1
|
Boyle RA, Moody ERR, Babcock G, McShea DW, Álvarez-Carretero S, Lenton TM, Donoghue PCJ. Persistence selection between simulated biogeochemical cycle variants for their distinct effects on the Earth system. Proc Natl Acad Sci U S A 2025; 122:e2406344122. [PMID: 39937861 PMCID: PMC11848429 DOI: 10.1073/pnas.2406344122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/19/2024] [Indexed: 02/14/2025] Open
Abstract
The average long-term impact of Darwinian evolution on Earth's habitability remains extremely uncertain. Recent attempts to reconcile this uncertainty by "Darwinizing" nonreplicating biogeochemical processes subject to persistence-based selection conform with the historicity of the geochemical record but lack mechanistic clarity. Here, we present a theoretical framework showing how: 1) A biogeochemical "cycle-biota-variant" (CBV) can be defined non-arbitrarily as one biologically facilitated pathway for net recycling of an essential element, plus the genotypes driving the relevant interconversion reactions. 2) Distinct CBVs can be individuated if they have climatic or geochemical side effects that feed-back on relative persistence. 3) The separation of spatial/temporal scales between the dynamics of such effects and those of conventional Darwinian evolution can introduce a degree of randomness into the relationship between CBVs and their Earth system impact properties, loosely analogous to that between the biochemical causes and evolutionary effects of genetic mutation. 4) Threshold behavior in climate feedback can accentuate biotic impacts and lead to CBV-level "competitive exclusion". 5) CBV-level persistence selection is observationally distinguishable from genotype-level selection by strong covariance between "internal" CBV properties (genotypes and reactions) and "external" climatic effects, which we argue is analogous to the covariance between fitness and traits under conventional Darwinian selection. These factors cannot circumvent the basic fact that local natural selection will often favor phenotypes that ultimately destabilize large-scale geochemical/climatic properties. However, we claim that our results nevertheless demonstrate the theoretical coherence of persistence-selection between non-replicating life-environment interaction patterns and therefore have broad biogeochemical applicability.
Collapse
Affiliation(s)
- Richard A. Boyle
- Global Systems Institute, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QE, United Kingdom
| | - Edmund R. R. Moody
- Bristol Paleobiology Group, School of Earth Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Gunnar Babcock
- Department of Microbiology, College of Agricultural and Life sciences, Cornell University, Ithaca, NY14853
| | | | - Sandra Álvarez-Carretero
- Bristol Paleobiology Group, School of Earth Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Timothy M. Lenton
- Global Systems Institute, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QE, United Kingdom
| | - Philip C. J. Donoghue
- Bristol Paleobiology Group, School of Earth Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
2
|
Leroux SJ, Schmitz OJ. Integrating Network and Meta-Ecosystem Models for Developing a Zoogeochemical Theory. Ecol Lett 2025; 28:e70076. [PMID: 39964037 DOI: 10.1111/ele.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 05/10/2025]
Abstract
Human activities have caused significant changes in animal abundance, interactions, movement and diversity at multiple scales. Growing empirical evidence reveals the myriad ways that these changes can alter the control that animals exert over biogeochemical cycling. Yet a theoretical framework to coherently integrate animal abundance, interactions, movement and diversity to predict when and how animal controls over biogeochemical cycling (i.e., zoogeochemistry) change is currently lacking. We present such a general framework that provides guidance on linking mathematical models of species interaction and diversity (network theory) and movement of organisms and non-living materials (meta-ecosystem theory) to account for biotic and abiotic feedback by which animals control biogeochemical cycling. We illustrate how to apply the framework to develop predictive models for specific ecosystem contexts using a case study of a primary producer-herbivore bipartite trait network in a boreal forest ecosystem. We further discuss key priorities for enhancing model development, data-model integration and application. The framework offers an important step to enhance empirical research that can better inform and justify broader conservation efforts aimed at conserving and restoring animal populations, their movement and critical functional roles in support of ecosystem services and nature-based climate solutions.
Collapse
Affiliation(s)
- Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Oswald J Schmitz
- School of Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Meyer GA, Leroux SJ. A theory for context-dependent effects of mammalian trampling on ecosystem nitrogen cycling. J Anim Ecol 2024; 93:583-598. [PMID: 38566364 DOI: 10.1111/1365-2656.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Large mammalian herbivores substantially impact ecosystem functioning. As their populations are dramatically altered globally, disentangling their consumptive and non-consumptive effects is critical to advance mechanistic understanding and improve prediction of effects over ecosystem and Earth-system spatial extents. Mathematical models have played an important role in clarifying potential mechanisms of herbivore zoogeochemistry, based mostly on their consumptive effects as primary consumers and recyclers of organic and inorganic matter via defecation and urination. Trampling is a ubiquitous effect among walking vertebrates, but the consequences and potential mechanisms of trampling in diverse environments remain poorly understood. We derive a novel mathematical model of large mammalian herbivore effects on ecosystem nitrogen cycling, focusing on how trampling and environmental context impact soil processes. We model herbivore trampling with a linear positive or negative additive effect on soil-mediated nitrogen cycling processes. Combining analytical and numerical analyses, we find trampling by large mammalian herbivores is likely to decrease nitrogen mineralisation rate across diverse environments, such as temperate grassland and boreal forest. These effects are mediated by multiple potential mechanisms, including trampling-induced changes to detritivore biomass and functioning (e.g. rate of organic matter consumption). We also uncover scenarios where trampling can increase nitrogen mineralisation rate, contingent on the environment-specific relative sensitivity of detritivore mineral-nitrogen release and detritivore mortality, to trampling. In contrast to some consumptive mechanisms, our results suggest the pace of soil nitrogen cycling prior to trampling has little influence over the direction of the trampling net effect on nitrogen mineralisation, but that net effects may be greater in slow-cycling systems (e.g. boreal forests) than in fast-cycling systems (e.g. grasslands). Our model clarifies the potential consequences of previously overlooked mechanisms of zoogeochemistry that are common to all terrestrial biomes. Our results provide empirically testable predictions to guide future progress in empirical and theoretical studies of herbivore effects in diverse environmental contexts. Resolving ecological contingencies around animal consumptive and non-consumptive effects will improve whole-ecosystem management efforts such as restoration and rewilding.
Collapse
Affiliation(s)
- G Adam Meyer
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
4
|
Ferraro KM, Welker L, Ward EB, Schmitz OJ, Bradford MA. Plant mycorrhizal associations mediate the zoogeochemical effects of calving subsidies by a forest ungulate. J Anim Ecol 2023; 92:2280-2296. [PMID: 37667666 DOI: 10.1111/1365-2656.14002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Animals interact with and impact ecosystem biogeochemical cycling-processes known as zoogeochemistry. While the deposition of various animal materials (e.g. carcasses and faeces) has been shown to create nutrient hotspots and alter nutrient cycling and storage, the inputs from parturition (i.e. calving) have yet to be explored. We examine the effects of ungulate parturition, which often occurs synchronously during spring green-up and therefore aligns with increased plant nitrogen demand in temperate biomes. Impacts of zoogeochemical inputs are likely context-dependent, where differences in material quality, quantity and the system of deposition modulate their impacts. Plant mycorrhizal associations, especially, create different nutrient-availability contexts, which can modify the effects of nutrient inputs. We, therefore, hypothesize that mycorrhizal associations modulate the consequences of parturition on soil nutrient dynamics and nitrogen pools. We established experimental plots that explore the potential of two kinds of zoogeochemical inputs deposited at ungulate parturition (placenta and natal fluid) in forest microsites dominated by either ericoid mycorrhizal (ErM) or ectomycorrhizal (EcM) plants. We assess how these inputs affect rates of nutrient cycling and nitrogen content in various ecosystem pools, using isotope tracers to track the fate of nitrogen inputs into plant and soil pools. Parturition treatments accelerate nutrient cycling processes and increase nitrogen contents in the plant leaf, stem and fine root pools. The ecosystem context strongly modulates these effects. Microsites dominated by ErM plants mute parturition treatment impacts on most nutrient cycling processes and plant pools. Both plant-fungal associations are, however, equally efficient at retaining nitrogen, although retention of nitrogen in the parturition treatment plots was more than two times lower than in control plots. Our results highlight the potential importance of previously unexamined nitrogen inputs from animal inputs, such as those from parturition, in contributing to fine-scale heterogeneity in nutrient cycling and availability. Animal inputs should therefore be considered, along with their interactions with plant mycorrhizal associations, in terms of how zoogeochemical dynamics collectively affect nutrient heterogeneity in ecosystems.
Collapse
Affiliation(s)
- Kristy M Ferraro
- Yale University School of the Environment, New Haven, Connecticut, USA
| | - Les Welker
- Yale University School of the Environment, New Haven, Connecticut, USA
| | - Elisabeth B Ward
- The New York Botanical Garden, The Bronx, New York, USA
- The Forest School, Yale University School of the Environment, New Haven, Connecticut, USA
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Oswald J Schmitz
- Yale University School of the Environment, New Haven, Connecticut, USA
| | - Mark A Bradford
- Yale University School of the Environment, New Haven, Connecticut, USA
- The Forest School, Yale University School of the Environment, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Pichon B, Thébault E, Lacroix G, Gounand I. Quality matters: Stoichiometry of resources modulates spatial feedbacks in aquatic-terrestrial meta-ecosystems. Ecol Lett 2023; 26:1700-1713. [PMID: 37458203 DOI: 10.1111/ele.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Species dispersal and resource spatial flows greatly affect the dynamics of connected ecosystems. So far, research on meta-ecosystems has mainly focused on the quantitative effect of subsidy flows. Yet, resource exchanges at heterotrophic-autotrophic (e.g. aquatic-terrestrial) ecotones display a stoichiometric asymmetry that likely matters for functioning. Here, we joined ecological stoichiometry and the meta-ecosystem framework to understand how subsidy stoichiometry mediates the response of the meta-ecosystem to subsidy flows. Our model results demonstrate that resource flows between ecosystems can induce a positive spatial feedback loop, leading to higher production at the meta-ecosystem scale by relaxing local ecosystem limitations ('spatial complementarity'). Furthermore, we show that spatial flows can also have an unexpected negative impact on production when accentuating the stoichiometric mismatch between local resources and basal species needs. This study paves the way for studies on the interdependency of ecosystems at the landscape extent.
Collapse
Affiliation(s)
- Benoît Pichon
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Elisa Thébault
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| | - Gérard Lacroix
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- CNRS, UAR 3194 (ENS, CNRS), CEREEP-Ecotron IleDeFrance, Ecole Normale Supérieure, Paris, France
| | - Isabelle Gounand
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| |
Collapse
|
6
|
The metamicrobiome: key determinant of the homeostasis of nutrient recycling. Trends Ecol Evol 2023; 38:183-195. [PMID: 36328807 DOI: 10.1016/j.tree.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
The metamicrobiome is an integrated concept to study carbon and nutrient recycling in ecosystems. Decomposition of plant-derived matter by free-living microbes and fire - two key recycling pathways - are highly sensitive to global change. Mutualistic associations of microbes with plants and animals strongly reduce this sensitivity. By solving a fundamental allometric trade-off between metabolic and homeostatic capacity, these mutualisms enable continued recycling of plant matter where and when conditions are unfavourable for the free-living microbiome. A diverse metamicrobiome - where multiple plant- and animal-associated microbiomes complement the free-living microbiome - thus enhances homeostasis of ecosystem recycling rates in variable environments. Research into metamicrobiome structure and functioning in ecosystems is therefore important for progress towards understanding environmental change.
Collapse
|
7
|
Iordache V, Neagoe A. Conceptual methodological framework for the resilience of biogeochemical services to heavy metals stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116401. [PMID: 36279774 DOI: 10.1016/j.jenvman.2022.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The idea of linking stressors, services providing units (SPUs), and ecosystem services (ES) is ubiquitous in the literature, although is currently not applied in areas contaminated with heavy metals (HMs), This integrative literature review introduces the general form of a deterministic conceptual model of the cross-scale effect of HMs on biogeochemical services by SPUs with a feedback loop, a cross-scale heuristic concept of resilience, and develops a method for applying the conceptual model. The objectives are 1) to identify the clusters of existing research about HMs effects on ES, biodiversity, and resilience to HMs stress, 2) to map the scientific fields needed for the conceptual model's implementation, identify institutional constraints for inter-disciplinary cooperation, and propose solutions to surpass them, 3) to describe how the complexity of the cause-effect chain is reflected in the research hypotheses and objectives and extract methodological consequences, and 4) to describe how the conceptual model can be implemented. A nested analysis by CiteSpace of a set of 16,176 articles extracted from the Web of Science shows that at the highest level of data aggregation there is a clear separation between the topics of functional traits, stoichiometry, and regulating services from the typical issues of the literature about HMs, biodiversity, and ES. Most of the resilience to HMs stress agenda focuses on microbial communities. General topics such as the biodiversity-ecosystem function relationship in contaminated areas are no longer dominant in the current research, as well as large-scale problems like watershed management. The number of Web of Science domains that include the analyzed articles is large (26 up to 87 domains with at least ten articles, depending on the sub-set), but thirteen domains account for 70-80% of the literature. The complexity of approaches regarding the cause-effect chain, the stressors, the biological and ecological hierarchical level and the management objectives was characterized by a detailed analysis of 60 selected reviews and 121 primary articles. Most primary articles approach short causal chains, and the number of hypotheses or objectives by article tends to be low, pointing out the need for portfolios of complementary research projects in coherent inter-disciplinary programs and innovation ecosystems to couple the ES and resilience problems in areas contaminated with HMs. One provides triggers for developing innovation ecosystems, examples of complementary research hypotheses, and an example of technology transfer. Finally one proposes operationalizing the conceptual methodological model in contaminated socio-ecological systems by a calibration, a sensitivity analysis, and a validation phase.
Collapse
Affiliation(s)
- Virgil Iordache
- University of Bucharest, Department of Systems Ecology and Sustainability, and "Dan Manoleli" Research Centre for Ecological Services - CESEC, Romania.
| | - Aurora Neagoe
- University of Bucharest, "Dan Manoleli" Research Centre for Ecological Services - CESEC and "Dimitrie Brândză" Botanical Garden, Romania.
| |
Collapse
|
8
|
Tian G, Zhang C, Wei F. CO x conversion to aromatics: a mini-review of nanoscale performance. NANOSCALE HORIZONS 2022; 7:1478-1487. [PMID: 36102797 DOI: 10.1039/d2nh00307d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conversion of COx into value-added green aromatics is considered as a promising route to achieve the world's decarbonization due to its considerable thermodynamic driving force and atomic economy where low H/C ratio aromatics are chosen as a product. It is enabled by bifunctional nano-catalysts composed of metal oxides with abundant oxygen vacancies and acid zeolites, thus realizing superior selectivity in hydrocarbons at the single pass of COx conversion. In this mini-review, we mainly provide some thought-provoking insights at the nanoscale of this complicated process including the proximity of active sites, reaction mechanism, asymmetric desorption behavior of intermediates and final products and overall thermodynamic analysis. The facile surface diffusion of intermediates owing to the proximity of active sites stimulates the reaction, which follows an autocatalytic process. This positive feedback attributed to the autocatalytic cycle accelerates the transformation of energy and materials in the thermodynamically optimal direction, making the reaction highly selective towards the final products. This complicated coupling process, like a nano-maze constituted by these micro-environment factors, is complicated in terms of the reaction pathway but highly selective to a fixed direction guided by overall thermodynamics. Deep understanding of such an autocatalytic cycle at the nanoscale paves the way for the rational design of next-generation high-performance catalysts.
Collapse
Affiliation(s)
- Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
10
|
Theis K, Quévreux P, Loreau M. Nutrient cycling and self‐regulation determine food web stability. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kevin Theis
- Theoretical and Experimental Ecology Station UPR 2001 CNRS Moulis France
| | - Pierre Quévreux
- Theoretical and Experimental Ecology Station UPR 2001 CNRS Moulis France
| | - Michel Loreau
- Theoretical and Experimental Ecology Station UPR 2001 CNRS Moulis France
| |
Collapse
|
11
|
Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, Prieto I, Wurzburger N, Zadworny M, Bagniewska-Zadworna A, Blancaflor EB, Brunner I, Gessler A, Hobbie SE, Iversen CM, Mommer L, Picon-Cochard C, Postma JA, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Sun T, Valverde-Barrantes OJ, Weigelt A, York LM, Stokes A. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. THE NEW PHYTOLOGIST 2021; 232:1123-1158. [PMID: 33159479 DOI: 10.1111/nph.17072] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, Moulis, 09200, France
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 34293, France
| | - Catherine Roumet
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 34293, France
| | - Louise H Comas
- USDA-ARS Water Management and Systems Research Unit, 2150 Centre Avenue, Bldg D, Suite 320, Fort Collins, CO, 80526, USA
| | - Monique Weemstra
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 34293, France
| | - A Glyn Bengough
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Gerlinde B De Deyn
- Soil Biology Group, Wageningen University, Wageningen, 6700 AA, the Netherlands
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Jitka Klimešová
- Department of Functional Ecology, Institute of Botany CAS, Dukelska 135, Trebon, 37901, Czech Republic
| | - Martin Lukac
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, UK
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - M Luke McCormack
- Center for Tree Science, Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| | - Ina C Meier
- Plant Ecology, University of Goettingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Functional Forest Ecology, University of Hamburg, Haidkrugsweg 1, Barsbüttel, 22885, Germany
| | - Loïc Pagès
- UR 1115 PSH, Centre PACA, site Agroparc, INRAE, Avignon Cedex 9, 84914, France
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Iván Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Elison B Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, 8092, Switzerland
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University and Research, PO box 47, Wageningen, 6700 AA, the Netherlands
| | | | - Johannes A Postma
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
| | - Laura Rose
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, Moulis, 09200, France
| | - Peter Ryser
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, 2333 CC, the Netherlands
| | - Tao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Oscar J Valverde-Barrantes
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, Leipzig, 04103, Germany
| | - Larry M York
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Alexia Stokes
- INRA, AMAP, CIRAD, IRD, CNRS, University of Montpellier, Montpellier, 34000, France
| |
Collapse
|
12
|
Thermodynamic Analysis of the Landolt-Type Autocatalytic System. Catalysts 2021. [DOI: 10.3390/catal11111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A recent work demonstrated the example of the Landolt-type reaction system and how the simplest autocatalytic loop is described by the kinetic mass action law and proper parametrization of direct and autocatalytic pathways. Using a methodology of non-equilibrium thermodynamics, the thermodynamic consistency of that kinetic model is analyzed and the mass action description is generalized, including an alternative description by the empirical rate equation. Relationships between independent and dependent reactions and their rates are given. The mathematical modeling shows that following the time evolution of reaction rates provides additional insight into autocatalytic behavior. A brief note on thermodynamic driving forces and coupling with diffusion is added. In summary, this work extends and generalizes the kinetic description of the Landolt-type system, placing it within the framework of non-equilibrium thermodynamics and demonstrating its thermodynamic consistency.
Collapse
|
13
|
Bishop TR, Griffiths HM, Ashton LA, Eggleton P, Woon JS, Parr CL. Clarifying Terrestrial Recycling Pathways. Trends Ecol Evol 2020; 36:9-11. [PMID: 33012566 DOI: 10.1016/j.tree.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Tom R Bishop
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa.
| | - Hannah M Griffiths
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK.
| | - Louise A Ashton
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul Eggleton
- Department of Life Sciences, Natural History Museum, London, UK
| | - Joel S Woon
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK; Department of Life Sciences, Natural History Museum, London, UK
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, South Africa
| |
Collapse
|
14
|
Sun ZK, He WM. Autotoxicity of root exudates varies with species identity and soil phosphorus. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:429-434. [PMID: 30904977 DOI: 10.1007/s10646-019-02035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 05/13/2023]
Abstract
Root exudate autotoxicity (i.e. root exudates from a given plant have toxic effects on itself) has been recognized to be widespread. Here we examined how plant species identity and soil phosphorus (P) availability influenced this autotoxicity and the possible stoichiometric mechanisms. We conducted an experiment with three species (Luctuca sativa, Sesbania cannabina, and Solidago canadensis), which were subject to four treatments consisting of activated carbon (AC) and soil P. AC addition increased the whole-plant biomass of each species under high P conditions and this AC effect varied strongly with species identity. For Solidago, the relative increase in whole-plant biomass due to AC addition was larger in the low P than in the high P. Root exudate autotoxicity differed between roots and shoots. AC addition decreased root N:P ratios but failed to influence shoot N:P ratios in three species. These findings suggest that soil P enrichment might mediate root exudate autotoxicity and that this P-mediated autotoxicity might be related to root N and P stoichiometry. These patterns and their implications need to be addressed in the context of plant communities.
Collapse
Affiliation(s)
- Zhen-Kai Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Wei-Ming He
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
15
|
El‐Hacen EM, Bouma TJ, Oomen P, Piersma T, Olff H. Large‐scale ecosystem engineering by flamingos and fiddler crabs on West‐African intertidal flats promote joint food availability. OIKOS 2019. [DOI: 10.1111/oik.05261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- El‐Hacen M. El‐Hacen
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen PO Box 11103 NL‐9700 CC Groningen the Netherlands
- Parc National du Banc d'Arguin (PNBA), Chami, Wilaya de Dakhlet Nouadhibou R.I de Mauritanie
| | - Tjeerd J. Bouma
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen PO Box 11103 NL‐9700 CC Groningen the Netherlands
- Royal Netherlands Inst. of Sea Research (NIOZ), Dept of Estuarine and Delta Systems and Utrecht Univ Yerseke the Netherlands
| | - Puck Oomen
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen PO Box 11103 NL‐9700 CC Groningen the Netherlands
| | - Theunis Piersma
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen PO Box 11103 NL‐9700 CC Groningen the Netherlands
- Royal Netherlands Inst. for Sea Research (NIOZ), Dept of Coastal Systems and Utrecht Univ Den Burg Texel the Netherlands
| | - Han Olff
- Groningen Inst. for Evolutionary Life Sciences, Univ. of Groningen PO Box 11103 NL‐9700 CC Groningen the Netherlands
| |
Collapse
|