1
|
Calder DR, Carlton JT, Keith I, Ashton GV, Larson K, Ruiz GM, Herrera E, Golfin G. Biofouling hydroids (Cnidaria: Hydrozoa) from a Tropical Eastern Pacific island, with remarks on their biogeography. J NAT HIST 2022. [DOI: 10.1080/00222933.2022.2068387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dale R. Calder
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Invertebrate Zoology, Royal British Columbia Museum, Victoria, British Columbia, Canada
| | - James T. Carlton
- Williams College-Mystic Seaport Ocean & Coastal Studies Program, Mystic, CT, USA
| | - Inti Keith
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Ecuador
| | - Gail V. Ashton
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Kristen Larson
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Gregory M. Ruiz
- Smithsonian Environmental Research Center, Edgewater, MD and Tiburon, CA, USA
| | - Esteban Herrera
- Sistema Nacional de Áreas de Conservación/Área de Conservación Marina, Cocos, Costa Rica
| | - Geiner Golfin
- Sistema Nacional de Áreas de Conservación/Área de Conservación Marina, Cocos, Costa Rica
| |
Collapse
|
2
|
Mendoza-Portillo V, Galván-Tirado C, Portnoy DS, Valenzuela-Quiñonez F, Domínguez-Domínguez O, Durand JD, Pérez-Urbiola JC, García-De León FJ. Genetic diversity and structure of circumtropical almaco jack, Seriola rivoliana: tool for conservation and management. JOURNAL OF FISH BIOLOGY 2020; 97:882-894. [PMID: 32598029 DOI: 10.1111/jfb.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/13/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The almaco jack, Seriola rivoliana, is a circumtropical pelagic fish of importance both in commercial fisheries and in aquaculture. To understand levels of genetic diversity within and among populations in the wild, population genetic structure and the relative magnitude of migration were assessed using mtDNA sequence data and single nucleotide polymorphisms (SNPs) from individuals sampled from locations in the Pacific and Atlantic Oceans. A total of 25 variable sites of cytochrome c oxidase subunit 1 and 3678 neutral SNPs were recovered. Three genetic groups were identified, with both marker types distributed in different oceanic regions: Pacific-1 in central Pacific, Pacific-2 in eastern Pacific and Atlantic in western Atlantic. Nonetheless, the analysis of SNP identified a fourth population in the Pacific coast of Baja California Sur, Mexico (Pacific-3), whereas that of mtDNA did not. This mito-nuclear discordance is likely explained by a recently diverged Pacific-3 population. In addition, two mtDNA haplogroups were found within the western Atlantic, likely indicating that the species came into the Atlantic from the Indian Ocean with historical gene flow from the eastern Pacific. Relative gene flow among ocean basins was low with r m < 0.2, whereas in the eastern Pacific it was asymmetric and higher from south to north (r m > 0.79). The results reflect the importance of assessing genetic structure and gene flow of natural populations for the purposes of sustainable management.
Collapse
Affiliation(s)
- Verónica Mendoza-Portillo
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | | | - David S Portnoy
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, USA
| | | | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
- Instituto Nacional de Biodiversidad, Quito, Ecuador
| | | | | | - Francisco J García-De León
- Laboratorio de Genética para la Conservación, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
3
|
Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J. Trans-Atlantic Distribution and Introgression as Inferred from Single Nucleotide Polymorphism: Mussels Mytilus and Environmental Factors. Genes (Basel) 2020; 11:genes11050530. [PMID: 32397617 PMCID: PMC7288462 DOI: 10.3390/genes11050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Large-scale climate changes influence the geographic distribution of biodiversity. Many taxa have been reported to extend or reduce their geographic range, move poleward or displace other species. However, for closely related species that can hybridize in the natural environment, displacement is not the only effect of changes of environmental variables. Another option is subtler, hidden expansion, which can be found using genetic methods only. The marine blue mussels Mytilus are known to change their geographic distribution despite being sessile animals. In addition to natural dissemination at larval phase—enhanced by intentional or accidental introductions and rafting—they can spread through hybridization and introgression with local congeners, which can create mixed populations sustaining in environmental conditions that are marginal for pure taxa. The Mytilus species have a wide distribution in coastal regions of the Northern and Southern Hemisphere. In this study, we investigated the inter-regional genetic differentiation of the Mytilus species complex at 53 locations in the North Atlantic and adjacent Arctic waters and linked this genetic variability to key local environmental drivers. Of seventy-nine candidate single nucleotide polymorphisms (SNPs), all samples were successfully genotyped with a subset of 54 SNPs. There was a clear interregional separation of Mytilus species. However, all three Mytilus species hybridized in the contact area and created hybrid zones with mixed populations. Boosted regression trees (BRT) models showed that inter-regional variability was important in many allele models but did not prevail over variability in local environmental factors. Local environmental variables described over 40% of variability in about 30% of the allele frequencies of Mytilus spp. For the 30% of alleles, variability in their frequencies was only weakly coupled with local environmental conditions. For most studied alleles the linkages between environmental drivers and the genetic variability of Mytilus spp. were random in respect to “coding” and “non-coding” regions. An analysis of the subset of data involving functional genes only showed that two SNPs at Hsp70 and ATPase genes correlated with environmental variables. Total predictive ability of the highest performing models (r2 between 0.550 and 0.801) were for alleles that discriminated most effectively M. trossulus from M. edulis and M. galloprovincialis, whereas the best performing allele model (BM101A) did the best at discriminating M. galloprovincialis from M. edulis and M. trossulus. Among the local environmental variables, salinity, water temperature, ice cover and chlorophyll a concentration were by far the greatest predictors, but their predictive performance varied among different allele models. In most cases changes in the allele frequencies along these environmental gradients were abrupt and occurred at a very narrow range of environmental variables. In general, regions of change in allele frequencies for M. trossulus occurred at 8–11 psu, 0–10 °C, 60%–70% of ice cover and 0–2 mg m−3 of chlorophyll a, M. edulis at 8–11 and 30–35 psu, 10–14 °C and 60%–70% of ice cover and for M. galloprovincialis at 30–35 psu, 14–20 °C.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
- Correspondence: ; Tel.: +48-58-7311763
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Lis Bach
- Arctic Research Centre, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark;
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Mikhail Gantsevich
- Department of Invertebrate Zoology, Faculty of Biology, Moscow MV Lomonosov State University, 119234 Moscow, Russia;
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Tomasz Kijewski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - John H. McDonald
- Biology Department, Western Washington University, Bellingham, WA 98225, USA;
| | - Kristil Kindem Sundsaasen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Ants Kaasik
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Kristjan Herkül
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| |
Collapse
|
4
|
Hobern D. BIOSCAN: DNA barcoding to accelerate taxonomy and biogeography for conservation and sustainability. Genome 2020; 64:161-164. [PMID: 32268069 DOI: 10.1139/gen-2020-0009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Donald Hobern
- Centre for Biodiversity Genomics, 50 Stone Road East, University of Guelph, Guelph, ON N1G2W1, Canada.,Centre for Biodiversity Genomics, 50 Stone Road East, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|