1
|
Thompson MSA, Couce E, Schratzberger M, Lynam CP. Climate change affects the distribution of diversity across marine food webs. GLOBAL CHANGE BIOLOGY 2023; 29:6606-6619. [PMID: 37814904 PMCID: PMC10946503 DOI: 10.1111/gcb.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 10/11/2023]
Abstract
Many studies predict shifts in species distributions and community size composition in response to climate change, yet few have demonstrated how these changes will be distributed across marine food webs. We use Bayesian Additive Regression Trees to model how climate change will affect the habitat suitability of marine fish species across a range of body sizes and belonging to different feeding guilds, each with different habitat and feeding requirements in the northeast Atlantic shelf seas. Contrasting effects of climate change are predicted for feeding guilds, with spatially extensive decreases in the species richness of consumers lower in the food web (planktivores) but increases for those higher up (piscivores). Changing spatial patterns in predator-prey mass ratios and fish species size composition are also predicted for feeding guilds and across the fish assemblage. In combination, these changes could influence nutrient uptake and transformation, transfer efficiency and food web stability, and thus profoundly alter ecosystem structure and functioning.
Collapse
Affiliation(s)
- Murray S. A. Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Elena Couce
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Michaela Schratzberger
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Christopher P. Lynam
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| |
Collapse
|
2
|
Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Weiskopf SR, Myers BJE, Arce-Plata MI, Blanchard JL, Ferrier S, Fulton EA, Harfoot M, Isbell F, Johnson JA, Mori AS, Weng E, HarmáCˇková ZV, Londoño-Murcia MC, Miller BW, Pereira LM, Rosa IMD. A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models. Bioscience 2022; 72:1062-1073. [PMID: 36506699 PMCID: PMC9718641 DOI: 10.1093/biosci/biac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity-ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.
Collapse
Affiliation(s)
- Sarah R Weiskopf
- US Geological Survey National Climate Adaptation Science Center, in Reston, Virginia, United States
| | - Bonnie J E Myers
- North Carolina State University, Raleigh, North Carolina, United States
| | | | | | - Simon Ferrier
- Land and Water, CSIRO, Canberra, Australian Capital Territory, Australia
| | | | - Mike Harfoot
- United Nations Environment Programme–World Conservation Monitoring Centre, Cambridge, England, United Kingdom
| | - Forest Isbell
- University of Minnesota, Saint Paul, Minnesota, United States
| | | | | | - Ensheng Weng
- Columbia University and with the NASA Goddard Institute for Space Studies, both New York, New York, United States
| | - Zuzana V HarmáCˇková
- Czech Academy of Sciences, Brno, Czechia and with the Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | | | - Brian W Miller
- US Geological Survey North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Laura M Pereira
- University of the Witwatersrand, Johannesburg, South Africa and with the Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|