temporal shifts in movement and predation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220359. [PMID: 37899019 PMCID: PMC10613549 DOI: 10.1098/rstb.2022.0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nora Bodnar
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Thomas Boy
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Christopher C. M. Kyba
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany
- Geographisches Institut, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Myles H. M. Menz
- College of Science and Engineering, James Cook University, 4811 Townsville, Australia
- Department of Migration, Max Planck Institute of Animal Behaviour, 78315 Radolfzell, Germany
| | - Karl Rackwitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), 39114 Magdeburg, Germany
| | - Jördis F. Terlau
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
32
|
Vaz S, Manes S, Khattar G, Mendes M, Silveira L, Mendes E, de Morais Rodrigues E, Gama-Maia D, Lorini ML, Macedo M, Paiva PC. Global meta-analysis of urbanization stressors on insect abundance, richness, and traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165967. [PMID: 37543317 DOI: 10.1016/j.scitotenv.2023.165967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Anthropic stressors are among the greatest concerns in nature conservation. Among these, deforestation and urban expansion are major drivers of habitat loss, which is a major threat to biodiversity. Insects, the largest and most abundant group of animals, are declining at alarming rates. However, global estimates of the impact of anthropic stressors on insect abundance, richness, and traits are still lacking. Here, we performed a meta-analysis to estimate the impact of urbanization stressors on insect abundance, diversity, and traits. Our design focused on the effects of urbanization on moderators such as insects' activity periods, climatic zones, development stages, ecosystem, functional roles, mobility, orders, and life history. We found that insects are negatively affected by urban stressors across most moderators evaluated. Our research estimated that in insects, urbanization resulted in a mean decrease of 42 % in abundance, 40 % in richness, and 24 % in trait effects, compared to a conserved area. Even though in general there was greater loss in abundance than in richness, each moderator was affected by different means and to varying degrees, which results from artificial lighting at night as well as land use. Our study highlights the importance of promoting better protection of insect biodiversity in the future from the enormous loss in biodiversity reported in >500 papers assessed.
Collapse
Affiliation(s)
- Stephanie Vaz
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Stella Manes
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil; International Institute for Sustainability (IIS), Rio de Janeiro, RJ, Brazil
| | - Gabriel Khattar
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mariana Mendes
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Luiz Silveira
- Department of Biology, Western Carolina University, Apodaca Science Building, 122 Central Dr, Cullowhee, NC 28723, United States of America
| | - Eduardo Mendes
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Erimágna de Morais Rodrigues
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Danielle Gama-Maia
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Maria Lucia Lorini
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Margarete Macedo
- Departamento de Ecologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Paulo Cesar Paiva
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
33
|
Zheng Y, Ghosh S, Das S. A Butterfly-Inspired Multisensory Neuromorphic Platform for Integration of Visual and Chemical Cues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307380. [PMID: 38069632 DOI: 10.1002/adma.202307380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Unisensory cues are often insufficient for animals to effectively engage in foraging, mating, and predatory activities. In contrast, integration of cues collected from multiple sensory organs enhances the overall perceptual experience and thereby facilitates better decision-making. Despite the importance of multisensory integration in animals, the field of artificial intelligence (AI) and neuromorphic computing has primarily focused on processing unisensory information. This lack of emphasis on multisensory integration can be attributed to the absence of a miniaturized hardware platform capable of co-locating multiple sensing modalities and enabling in-sensor and near-sensor processing. In this study, this limitation is addressed by utilizing the chemo-sensing properties of graphene and the photo-sensing capability of monolayer molybdenum disulfide (MoS2 ) to create a multisensory platform for visuochemical integration. Additionally, the in-memory-compute capability of MoS2 memtransistors is leveraged to develop neural circuits that facilitate multisensory decision-making. The visuochemical integration platform is inspired by intricate courtship of Heliconius butterflies, where female species rely on the integration of visual cues (such as wing color) and chemical cues (such as pheromones) generated by the male butterflies for mate selection. The butterfly-inspired visuochemical integration platform has significant implications in both robotics and the advancement of neuromorphic computing, going beyond unisensory intelligence and information processing.
Collapse
Affiliation(s)
- Yikai Zheng
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Subir Ghosh
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
- Electrical Engineering, Penn State University, University Park, PA, 16802, USA
- Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
34
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
35
|
Hao Q, Wang L, Liu G, Ren Z, Wu Y, Yu Z, Yu J. Exploring the construction of urban artificial light ecology: a systematic review and the future prospects of light pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101963-101988. [PMID: 37667125 DOI: 10.1007/s11356-023-29462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Artificial light at night (ALAN) is rapidly growing and expanding globally, posing threats to ecological safety. Urban light pollution prevention and control are moving toward urban artificial light ecology construction. To clarify the need for light ecology construction, this work analyzes 1690 articles on ALAN and light pollution and 604 on ecological light pollution from 1998 to 2022. The development process and thematic evolution of light pollution research are combed through, the historical inevitability of artificial light ecology construction is excavated, and the ecological risks of light pollution to typical animals are summarized. The results show that international research has advanced to the ecological risk factors of light pollution and the related stress mechanisms, the quantification, prediction, and pre-warning by multiple technical means, and the translation of light pollution research outcomes to prevention and control practices. While Chinese scholars have begun to pay attention to the ecological risks of light pollution, the evaluation indicators and prevention and control measures remain primarily based on human-centered needs. Therefore, a more integrated demand-side framework of light ecology construction that comprehensively considers multiple risk receptors is further constructed. Given the development trend in China, we clarified the consistency of the ecological effect of landscape lighting with landsense ecology and the consistency of light ecological risk prevention and control with the concept of One Health. Ultimately, landsense light ecology is proposed based on the "One Health" concept. This work is expected to provide a reference and inspiration for future construction of urban artificial light ecology.
Collapse
Affiliation(s)
- Qingli Hao
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Lixiong Wang
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Gang Liu
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Zhuofei Ren
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Yuting Wu
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Zejun Yu
- School of Architecture, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China
| | - Juan Yu
- School of Architecture, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Building Physical Environment and Ecological Technology, Tianjin, 300072, China.
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
36
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
37
|
Troscianko J. OSpRad: an open-source, low-cost, high-sensitivity spectroradiometer. J Exp Biol 2023; 226:jeb245416. [PMID: 37334657 PMCID: PMC10357011 DOI: 10.1242/jeb.245416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Spectroradiometry is a vital tool in a wide range of biological, physical, astronomical and medical fields, yet its cost and accessibility are frequent barriers to use. Research into the effects of artificial light at night (ALAN) further compounds these difficulties with requirements for sensitivity to extremely low light levels across the ultraviolet to human-visible spectrum. Here, I present an open-source spectroradiometry (OSpRad) system that meets these design challenges. The system utilises an affordable miniature spectrometer chip (Hamamatsu C12880MA), combined with an automated shutter and cosine-corrector, microprocessor controller, and graphical user interface 'app' that can be used with smartphones or desktop computers. The system has high ultraviolet sensitivity and can measure spectral radiance at 0.001 cd m-2 and irradiance at 0.005 lx, covering the vast majority of real-world night-time light levels. The OSpRad system's low cost and high sensitivity make it well suited to a range of spectrometry and ALAN research.
Collapse
Affiliation(s)
- Jolyon Troscianko
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
38
|
Bauer IL. The oral repellent - science fiction or common sense? Insects, vector-borne diseases, failing strategies, and a bold proposition. Trop Dis Travel Med Vaccines 2023; 9:7. [PMID: 37381000 DOI: 10.1186/s40794-023-00195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Over the last decades, unimaginable amounts of money have gone into research and development of vector control measures, repellents, treatment, and vaccines for vector borne diseases. Technological progress and scientific breakthroughs allowed for ever more sophisticated and futuristic strategies. Yet, each year, millions of people still die or suffer from potentially serious consequences of malaria or dengue to more recent infections, such as zika or chikungunya, or of debilitating consequences of neglected tropical diseases. This does not seem value for money. In addition, all current vector control strategies and personal protection methods have shortcomings, some serious, that are either destructive to non-target species or unsatisfactory in their effectiveness. On the other hand, the rapid decline in insect populations and their predators reflects decades-long aggressive and indiscriminate vector control. This major disruption of biodiversity has an impact on human life not anticipated by the well-meaning killing of invertebrates. The objective of this paper is to re-examine current control methods, their effectiveness, their impact on biodiversity, human and animal health, and to call for scientific courage in the pursuit of fresh ideas. This paper brings together topics that are usually presented in isolation, thereby missing important links that offer potential solutions to long-standing problems in global health. First, it serves as a reminder of the importance of insects to human life and discusses the few that play a role in transmitting disease. Next, it examines critically the many currently employed vector control strategies and personal protection methods. Finally, based on new insights into insect chemo-sensation and attractants, this perspective makes a case for revisiting a previously abandoned idea, the oral repellent, and its use via currently successful methods of mass-application. The call is out for focused research to provide a powerful tool for public health, tropical medicine, and travel medicine.
Collapse
Affiliation(s)
- Irmgard L Bauer
- College of Healthcare Sciences, Academy - Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
39
|
Moubarak EM, David Fernandes AS, Stewart AJA, Niven JE. Artificial light impairs local attraction to females in male glow-worms. J Exp Biol 2023; 226:jeb245760. [PMID: 37311409 DOI: 10.1242/jeb.245760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023]
Abstract
The negative effects of artificial lighting at night (ALAN) on insects are increasingly recognised and have been postulated as one possible cause of declines in insect populations. Yet, the behavioural mechanisms underpinning ALAN effects on insects remain unclear. ALAN interferes with the bioluminescent signal female glow-worms use to attract males, disrupting reproduction. To determine the behavioural mechanisms that underpin this effect of ALAN, we quantified the effect of white illumination on males' ability to reach a female-mimicking LED within a Y-maze. We show that as the intensity of illumination increases, the proportion of males reaching the female-mimicking LED declines. Brighter illumination also increases the time taken by males to reach the female-mimicking LED. This is a consequence of males spending more time: (i) in the central arm of the Y-maze; and (ii) with their head retracted beneath their head shield. These effects reverse rapidly when illumination is removed, suggesting that male glow-worms are averse to white light. Our results show that ALAN not only prevents male glow-worms from reaching females, but also increases the time they take to reach females and the time they spend avoiding exposure to light. This demonstrates that the impacts of ALAN on male glow-worms extend beyond those previously observed in field experiments, and raises the possibility that ALAN has similar behavioural impacts on other insect species that remain undetected in field experiments.
Collapse
Affiliation(s)
- Estelle M Moubarak
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | - Alan J A Stewart
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
40
|
Ramniwas S, Tyagi PK, Sharma A, Kumar G. Editorial: Abiotic stress and physiological adaptive strategies of insects. Front Physiol 2023; 14:1210052. [PMID: 37215168 PMCID: PMC10193026 DOI: 10.3389/fphys.2023.1210052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Affiliation(s)
- Seema Ramniwas
- University Center for Research and Development, Chandigarh University, Mohali, India
| | | | - Aanchal Sharma
- University Center for Research and Development, Chandigarh University, Mohali, India
| | - Girish Kumar
- The Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
41
|
Jacquier L, Molet M, Doums C. Urban colonies are less aggressive but forage more than their forest counterparts in the ant Temnothorax nylanderi. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
42
|
Eckhartt GM, Ruxton GD. Insects within bushes assemble and forage closer to artificial light at night. Ethology 2023. [DOI: 10.1111/eth.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | - Graeme D. Ruxton
- School of Biology University of St Andrews St Andrews KY16 9TH UK
| |
Collapse
|
43
|
Fimbres-Macias JP, Harris TA, Hamer SA, Hamer GL. Phenology and environmental predictors of Triatoma sanguisuga dispersal in east-central Texas, United States. Acta Trop 2023; 240:106862. [PMID: 36787862 DOI: 10.1016/j.actatropica.2023.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Of 11 triatomine species in the United States (US), Triatoma sanguisuga has the widest distribution across a 23-state region encompassing the southeastern US. This species consistently feeds on humans and dogs and has a high infection prevalence with the Chagas parasite Trypanosoma cruzi, with over 30-60% of adults infected. Little is known about the phenology and environmental predictors of dispersal activity of Triatoma sanguisuga. Using manual searches standardized by effort, we sampled kissing bugs in east central Texas, US every other night from June to November 2020 to determine their phenology and environmental predictors of activity. We found 176 triatomines alive, all of which were T. sanguisuga, with peak collections in early August and cessation of activity by late October; the phenology as determined by this active surveillance matched what has been reported using a passive community science approach. Using a negative binomial regression, we found temperature to have a positive correlation with T. sanguisuga dispersal activity, while wind speed had a significant negative correlation. We identified increased collections during sampling sessions with precipitation during the preceding 22 h. Further, wind from the southwest - the direction of most of the sylvatic habitat in the study area - was correlated with an increased dispersal activity, suggesting wind-facilitated dispersal. Given concerns for human and animal Chagas disease within the distribution of T. sanguisuga, vector control strategies can be adapted based on the factors influencing dispersal behavior.
Collapse
Affiliation(s)
- Juan P Fimbres-Macias
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Trevor A Harris
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
44
|
Deitsch JF, Kaiser SA. Artificial light at night increases top-down pressure on caterpillars: experimental evidence from a light-naive forest. Proc Biol Sci 2023; 290:20230153. [PMID: 36883276 PMCID: PMC9993043 DOI: 10.1098/rspb.2023.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Artificial light at night (ALAN) is a globally widespread and expanding form of anthropogenic change that impacts arthropod biodiversity. ALAN alters interspecific interactions between arthropods, including predation and parasitism. Despite their ecological importance as prey and hosts, the impact of ALAN on larval arthropod stages, such as caterpillars, is poorly understood. We examined the hypothesis that ALAN increases top-down pressure on caterpillars from arthropod predators and parasitoids. We experimentally illuminated study plots with moderate levels (10-15 lux) of LED lighting at light-naive Hubbard Brook Experimental Forest, New Hampshire. We measured and compared between experimental and control plots: (i) predation on clay caterpillars, and (ii) abundance of arthropod predators and parasitoids. We found that predation rates on clay caterpillars and abundance of arthropod predators and parasitoids were significantly higher on ALAN treatment plots relative to control plots. These results suggest that moderate levels of ALAN increase top-down pressure on caterpillars. We did not test mechanisms, but sampling data indicates that increased abundance of predators near lights may play a role. This study highlights the importance of examining the effects of ALAN on both adult and larval life stages and suggests potential consequences of ALAN on arthropod populations and communities.
Collapse
Affiliation(s)
- John F. Deitsch
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Sara A. Kaiser
- Center for Biodiversity Sciences, Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
45
|
Manuel R, Johannes T, Sathyan R, Couldridge VCK. Temporal partitioning of Bullacris unicolor (Orthoptera: Pneumoridae) calling activity to avoid predation. BIOACOUSTICS 2023. [DOI: 10.1080/09524622.2023.2170469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Robyn Manuel
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Tarné Johannes
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Rekha Sathyan
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | | |
Collapse
|
46
|
Kivelä L, Elgert C, Lehtonen TK, Candolin U. The color of artificial light affects mate attraction in the common glow-worm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159451. [PMID: 36252663 DOI: 10.1016/j.scitotenv.2022.159451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Artificial light at night, often referred to as 'light pollution', is a global environmental problem that threatens many nocturnal organisms. One such species is the European common glow-worm (Lampyris noctiluca), in which reproduction relies on the ability of sedentary bioluminescent females to attract flying males to mate. Previous studies show that broad-spectrum white artificial light interferes with mate attraction in this beetle. However, much less is known about wavelength-specific effects. In this study, we experimentally investigate how the peak wavelength (color) of artificial light affects glow-worm mate attraction success in the field by using dummy females that trap males landing to mate. Each dummy was illuminated from above by either a blue (peak wavelength: 452 nm), white (449 nm), yellow (575 nm), or red (625 nm) LED lighting, or light switched off in the control. We estimated mate attraction success as both the probability of attracting at least one male and the number of males attracted. In both cases, mate attraction success depended on the peak wavelength of the artificial light, with short wavelengths (blue and white) decreasing it more than long wavelengths (yellow and red). Hence, adjusting the spectrum of artificial light can be an effective measure for mitigating the negative effects of light pollution on glow-worm reproduction.
Collapse
Affiliation(s)
- Linnea Kivelä
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland.
| | - Christina Elgert
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | - Topi K Lehtonen
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland; Natural Resources Institute, Paavo Havaksen tie 3, 90570 Oulu, Finland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| |
Collapse
|
47
|
Yao H, Shu L, Yang F, Jin Y, Yang Y. The phototactic rhythm of pests for the Solar Insecticidal Lamp: A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1018711. [PMID: 36743546 PMCID: PMC9893115 DOI: 10.3389/fpls.2022.1018711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Pest management has been a great challenge since the beginning of human agricultural activities. Since the 1930s, chemical pesticide control has been a major control technology that can solve some of the pest problems in agricultural production. Still, it is harmful to food safety and the ecological environment. Meanwhile, the extensive use of chemical pesticides may lead to the rapid development of pest resistance. Because of the advantages of low cost, eco-friendly advantage, and low side effects, Solar Insecticidal Lamp (SIL) as the main physical control technology has been widely used for pest management in agricultural production in China. Owing to the phototaxis of pests, they have a phototropic rhythm during the nighttime. We can adjust the SIL insecticidal time according to the phototropic rhythm of pests. The purpose of this paper is to provide a comprehensive review of the pest phototactic rhythm in a selection of 24 pest species. It is the first comprehensive survey on the phototactic rhythm of pests and the time segments of this survey are accurate to the hour. The phototactic rhythm of pests are investigated in two different varieties of crops: 1) food crops and 2) economic crops. We also discuss and analyze the various factors (e.g., meteorological conditions, insecticidal devices, physiological states and others) that affect the changing phototactic rhythm of pests. Finally, we highlight some open research challenge issues and future directions.
Collapse
Affiliation(s)
- Heyang Yao
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Lei Shu
- College of Artificial intelligence, Nanjing Agricultural University, Nanjing, China
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| | - Fan Yang
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China
| | - Yinghao Jin
- College of Artificial intelligence, Nanjing Agricultural University, Nanjing, China
| | - Yuli Yang
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
48
|
Wolkoff M, Fyie L, Meuti M. Light Pollution Disrupts Seasonal Differences in the Daily Activity and Metabolic Profiles of the Northern House Mosquito, Culex pipiens. INSECTS 2023; 14:64. [PMID: 36661993 PMCID: PMC9865375 DOI: 10.3390/insects14010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The Northern House mosquito, Culex pipiens, is an important disease vector, and females are capable of surviving the winter in a state of overwintering diapause. This species' diapause response has been extensively studied, and recent evidence suggests that the circadian clock is involved in measuring seasonal changes in daylength to initiate the diapause response. However, differences in the circadian activity of diapausing and non-diapausing Cx. pipiens have not been thoroughly investigated. Additionally, recent findings indicate that artificial light at night (ALAN) can disrupt mosquito diapause, potentially prolonging the mosquito biting season. We compared the circadian locomotor activity of mosquitoes reared in diapause-averting, long-day conditions and diapause-inducing, short-day conditions with and without ALAN to elucidate the interplay between circadian activity, diapause, and light pollution. We also uncovered metabolic differences between mosquitoes reared under diapausing and non-diapausing photoperiods with and without ALAN by measuring the concentration of protein, fructose, glycogen, water-soluble carbohydrates, and lipids. We found that ALAN exposure altered several diapause-associated phenotypes including slightly, but not significantly, increasing activity levels in short day-reared mosquitoes; and preventing some short day-reared mosquitoes from accumulating lipids. ALAN also significantly reduced glycogen and water-soluble carbohydrate levels in long day-reared mosquitoes. Based on our findings, light pollution may decrease insect fitness by perturbing metabolism, and may also impact several phenotypes associated with insect diapause, potentially extending the mosquito biting season and preventing insects in urban environments from overwintering successfully.
Collapse
|
49
|
Genoud AP, Saha T, Williams GM, Thomas BP. Insect biomass density: measurement of seasonal and daily variations using an entomological optical sensor. APPLIED PHYSICS. B, LASERS AND OPTICS 2023; 129:26. [PMID: 36685802 PMCID: PMC9845170 DOI: 10.1007/s00340-023-07973-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/09/2023] [Indexed: 05/06/2023]
Abstract
Insects are major actors in Earth's ecosystems and their recent decline in abundance and diversity is alarming. The monitoring of insects is paramount to understand the cause of this decline and guide conservation policies. In this contribution, an infrared laser-based system is used to remotely monitor the biomass density of flying insects in the wild. By measuring the optical extinction caused by insects crossing the 36-m long laser beam, the Entomological Bistatic Optical Sensor System used in this study can evaluate the mass of each specimen. At the field location, between July and December 2021, the instrument made a total of 262,870 observations of insects for which the average dry mass was 17.1 mg and the median 3.4 mg. The daily average mass of flying insects per meter cube of air at the field location has been retrieved throughout the season and ranged between near 0 to 1.2 mg/m3. Thanks to its temporal resolution in the minute range, daily variations of biomass density have been observed as well. These measurements show daily activity patterns changing with the season, as large increases in biomass density were evident around sunset and sunrise during Summer but not during Fall.
Collapse
Affiliation(s)
- Adrien P. Genoud
- Department of Physics, New Jersey Institute of Technology, Newark, NJ USA
| | - Topu Saha
- Department of Physics, New Jersey Institute of Technology, Newark, NJ USA
| | | | - Benjamin P. Thomas
- Department of Physics, New Jersey Institute of Technology, Newark, NJ USA
| |
Collapse
|
50
|
Jayachandran D, Pannone A, Das M, Schranghamer TF, Sen D, Das S. Insect-Inspired, Spike-Based, in-Sensor, and Night-Time Collision Detector Based on Atomically Thin and Light-Sensitive Memtransistors. ACS NANO 2022; 17:1068-1080. [PMID: 36584350 DOI: 10.1021/acsnano.2c07877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Detecting a potential collision at night is a challenging task owing to the lack of discernible features that can be extracted from the available visual stimuli. To alert the driver or, alternatively, the maneuvering system of an autonomous vehicle, current technologies utilize resource draining and expensive solutions such as light detection and ranging (LiDAR) or image sensors coupled with extensive software running sophisticated algorithms. In contrast, insects perform the same task of collision detection with frugal neural resources. Even though the general architecture of separate sensing and processing modules is the same in insects and in image-sensor-based collision detectors, task-specific obstacle avoidance algorithms allow insects to reap substantial benefits in terms of size and energy. Here, we show that insect-inspired collision detection algorithms, when implemented in conjunction with in-sensor processing and enabled by innovative optoelectronic integrated circuits based on atomically thin and photosensitive memtransistor technology, can greatly simplify collision detection at night. The proposed collision detector eliminates the need for image capture and image processing yet demonstrates timely escape responses for cars on collision courses under various real-life scenarios at night. The collision detector also has a small footprint of ∼40 μm2 and consumes only a few hundred picojoules of energy. We strongly believe that the proposed collision detectors can augment existing sensors necessary for ensuring autonomous vehicular safety.
Collapse
Affiliation(s)
- Darsith Jayachandran
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania16802, United States
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania16802, United States
| | - Mayukh Das
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania16802, United States
| | - Thomas F Schranghamer
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania16802, United States
| | - Dipanjan Sen
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania16802, United States
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania16802, United States
- Electrical Engineering and Computer Science, Penn State University, University Park, Pennsylvania16802, United States
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania16802, United States
| |
Collapse
|