1
|
Dallstream C, Milder L, Powers JS, Soper FM. Strong scale-dependent relationships between fine-root function and soil properties uncovered with spatially coupled sampling. THE NEW PHYTOLOGIST 2025; 246:2506-2521. [PMID: 40302234 DOI: 10.1111/nph.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Substantial fine-root trait variation is found at fine spatial scales but rarely linked to edaphic variation. We assessed the spatial scales of variation in fine-root traits and adjacent soils using a spatially coupled, nested sampling scheme along a fertility gradient in a seasonally dry tropical forest tree, Handroanthus ochraceus. We examined relationships among fine-root traits and identified edaphic drivers of fine-root function. We collected fine-root samples at three scales: multiple samples within individual trees (separated by > 1 m), among trees in a site (3-60 m) and across three sites (15-60 km). We quantified physiological, symbiotic, morphological, chemical and architectural traits, and paired soil physical and chemical properties. Fine-root traits and soils often varied most at fine spatial scales. Root arbuscular mycorrhizal colonization and phosphomonoesterase activity were coordinated and driven by coarse-scale heterogeneity in bulk density, magnesium and phosphate. The trade-off between large diameter and high specific root length, respiration rate and nitrogen concentration was driven by fine-scale heterogeneity in ammonium. The role of base cations was notable, with nitrogen and phosphorus being less influential than expected. Intraspecific fine-root responses to edaphic properties can occur at multiple spatial scales simultaneously and be detected when variation in both is properly captured and spatially matched.
Collapse
Affiliation(s)
| | - Lola Milder
- Bieler School of Environment, McGill University, Montreal, QC, H3A 2A7, Canada
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Fiona M Soper
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
- Bieler School of Environment, McGill University, Montreal, QC, H3A 2A7, Canada
| |
Collapse
|
2
|
Cui Y, Peng S, Delgado-Baquerizo M, Rillig MC, Terrer C, Zhu B, Jing X, Chen J, Li J, Feng J, He Y, Fang L, Moorhead DL, Sinsabaugh RL, Peñuelas J. Microbial communities in terrestrial surface soils are not widely limited by carbon. GLOBAL CHANGE BIOLOGY 2023; 29:4412-4429. [PMID: 37277945 DOI: 10.1111/gcb.16765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023]
Abstract
Microbial communities in soils are generally considered to be limited by carbon (C), which could be a crucial control for basic soil functions and responses of microbial heterotrophic metabolism to climate change. However, global soil microbial C limitation (MCL) has rarely been estimated and is poorly understood. Here, we predicted MCL, defined as limited availability of substrate C relative to nitrogen and/or phosphorus to meet microbial metabolic requirements, based on the thresholds of extracellular enzyme activity across 847 sites (2476 observations) representing global natural ecosystems. Results showed that only about 22% of global sites in terrestrial surface soils show relative C limitation in microbial community. This finding challenges the conventional hypothesis of ubiquitous C limitation for soil microbial metabolism. The limited geographic extent of C limitation in our study was mainly attributed to plant litter, rather than soil organic matter that has been processed by microbes, serving as the dominant C source for microbial acquisition. We also identified a significant latitudinal pattern of predicted MCL with larger C limitation at mid- to high latitudes, whereas this limitation was generally absent in the tropics. Moreover, MCL significantly constrained the rates of soil heterotrophic respiration, suggesting a potentially larger relative increase in respiration at mid- to high latitudes than low latitudes, if climate change increases primary productivity that alleviates MCL at higher latitudes. Our study provides the first global estimates of MCL, advancing our understanding of terrestrial C cycling and microbial metabolic feedback under global climate change.
Collapse
Affiliation(s)
- Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | | | - César Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xin Jing
- State Key Laboratory of Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yue He
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Linchuan Fang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Daryl L Moorhead
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, USA
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
3
|
van der Sande MT, Powers JS, Kuyper TW, Norden N, Salgado-Negret B, Silva de Almeida J, Bongers F, Delgado D, Dent DH, Derroire G, do Espirito Santo MM, Dupuy JM, Fernandes GW, Finegan B, Gavito ME, Hernández-Stefanoni JL, Jakovac CC, Jones IL, das Dores Magalhães Veloso M, Meave JA, Mora F, Muñoz R, Pérez-Cárdenas N, Piotto D, Álvarez-Dávila E, Caceres-Siani Y, Dalban-Pilon C, Dourdain A, Du DV, García Villalobos D, Nunes YRF, Sanchez-Azofeifa A, Poorter L. Soil resistance and recovery during neotropical forest succession. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210074. [PMID: 36373919 PMCID: PMC9661943 DOI: 10.1098/rstb.2021.0074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Masha T. van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jennifer S. Powers
- Department of Ecology, Evolution, & Behavior and Plant & Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Thom W. Kuyper
- Soil Biology Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Natalia Norden
- Programa Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humbold,Colombia
| | | | - Jarcilene Silva de Almeida
- Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco CEP 50670-901, Brazil
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Diego Delgado
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Daisy H. Dent
- Smithsonian Tropical Research Institute, Roosevelt Ave. 401 Balboa, Ancon, Panama,Max Planck Institute for Animal Behaviour, Konstanz, 78315, Germany,Department of Environmental Systems Science, ETH Zürich, 8902, Switzerland
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | | | - Juan Manuel Dupuy
- Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Naturales, Calle 43 # 130(32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Geraldo Wilson Fernandes
- Departamento de Genética, Ecologia & Evolução, ICB, Universidade Federal de Minas Gerais, 30161-901 Belo Horizonte, Minas Gerais, Brazil
| | - Bryan Finegan
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Mayra E. Gavito
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190 Morelia, Michoacán, México
| | - José Luis Hernández-Stefanoni
- Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Naturales, Calle 43 # 130(32 y 34, Colonia Chuburná de Hidalgo, C.P. 97205 Mérida, Yucatán, México
| | - Catarina C. Jakovac
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Isabel L. Jones
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | | - Jorge A. Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City CP 04510, México
| | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190 Morelia, Michoacán, México
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands,Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City CP 04510, México
| | - Nathalia Pérez-Cárdenas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, CP 58190 Morelia, Michoacán, México
| | - Daniel Piotto
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna-BA 45613-204, Brazil
| | | | | | - Coralie Dalban-Pilon
- Cirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Dan V. Du
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83843, USA
| | - Daniel García Villalobos
- Programa Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humbold,Colombia
| | - Yule Roberta Ferreira Nunes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros-MG CEP 39401-089, Brazil
| | - Arturo Sanchez-Azofeifa
- Department of Earth and Atmospheric Sciences, Centre for Earth Observation Sciences (CEOS), University of Alberta, Edmonton, Alberta, Canada T6G2E3
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
4
|
A Pantropical Overview of Soils across Tropical Dry Forest Ecoregions. SUSTAINABILITY 2022. [DOI: 10.3390/su14116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Pantropical variation in soils of the tropical dry forest (TDF) biome is enormously high but has been poorly characterized. To quantify variation in the global distribution of TDF soil physical and chemical properties in relation to climate and geology, we produced a synthesis using 7500 points of data with gridded fields representing lithologic, edaphic, and climatic characteristics. Our analyses reveal that 75 TDF ecoregions across five biogeographic domains (Afrotropical, Australasian, Indo-Malayan, Neotropical, and Oceanian) varied strongly with respect to parent material: sediment (57%), metamorphic (22%), volcanic (13%), and plutonic (7%). TDF ecoregions support remarkably high variability in soil suborders (32), with the Neotropical and Oceanian realms being especially diverse. As a whole, TDF soils trend strongly toward low fertility with strong variation across biogeographic domains. Similarly, the exhibited soil properties marked heterogeneity across biogeographic domains, with soil depth varying by an order of magnitude and total organic C, N, and P pools varying threefold. Organic C and N pool sizes were negatively correlated with mean annual temperature (MAT) and positively correlated with mean annual precipitation (MAP). By contrast, the distribution of soil P pools was positively influenced by both MAT and MAP and likely by soil geochemistry, due to high variations in soil parent material across the biogeographic domains. The results summarized here raise important questions as to how climate and parent material control soil biogeochemical processes in TDFs.
Collapse
|
6
|
Powers JS, Mondragón-Botero A, Norden N, Salgado-Negret B, Pizano C, Gonzalez-M R, Vargas G G. Discovering the forest in plain sight: a pop-up Symposium focusing on seasonally dry tropical forests. THE NEW PHYTOLOGIST 2022; 233:62-65. [PMID: 34855226 DOI: 10.1111/nph.17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Jennifer S Powers
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | | | - Natalia Norden
- Programa de Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Cra. 1 #16-20, Bogotá, Colombia
| | | | - Camila Pizano
- Departamento de Ciencias Biológicas, Universidad Icesi, Valle del Cauca, Calle 18 #122-135, Pance, Cali, 760031, Colombia
| | - Roy Gonzalez-M
- Programa de Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Cra. 1 #16-20, Bogotá, Colombia
| | - German Vargas G
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|