1
|
Senofsky SR, Zamudio I, Pan B, McFadden CS. Efficacy of the 28S rDNA barcode in differentiating Caribbean octocorals. Biodivers Data J 2024; 12:e140454. [PMID: 39758945 PMCID: PMC11699515 DOI: 10.3897/bdj.12.e140454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The ecological landscape of Caribbean reefs is rapidly changing as octocorals fill the void left by declining scleractinian populations. Effective molecular barcodes are necessary to accurately identify these octocorals and monitor this shifting ecosystem. We tested the efficacy of the 28S rDNA as a barcode compared to the most commonly used mtMutS barcode on a collection of octocorals from across the Caribbean. Based on pairwise genetic distance values, 28S appeared to be more effective at differentiating species within the families Plexauridae and Gorgoniidae, while mtMutS was slightly more effective at distinguishing species of Pterogorgiidae. However, the standard 28S rDNA primers did not amplify all species as effectively as mtMutS, especially those belonging to the genus Eunicea. A shorter 28S barcode developed for eDNA applications distinguished species as effectively as the complete 28S barcode.
Collapse
Affiliation(s)
- Sloan R Senofsky
- Harvey Mudd College, Claremont, United States of AmericaHarvey Mudd CollegeClaremontUnited States of America
| | - Isabel Zamudio
- Harvey Mudd College, Claremont, United States of AmericaHarvey Mudd CollegeClaremontUnited States of America
| | - Brittany Pan
- Harvey Mudd College, Claremont, United States of AmericaHarvey Mudd CollegeClaremontUnited States of America
| | - Catherine S McFadden
- Harvey Mudd College, Claremont, United States of AmericaHarvey Mudd CollegeClaremontUnited States of America
| |
Collapse
|
2
|
Aoki N, Weiss B, Jézéquel Y, Zhang WG, Apprill A, Mooney TA. Soundscape enrichment increases larval settlement rates for the brooding coral Porites astreoides. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231514. [PMID: 38481984 PMCID: PMC10933538 DOI: 10.1098/rsos.231514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/26/2024]
Abstract
Coral reefs, hubs of global biodiversity, are among the world's most imperilled habitats. Healthy coral reefs are characterized by distinctive soundscapes; these environments are rich with sounds produced by fishes and marine invertebrates. Emerging evidence suggests these sounds can be used as orientation and settlement cues for larvae of reef animals. On degraded reefs, these cues may be reduced or absent, impeding the success of larval settlement, which is an essential process for the maintenance and replenishment of reef populations. Here, in a field-based study, we evaluated the effects of enriching the soundscape of a degraded coral reef to increase coral settlement rates. Porites astreoides larvae were exposed to reef sounds using a custom solar-powered acoustic playback system. Porites astreoides settled at significantly higher rates at the acoustically enriched sites, averaging 1.7 times (up to maximum of seven times) more settlement compared with control reef sites without acoustic enrichment. Settlement rates decreased with distance from the speaker but remained higher than control levels at least 30 m from the sound source. These results reveal that acoustic enrichment can facilitate coral larval settlement at reasonable distances, offering a promising new method for scientists, managers and restoration practitioners to rebuild coral reefs.
Collapse
Affiliation(s)
- Nadège Aoki
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Falmouth, MA 02543, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin Weiss
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, MA 02543, USA
| | - Youenn Jézéquel
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Falmouth, MA 02543, USA
| | - Weifeng Gordon Zhang
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, MA 02543, USA
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, MA 02543, USA
| | - T. Aran Mooney
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Falmouth, MA 02543, USA
| |
Collapse
|
3
|
Rey-Villiers N, Sánchez A, González-Díaz P, Álvarez-Filip L. Morphometric responses of two zooxanthellate octocorals along a water quality gradient in the Cuban northwestern coast. PLoS One 2023; 18:e0290293. [PMID: 37594931 PMCID: PMC10437867 DOI: 10.1371/journal.pone.0290293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Octocoral abundance is increasing on Caribbean reefs, and one of the possible causes is their vertical morphological plasticity that allows them to grow above the substrate to reduce the effect of processes that occur in it (e.g., scour by sediments) as well as adapt to environmental gradients. The aim of this study was to determine the morphometric response of two octocorals species (Eunicea flexuosa and Plexaura kükenthali) with different life strategies in a water quality gradient. The research was carried out between 2008 and 2016 on eight forereefs of northwest Cuba. Different morphometric indicators were measured in the colonies of both species found within a belt transect (100 x 2 m) randomly located at each site. The lowest means in height, diameter, number of terminal branches/colony, cover index, and least arborescent colonies of E. flexuosa were detected at the sites with the greatest anthropogenic pollution. The water quality gradient did not explain the variability of the five morphometric indicators of P. kükenthali. However, hydrodynamic stress was the factor that most negatively affected the morphometry of this species. The chronic effect of poor water quality over time resulted in more small sized colonies of E. flexuosa at the polluted site, probably due to higher mortality. The size distribution of P. kükenthali also showed the same trend but at the sites with greater hydrodynamic stress. These results show that the morphometric response of octocorals along a water quality gradient is species-specific. This study suggests that poor water quality decreases the size and thus availability of habitat provided by octocorals sensitive to that factor (e.g., E. flexuosa) while other tolerant species (e.g., P. kükenthali) could provide the habitat of several organisms in a scenario of increasing anthropogenic pollution.
Collapse
Affiliation(s)
- Néstor Rey-Villiers
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Alberto Sánchez
- Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional, La Paz, Baja California Sur, México
| | | | - Lorenzo Álvarez-Filip
- Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| |
Collapse
|
4
|
Monti M, Giorgi A, Kemp DW, Olson JB. Spatial, temporal and network analyses provide insights into the dynamics of the bacterial communities associated with two species of Caribbean octocorals and indicate possible key taxa. Symbiosis 2023; 90:1-14. [PMID: 37360551 PMCID: PMC10238251 DOI: 10.1007/s13199-023-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Despite the current decline of scleractinian coral populations, octocorals are thriving on reefs in the Caribbean Sea and western North Atlantic Ocean. These cnidarians are holobiont entities, interacting with a diverse array of microorganisms. Few studies have investigated the spatial and temporal stability of the bacterial communities associated with octocoral species and information regarding the co-occurrence and potential interactions between specific members of these bacterial communities remain sparse. To address this knowledge gap, this study investigated the stability of the bacterial assemblages associated with two common Caribbean octocoral species, Eunicea flexuosa and Antillogorgia americana, across time and geographical locations and performed network analyses to investigate potential bacterial interactions. Results demonstrated that general inferences regarding the spatial and temporal stability of octocoral-associated bacterial communities should not be made, as host-specific characteristics may influence these factors. In addition, network analyses revealed differences in the complexity of the interactions between bacteria among the octocoral species analyzed, while highlighting the presence of genera known to produce bioactive secondary metabolites in both octocorals that may play fundamental roles in structuring the octocoral-associated bacteriome. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-023-00923-x.
Collapse
Affiliation(s)
- M. Monti
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - A. Giorgi
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - D. W. Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - J. B. Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| |
Collapse
|
5
|
Hamlet CL, Strickland WC, Battista N, Miller LA. Multiscale flow between the branches and polyps of gorgonians. J Exp Biol 2023; 226:287035. [PMID: 36789875 PMCID: PMC10038146 DOI: 10.1242/jeb.244520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Gorgonians, including sea fans, are soft corals well known for their elaborate branching structure and how they sway in the ocean. This branching structure can modify environmental flows to be beneficial for feeding in a particular range of velocities and, presumably, for a particular size of prey. As water moves through the elaborate branches, it is slowed, and recirculation zones can form downstream of the colony. At the smaller scale, individual polyps that emerge from the branches expand their tentacles, further slowing the flow. At the smallest scale, the tentacles are covered in tiny pinnules where exchange occurs. In this paper, we quantified the gap to diameter ratios for various gorgonians at the scale of the branches, the polyp tentacles and the pinnules. We then used computational fluid dynamics to determine the flow patterns at all three levels of branching. We quantified the leakiness between the branches, tentacles and pinnules over the biologically relevant range of Reynolds numbers and gap-to-diameter ratios, and found that the branches and tentacles can act as either leaky rakes or solid plates depending upon these dimensionless parameters. The pinnules, in contrast, mostly impede the flow. Using an agent-based modeling framework, we quantified plankton capture as a function of the gap-to-diameter ratio of the branches and the Reynolds number. We found that the capture rate depends critically on both morphology and Reynolds number. The results of the study have implications for how gorgonians modify ambient flows for efficient feeding and exchange.
Collapse
Affiliation(s)
- Christina L Hamlet
- Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
| | - W Christopher Strickland
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1320, USA
| | - Nicholas Battista
- Department of Mathematics and Statistics, The College of New Jersey, Ewing Township, NJ 08628, USA
| | - Laura A Miller
- Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tuscon, AZ 85721-0089, USA
| |
Collapse
|
6
|
Tebbett SB, Connolly SR, Bellwood DR. Benthic composition changes on coral reefs at global scales. Nat Ecol Evol 2023; 7:71-81. [PMID: 36631667 DOI: 10.1038/s41559-022-01937-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 10/14/2022] [Indexed: 01/13/2023]
Abstract
Globally, ecosystems are being reconfigured by a range of intensifying human-induced stressors. Coral reefs are at the forefront of this environmental transformation, and if we are to secure their key ecosystem functions and services, it is important to understand the likely configuration of future reefs. However, the composition and trajectory of global coral reef benthic communities is currently unclear. Here our global dataset of 24,468 observations spanning 22 years (1997-2018) revealed that particularly marked declines in coral cover occurred in the Western Atlantic and Central Pacific. The data also suggest that high macroalgal cover, widely regarded as the major degraded state on coral reefs, is a phenomenon largely restricted to the Western Atlantic. At a global scale, the raw data suggest decreased average (± standard error of the mean) hard coral cover from 36 ± 1.4% to 19 ± 0.4% (during a period delineated by the first global coral bleaching event (1998) until the end of the most recent event (2017)) was largely associated with increased low-lying algal cover such as algal turfs and crustose coralline algae. Enhanced understanding of reef change, typified by decreased hard coral cover and increased cover of low-lying algal communities, will be key to managing Anthropocene coral reefs.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia. .,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.
| | - Sean R Connolly
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Queensland, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
7
|
de Carvalho-Junior L, Neves LM, Teixeira-Neves TP, Cardoso SJ. Long-term changes in benthic communities following the invasion by an alien octocoral in the Southwest Atlantic, Brazil. MARINE POLLUTION BULLETIN 2023; 186:114386. [PMID: 36462420 DOI: 10.1016/j.marpolbul.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Invasive alien species are considered one of the main threats to marine biodiversity. We used a BACI design to investigate the changes in rocky reef benthic communities related to the invasion of the octocoral Latissimia ningalooensis in the Southwest Atlantic. Drastic changes in benthic community structure were restricted to the invaded site and associated with the growth of L. ningalooensis on turf algae. Conversely, the zoanthid Palythoa caribaeorum remained stable coverage along the 9-year study period, indicating a greater biotic resistance against the octocoral. Latissimia ningalooensis spread from large and well-established patches to new areas of the reef, increasing turf-octocoral interactions. This study warns of the great invasive potential of the octocoral, due to its high abundance, competitive and expansion ability. The decline in abundance of turf-forming algae following the emergence of L. ningalooensis threatens the structure and functioning of macroalgal-dominated rocky reefs.
Collapse
Affiliation(s)
- Lécio de Carvalho-Junior
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Leonardo M Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil.
| | - Tatiana P Teixeira-Neves
- Laboratory of Aquatic Ecology and Environmental Education, Department of Environmental Sciences, Campus Três Rios, Federal Rural University of Rio de Janeiro, Três Rios, RJ 25802-100, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil; Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
8
|
Lasker HR, Martínez-Quintana Á. Growing up is hard to do: a demographic model of survival and growth of Caribbean octocoral recruits. PeerJ 2022; 10:e14386. [PMID: 36420132 PMCID: PMC9677878 DOI: 10.7717/peerj.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/21/2022] [Indexed: 11/20/2022] Open
Abstract
Background Among species with size structured demography, population structure is determined by size specific survival and growth rates. This interplay is particularly important among recently settled colonial invertebrates for which survival is low and growth is the only way of escaping the high mortality that small colonies are subject to. Gorgonian corals settling on reefs can grow into colonies of millions of polyps and can be meters tall. However, all colonies start their benthic lives as single polyps, which are subject to high mortality rates. Annual survival among these species increases with size, reflecting the ability of colonies to increasingly survive partial mortality as they grow larger. Methods Data on survival and growth of gorgonian recruits in the genera Eunicea and Pseudoplexaura at two sites on the southern coast of St John, US Virgin Islands were used to generate a stage structured model that characterizes growth of recruits from 0.3 cm until they reach 5 cm height. The model used the frequency distributions of colony growth rates to incorporate variability into the model. Results High probabilities of zero and negative growth increase the time necessary to reach 5 cm and extends the demographic bottleneck caused by high mortality to multiple years. Only 5% of the recruits in the model survived and reached 5 cm height and, on average, recruits required 3 y to reach 5 cm height. Field measurements of recruitment rates often use colony height to differentiate recruits from older colonies, but height cannot unambiguously identify recruits due to the highly variable nature of colony growth. Our model shows how recruitment rates based on height average recruitment and survival across more than a single year, but size-based definitions of recruitment if consistently used can characterize the role of supply and early survival in the population dynamics of species.
Collapse
Affiliation(s)
- Howard R. Lasker
- Department of Geology, University at Buffalo, State University of New York, Buffalo, New York, United States of America,Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, United States of America
| | - Ángela Martínez-Quintana
- Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
9
|
Weber L, Soule MK, Longnecker K, Becker CC, Huntley N, Kujawinski EB, Apprill A. Benthic exometabolites and their ecological significance on threatened Caribbean coral reefs. ISME COMMUNICATIONS 2022; 2:101. [PMID: 37938276 PMCID: PMC9723752 DOI: 10.1038/s43705-022-00184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 09/02/2023]
Abstract
Benthic organisms are the architectural framework supporting coral reef ecosystems, but their community composition has recently shifted on many reefs. Little is known about the metabolites released from these benthic organisms and how compositional shifts may influence other reef life, including prolific microorganisms. To investigate the metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting alga, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry. Incubations with reef seawater microorganisms were conducted to monitor changes in microbial abundances and community composition using 16 S rRNA gene sequencing in relation to exudate source and three specific metabolites. Exudates were enriched in amino acids, nucleosides, vitamins, and indole-based metabolites, showing that benthic organisms contribute labile organic matter to reefs. Furthermore, exudate compositions were species-specific, and riboflavin and pantothenic acid emerged as significant coral-produced metabolites, while caffeine emerged as a significant invasive algal-produced metabolite. Microbial abundances and individual microbial taxa responded differently to exudates from stony corals and octocorals, demonstrating that exudate mixtures released from different coral species select for specific bacteria. In contrast, microbial communities did not respond to individual additions of riboflavin, pantothenic acid, or caffeine. This work indicates that recent shifts in benthic organisms alter exudate composition and likely impact microbial communities on coral reefs.
Collapse
Affiliation(s)
- Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| | - Melissa Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
| | - Naomi Huntley
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Marine and Environmental Science Department, University of the Virgin Islands, Charlotte Amalie West, St Thomas, Charlotte Amalie, VI, 00802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| |
Collapse
|
10
|
Crisp SK, Tebbett SB, Bellwood DR. A critical evaluation of benthic phase shift studies on coral reefs. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105667. [PMID: 35653967 DOI: 10.1016/j.marenvres.2022.105667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Coral reef decline has accelerated in the last two decades resulting in substantial research into the phenomenon of 'phase shifts' or 'regime shifts'. However, the conclusions drawn from this research have been varied. Some of this variability may stem from methodological approaches, although the extent to which these factors have shaped our understanding remain largely unexplored. To examine this, we conducted a systematic review of the literature. In doing so, we revealed marked variability in the approaches used for studying phase shifts. Notably, very few studies clearly defined what they meant by phase shifts. Therefore, we developed a clarified definition of phase shifts, which specifically defined persistence and dominance. The applicability of this definition was tested on multi-decadal benthic composition data on the Great Barrier Reef. The number of shifts depended critically on the definition selected, suggesting that this may be a primary reason underpinning the variability in past results.
Collapse
Affiliation(s)
- Samantha K Crisp
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
11
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Edmunds PJ, Lasker HR. Portfolio effects and functional redundancy contribute to the maintenance of octocoral forests on Caribbean reefs. Sci Rep 2022; 12:7106. [PMID: 35501329 PMCID: PMC9061744 DOI: 10.1038/s41598-022-10478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Declines in abundance of scleractinian corals on shallow Caribbean reefs have left many reefs dominated by forests of arborescent octocorals. The ecological mechanisms favoring their persistence require exploration. We quantified octocoral communities from 2014 to 2019 at two sites in St. John, US Virgin Islands, and evaluated their dynamics to assess whether portfolio effects might contribute to their resilience. Octocorals were identified to species, or species complexes, and their abundances and heights were measured, with height2 serving as a biomass proxy. Annual variation in abundance was asynchronous among species, except when they responded in similar ways to hurricanes in September 2017. Multivariate changes in octocoral communities, viewed in 2-dimensional ordinations, were similar between sites, but analyses based on density differed from those based on the biomass proxy. On the density scale, variation in the community composed of all octocoral species was indistinguishable from that quantified with subsets of 6–10 of the octocoral species at one of the two sites, identifying structural redundancy in the response of the community. Conservation of the relative colony size-frequency structure, combined with temporal changes in the species represented by the tallest colonies, suggests that portfolio effects and functional redundancy stabilize the vertical structure and canopy in these tropical octocoral forests.
Collapse
|
13
|
Regime shifts on tropical coral reef ecosystems: future trajectories to animal-dominated states in response to anthropogenic stressors. Emerg Top Life Sci 2021; 6:95-106. [PMID: 34927689 DOI: 10.1042/etls20210231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
Despite the global focus on the occurrence of regime shifts on shallow-water tropical coral reefs over the last two decades, most of this research continues to focus on changes to algal-dominated states. Here, we review recent reports (in approximately the last decade) of regime shifts to states dominated by animal groups other than zooxanthellate Scleractinian corals. We found that while there have been new reports of regime shifts to reefs dominated by Ascidacea, Porifera, Octocorallia, Zoantharia, Actiniaria and azooxanthellate Scleractinian corals, some of these changes occurred many decades ago, but have only just been reported in the literature. In most cases, these reports are over small to medium spatial scales (<4 × 104 m2 and 4 × 104 to 2 × 106 m2, respectively). Importantly, from the few studies where we were able to collect information on the persistence of the regime shifts, we determined that these non-scleractinian states are generally unstable, with further changes since the original regime shift. However, these changes were not generally back to coral dominance. While there has been some research to understand how sponge- and octocoral-dominated systems may function, there is still limited information on what ecosystem services have been disrupted or lost as a result of these shifts. Given that many coral reefs across the world are on the edge of tipping points due to increasing anthropogenic stress, we urgently need to understand the consequences of non-algal coral reef regime shifts.
Collapse
|
14
|
Tracy AM, Weil E, Burge CA. Ecological Factors Mediate Immunity and Parasitic Co-Infection in Sea Fan Octocorals. Front Immunol 2021; 11:608066. [PMID: 33505396 PMCID: PMC7829190 DOI: 10.3389/fimmu.2020.608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The interplay among environment, demography, and host-parasite interactions is a challenging frontier. In the ocean, fundamental changes are occurring due to anthropogenic pressures, including increased disease outbreaks on coral reefs. These outbreaks include multiple parasites, calling into question how host immunity functions in this complex milieu. Our work investigates the interplay of factors influencing co-infection in the Caribbean sea fan octocoral, Gorgonia ventalina, using metrics of the innate immune response: cellular immunity and expression of candidate immune genes. We used existing copepod infections and live pathogen inoculation with the Aspergillus sydowii fungus, detecting increased expression of the immune recognition gene Tachylectin 5A (T5A) in response to both parasites. Cellular immunity increased by 8.16% in copepod infections compared to controls and single Aspergillus infections. We also detected activation of cellular immunity in reef populations, with a 13.6% increase during copepod infections. Cellular immunity was similar in the field and in the lab, increasing with copepod infections and not the fungus. Amoebocyte density and the expression of T5A and a matrix metalloproteinase (MMP) gene were also positively correlated across all treatments and colonies, irrespective of parasitic infection. We then assessed the scaling of immune metrics to population-level disease patterns and found random co-occurrence of copepods and fungus across 15 reefs in Puerto Rico. The results suggest immune activation by parasites may not alter parasite co-occurrence if factors other than immunity prevail in structuring parasite infection. We assessed non-immune factors in the field and found that sea fan colony size predicted infection by the copepod parasite. Moreover, the effect of infection on immunity was small relative to that of site differences and live coral cover, and similar to the effect of reproductive status. While additional immune data would shed light on the extent of this pattern, ecological factors may play a larger role than immunity in controlling parasite patterns in the wild. Parsing the effects of immunity and ecological factors in octocoral co-infection shows how disease depends on more than one host and one parasite and explores the application of co-infection research to a colonial marine organism.
Collapse
Affiliation(s)
- Allison M. Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, United States
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
15
|
Liberman R, Fine M, Benayahu Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105215. [PMID: 33360640 DOI: 10.1016/j.marenvres.2020.105215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Coral reefs are threatened worldwide by global climate change, manifested in anthropogenic ocean warming and acidification. Despite the importance of coral sexual reproduction for the continuity of coral reefs, our understanding of the extent of the impact of climate change on coral sexual reproduction, particularly on coral reproductive phenology and early life stages, is limited. Here, we experimentally examined the effects of predicted end-of-the-century seawater conditions on the sexual reproduction and photosynthetic capacity of a Red-Sea zooxanthellate octocoral, Rhytisma fulvum. Sexually mature colonies were exposed to ambient temperature and pH conditions and to Representative Concentration Pathway (RCP) conditions (4.5 and 8.5), five weeks prior to their expected surface-brooding event. The reproductive phenology of the colonies under the simulated seawater conditions was compared to that on the natural reef. In addition, subsequent planulae development and their metamorphosis into primary polyps under the same RCP conditions as their parent colonies were monitored in a running seawater system. The results reveal that both RCP conditions led to a change in the timing of onset of the surface-brooding event and its synchronicity. In contrast, the surface-brooding event under ambient conditions co-occurred with that of the in-situ reef colonies and maintained its synchrony. Similarly, planula survival and polyp metamorphosis rate were significantly reduced under both RCP conditions compared to propagules reared under ambient conditions. In addition, the photosynthetic capacity of the parent colonies under both RCPs showed a reduction relative to that under the ambient conditions in the experiment, suggesting a reduction in carbon fixation during the late stages of gametogenesis. While our findings indicate that octocoral reproductive phenology is affected by environmental changes, further work is required in order to elucidate the long-term implications for the R. fulvum population in the northern Red Sea.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel; The Interuniversity Institute for Marine Sciences, Eilat, 8810302, Israel.
| | - Maoz Fine
- The Interuniversity Institute for Marine Sciences, Eilat, 8810302, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
16
|
Edmunds PJ. High ecological resilience of the sea fan Gorgonia ventalina during two severe hurricanes. PeerJ 2020; 8:e10315. [PMID: 33240641 PMCID: PMC7666550 DOI: 10.7717/peerj.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
Since about the turn of the millennium, octocorals have been increasing in abundance on Caribbean reefs. The mechanisms underlying this trend have not been resolved, but the emergent species assemblage appears to be more resilient than the scleractinians they are replacing. The sea fan Gorgonia ventalina is an iconic species in the contemporary octocoral fauna, and here its population dynamics are described from St. John, US Virgin Islands, from 2013 to 2019. Mean densities of G. ventalina at Yawzi Point (9-m depth) varied from 1.4-1.5 colonies m-2, and their mean heights from 24-30 cm; nearby at Tektite (14-m depth), they varied from 0.6-0.8 colonies m-2 and from 25-33 cm. These reefs were impacted by two Category 5 hurricanes in 2017, but neither the density of G. ventalina, the density of their recruits (< 5-cm tall), nor the height of colonies, differed among years, although growth was depressed after the hurricanes. Nevertheless, at Tektite, colony height trended upwards over time, in part because colonies 10.1-20 cm tall were reduced in abundance after the hurricanes. These trends were sustained without density-associated effects mediating recruitment or self-thinning of adults. The dynamics of G. ventalina over seven years reveals the high resilience of this species that will contribute to the persistence of octocorals as a dominant state on Caribbean reefs.
Collapse
Affiliation(s)
- Peter J. Edmunds
- Department of Biology, California State University, Northridge, CA, United States of America
| |
Collapse
|
17
|
Precht WF, Aronson RB, Gardner TA, Gill JA, Hawkins JP, Hernández-Delgado EA, Jaap WC, McClanahan TR, McField MD, Murdoch TJT, Nugues MM, Roberts CM, Schelten CK, Watkinson AR, Côté IM. The timing and causality of ecological shifts on Caribbean reefs. ADVANCES IN MARINE BIOLOGY 2020; 87:331-360. [PMID: 33293016 DOI: 10.1016/bs.amb.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Collapse
Affiliation(s)
- William F Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Miami, FL, United States.
| | - Richard B Aronson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | | | - Jennifer A Gill
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Julie P Hawkins
- Environment Department, University of York, York, United Kingdom
| | - Edwin A Hernández-Delgado
- Department of Environmental Sciences and Center for Applied Tropical Ecology and Conservation, Applied Marine Ecology Laboratory, University of Puerto Rico, San Juan, Puerto Rico
| | - Walter C Jaap
- Lithophyte Research LLC, Saint Petersburg, FL, United States
| | - Tim R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States
| | | | | | - Maggy M Nugues
- EPHE, Laboratoire d'Excellence "CORAIL", PSL Research University, UPVD, CNRS, USR, Perpignan, France
| | - Callum M Roberts
- Environment Department, University of York, York, United Kingdom
| | | | - Andrew R Watkinson
- Living with Environmental Change, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
18
|
Lasker HR, Bramanti L, Tsounis G, Edmunds PJ. The rise of octocoral forests on Caribbean reefs. ADVANCES IN MARINE BIOLOGY 2020; 87:361-410. [PMID: 33293017 DOI: 10.1016/bs.amb.2020.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coral reefs throughout the tropics have experienced large declines in the abundance of scleractinian corals over the last few decades, and some reefs are becoming functionally dominated by animal taxa other than scleractinians. This phenomenon is striking on many shallow reefs in the tropical western Atlantic, where arborescent octocorals now are numerically and functionally dominant. Octocorals are one of several taxa that have been overlooked for decades in analyses of coral reef community dynamics, and our understanding of why octocorals are favoured (whereas scleractinians are not) on some modern reefs, and how they will affect the function of future reef communities, is not commensurate with the task of scientifically responding to the coral reef crisis. We summarize the biological and ecological features predisposing octocorals for success under contemporary conditions, and focus on those features that could have generated resistance and resilience of octocoral populations to environmental change on modern reefs. There is a rich set of opportunities for rapid advancement in understanding the factors driving the success of octocorals on modern reefs, but we underscore three lines of inquiry: (1) the functional implications of strongly mixotrophic, polytrophic, and plastic nutrition, (2) the capacity to recruit at high densities and maintain rapid initial rates of vertical growth, and (3) the emergent properties associated with dense animal forests at high colony densities.
Collapse
Affiliation(s)
- Howard R Lasker
- Department of Environment and Sustainability and Department of Geology, University at Buffalo, Buffalo, NY, United States.
| | - Lorenzo Bramanti
- CNRS-Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique de Banyuls sur Mer, Banyuls sur Mer, France
| | - Georgios Tsounis
- Department of Biology, California State University, Northridge, CA, United States
| | - Peter J Edmunds
- Department of Biology, California State University, Northridge, CA, United States
| |
Collapse
|
19
|
Steiner SCC, Martínez P, Rivera F, Johnston M, Riegl BM. Octocoral populations and connectivity in continental Ecuador and Galápagos, Eastern Pacific. ADVANCES IN MARINE BIOLOGY 2020; 87:411-441. [PMID: 33293018 DOI: 10.1016/bs.amb.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Octocorals are important zoobenthic organisms, contributing to structural heterogeneity and species diversity on hardgrounds. Their persistence amidst global coral reef degradation and ocean acidification, has prompted renewed interest in this taxon. Octocoral assemblages at 52 sites in continental Ecuador and Galápagos (23 species, 3742 colonies) were examined for composition, size distributions within and among populations, and connectivity patterns based on ocean current models. Species richness varied from 1 to 14 species per site, with the richest sites on the continent. Three assemblage clusters were recognised based on species richness and population size, one with a mix of sites from the mainland and Galápagos (defined by Muricea fruticosa and Leptogorgia alba, Muricea plantaginea and Pacifigorgia darwinii), the second from Santa Elena in southern Ecuador (defined by M. plantaginea and L. alba) and the third from the northernmost sites on the continent, in Esmeraldas (defined by Muricea fruticosa, Heterogorgia hickmani, Leptogorgia manabiensis). Based on biophysical larval flow models with 30, 60, 90-day Pelagic Larval Duration, good connectivity existed along the South American mainland, and from the continent to Galápagos. Connectivity between Galápagos, Cocos, Malpelo and the Colombian mainland may explain the wide distribution of L. alba. Muricea plantaginea had the densest populations with the largest colonies and therewith was an important habitat provider both in continental Ecuador and Galápagos. Continental Ecuador harbours the most speciose populations of octocorals so far recorded in the southern Eastern Tropical Pacific (ETP). Most species were uncommon and possibly vulnerable to local extirpation. The present study may serve as a base line to determine local and regional impacts of future disturbances on ETP octocorals.
Collapse
Affiliation(s)
- Sascha C C Steiner
- Cooperación Alemana al Desarrollo (GIZ), Quito, Ecuador; Institute for Tropical Marine Ecology (ITME) Inc., Roseau, Dominica.
| | | | - Fernando Rivera
- Instituto Nazca de Investigaciones Marinas, Salinas, Ecuador
| | - Matthew Johnston
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, United States
| | - Bernhard M Riegl
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, United States
| |
Collapse
|
20
|
Dennis MM, Becker AAMJ, Freeman MA. Pathology of multifocal purple spots, a nonspecific lesion morphology of Caribbean sea fans Gorgonia spp. DISEASES OF AQUATIC ORGANISMS 2020; 141:79-89. [PMID: 32940253 DOI: 10.3354/dao03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disease is contributing to the decline of coral reefs globally, but the cause and pathogenesis of most coral diseases are poorly understood. Using Gorgonia ventalina and G. flabellum as a model for coral disease diagnosis, we histologically and microbiologically examined 45 biopsies of lesions resembling Gorgonia multifocal purple spots (MFPS) with the aim of forming a comprehensive case definition based on gross and microscopic morphologic descriptions and associated etiologies. Macroscopically, all lesions were small circular areas of purple pigmentation. Gross morphologies included pigmentation only (4/45, 9%), or pigmentation with branchlet expansion and fusion (19/45, 22%), sessile masses (17/45, 38%), or hard nodules (5/45, 9%). Histological morphologic diagnoses included amoebocyte encapsulation (9/45, 20%), coenenchymal amoebocytosis (6/45, 13%), melanin (17/45, 38%), and gorgonin deposition (13/45, 29%). Sixty-four percent of instances of fungi and 86% of labyrinthulomycetes were localized to grossly normal portions of the biopsy, whereas barnacles were only within lesions, and 87% of instances of algae and 82% of cyanobacteria were within lesioned area of the biopsy. Penicillium (n = 12) was the predominant genus of fungi isolated from biopsies. Barnacles were identified as Conopea sp. using molecular techniques. The pathology and etiology underlying MFPS lesions are diverse, consistent with a highly nonspecific lesion pattern rather than a specific disease. This study demonstrates the importance of microscopic examination of tissues for accurate classification of coral diseases and lesion patterns.
Collapse
Affiliation(s)
- Michelle M Dennis
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | | | | |
Collapse
|
21
|
Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat Ecol Evol 2020; 4:1531-1538. [DOI: 10.1038/s41559-020-01291-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
|
22
|
McCauley M, Jackson CR, Goulet TL. Microbiomes of Caribbean Octocorals Vary Over Time but Are Resistant to Environmental Change. Front Microbiol 2020; 11:1272. [PMID: 32595627 PMCID: PMC7304229 DOI: 10.3389/fmicb.2020.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The bacterial microbiome is an essential component of many corals, although knowledge of the microbiomes in scleractinian corals far exceeds that for octocorals. This study characterized the bacterial communities present in shallow water Caribbean gorgonian octocorals over time and space, in addition to determining the bacterial assemblages in gorgonians exposed to environmental perturbations. We found that seven shallow water Caribbean gorgonian species maintained distinct microbiomes and predominantly harbored two bacterial genera, Mycoplasma and Endozoicomonas. Representatives of these taxa accounted for over 70% of the sequences recovered, made up the three most common operational taxonomic units (OTUs), and were present in most of the gorgonian species. Gorgonian species sampled in different seasons and/or in different years, exhibited significant shifts in the abundances of these bacterial OTUs, though there were few changes to overall bacterial diversity, or to the specific OTUs present. These shifts had minimal impact on the relative abundance of inferred functional proteins within the gorgonian corals. Sequences identified as Escherichia were ubiquitous in gorgonian colonies sampled from a lagoon but not in colonies sampled from a back reef. Exposure to increased temperature and/or ultraviolet radiation (UVR) or nutrient enrichment led to few significant changes in the gorgonian coral microbiomes. While there were some shifts in the abundance of the prevalent bacteria, more commonly observed was “microbial switching” between different OTUs identified within the same bacterial genus. The relative stability of gorgonian coral bacterial microbiome may potentially explain some of the resistance and resilience of Caribbean gorgonian corals against changing environmental conditions.
Collapse
Affiliation(s)
- Mark McCauley
- Department of Biology, The University of Mississippi, University, MS, United States
| | - Colin R Jackson
- Department of Biology, The University of Mississippi, University, MS, United States
| | - Tamar L Goulet
- Department of Biology, The University of Mississippi, University, MS, United States
| |
Collapse
|
23
|
Lasker HR, Martínez-Quintana Á, Bramanti L, Edmunds PJ. Resilience of Octocoral Forests to Catastrophic Storms. Sci Rep 2020; 10:4286. [PMID: 32152448 PMCID: PMC7063042 DOI: 10.1038/s41598-020-61238-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/24/2020] [Indexed: 12/02/2022] Open
Abstract
After centuries of human-mediated disturbances, Caribbean reef communities are vastly different from those described in the 1950s. Many are functionally dominated by macroalgae, but this community state represents only one of several possibilities into which present-day coral reefs can transition. Octocorals have always been abundant on Caribbean reefs, but increases in their abundance over the last few decades suggest that arborescent octocorals have the potential to expand their populations on reefs that hitherto had been dominated by scleractinians. Here we show that octocoral-dominated communities at three sites on the fringing reefs of St. John, US Virgin Islands, were resilient to the effects of two Category 5 hurricanes in 2017. We describe the dynamics of octocoral communities over five years at three sites on shallow reefs (~9-m depth), and test for the effects of Hurricanes Irma and Maria. The hurricanes depressed the densities of juvenile and adult octocoral colonies as much as 47%. However, there were only weak effects on species richness and the relative abundances of the octocoral species. The hurricanes did not alter patterns of spatial variability in octocoral community structure that existed among sites prior to the storms. The density of octocoral recruits (individuals ≤ 5 cm high) was reduced in the year following the hurricanes, mainly due to a decline in abundance of recruits <0.5 cm, but returned to pre-storm densities in 2019. Persistently high octocoral recruitment provides a mechanism supporting ecological resilience of these communities. Continuing environmental degradation is a threat to all tropical marine communities, but the reefs of St. John illustrate how "octocoral forests" can persist as the structurally dominant community on Caribbean reefs.
Collapse
Affiliation(s)
- H R Lasker
- Department of Environment and Sustainability and Department of Geology, University at Buffalo, Buffalo, NY, 14260, USA.
| | - Á Martínez-Quintana
- Department of Environment and Sustainability and Department of Geology, University at Buffalo, Buffalo, NY, 14260, USA
| | - L Bramanti
- CNRS-Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique de Banyuls sur Mer, 1 avenue Pierre Fabre, 66650, Banyuls sur Mer, France
| | - P J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
24
|
Tracy AM, Weil E, Harvell CD. Warming and pollutants interact to modulate octocoral immunity and shape disease outcomes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02024. [PMID: 31628889 DOI: 10.1002/eap.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Warming environments can alter the outcome of host-parasite relationships with important consequences for biodiversity. Warming often increases disease risk, and interactions with other environmental factors can intensify impacts by modifying the underlying mechanisms, such as host immunity. In coastal ecosystems, metal pollution is a pervasive stressor that influences disease and immunity in many organisms. Despite the crisis facing coral reefs, which stems in part from warming-associated disease outbreaks, the impacts of metal pollutants on scleractinian and octocoral disease are largely unknown. We investigated how warming oceans and copper pollution affect host immunity and disease risk for two diseases of the abundant Caribbean octocoral, the sea fan Gorgonia ventalina. Field surveys across a sediment copper concentration gradient in Puerto Rico, USA revealed that cellular immunity of sea fans increased by 12.6% at higher sediment copper concentrations, while recovery from multifocal purple spots disease (MFPS) tended to decrease. MFPS severity in the field increased at warmer sites. In a controlled laboratory experiment, sea fans were inoculated with live cultures of a labyrinthulid parasite to test the interactive effects of temperature and copper on immune activation. As in the field, higher copper induced greater immunity, but the factorial design of the experiment revealed that copper and temperature interacted to modulate the immune response to the parasite: immune cell densities increased with elevated temperature at lower copper concentrations, but not with high copper concentrations. Tissue damage was also greater in treatments with higher copper and warmer temperatures. Field and lab evidence confirm that elevated copper hinders sea fan immune defenses against damaging parasites. Temperature and copper influenced host-pathogen interactions in octocorals by modulating immunity, disease severity, and disease recovery. This is the first evidence that metal pollution affects processes influencing disease in octocorals and highlights the importance of immune mechanisms in environmentally mediated disease outbreaks. Although coral conservation efforts must include a focus on global factors, such as rapid warming, reducing copper and other pollutants that compromise coral health on a local scale may help corals fight disease in a warming ocean.
Collapse
Affiliation(s)
- Allison M Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853-2601, USA
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Puerto Rico, 00680, USA
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853-2601, USA
| |
Collapse
|
25
|
McCauley M, Goulet TL. Caribbean gorgonian octocorals cope with nutrient enrichment. MARINE POLLUTION BULLETIN 2019; 141:621-628. [PMID: 30955777 DOI: 10.1016/j.marpolbul.2019.02.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/16/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Corals inhabit oligotrophic waters, thriving amidst limited nutrients such as nitrogen and phosphorous. When nutrient levels increase, usually due to human activity, the symbiosis of dinoflagellates (family Symbiodiniaceae) with scleractinian corals can break down. Although gorgonian corals dominate many Caribbean reefs, the impact of enrichment on them and their algae is understudied. We exposed two gorgonian species, Pseudoplexaura porosa and Eunicea tourneforti, to elevated concentrations of either ammonium (10 μM or 50 μM) or phosphate (4 μM). Enrichment with 10 μM ammonium increased chlorophyll content and algal density in both species, whereas the host biochemical composition was unaffected. Exposure to 50 μM ammonium only reduced the quantum yield in P. porosa and mitotic indices in both species. Conversely, algal carbon and nitrogen content within E. tourneforti increased with 4 μM phosphate exposure. These gorgonian species coped with short-term nutrient enrichment, furthering our understanding of the success of Caribbean gorgonians.
Collapse
Affiliation(s)
- Mark McCauley
- Department of Biology, University of Mississippi, University, MS, 38677, USA.
| | - Tamar L Goulet
- Department of Biology, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
26
|
Dinh JP, Suca JJ, Lillis A, Apprill A, Llopiz JK, Mooney TA. Multiscale spatio-temporal patterns of boat noise on U.S. Virgin Island coral reefs. MARINE POLLUTION BULLETIN 2018; 136:282-290. [PMID: 30509809 DOI: 10.1016/j.marpolbul.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 05/15/2023]
Abstract
Sound-sensitive organisms are abundant on coral reefs. Accordingly, experiments suggest that boat noise could elicit adverse effects on coral reef organisms. Yet, there are few data quantifying boat noise prevalence on coral reefs. We use long-term passive acoustic recordings at nine coral reefs and one sandy comparison site in a marine protected area to quantify spatio-temporal variation in boat noise and its effect on the soundscape. Boat noise was most common at reefs with high coral cover and fish density, and temporal patterns reflected patterns of human activity. Boat noise significantly increased low-frequency sound levels at the monitored sites. With boat noise present, the peak frequencies of the natural soundscape shifted from higher frequencies to the lower frequencies frequently used in fish communication. Taken together, the spectral overlap between boat noise and fish communication and the elevated boat detections on reefs with biological densities raises concern for coral reef organisms.
Collapse
Affiliation(s)
- Jason P Dinh
- Duke University, Department of Biology, United States of America
| | - Justin J Suca
- Woods Hole Oceanographic Institution, Biology Department, United States of America; Massachusetts Institute of Technology, MIT/WHOI Joint Program in Oceanography, United States of America
| | - Ashlee Lillis
- Woods Hole Oceanographic Institution, Biology Department, United States of America
| | - Amy Apprill
- Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry Department, United States of America
| | - Joel K Llopiz
- Woods Hole Oceanographic Institution, Biology Department, United States of America
| | - T Aran Mooney
- Woods Hole Oceanographic Institution, Biology Department, United States of America.
| |
Collapse
|
27
|
Assessing Cognitive and Social Attitudes toward Environmental Conservation in Coral Reef Social-Ecological Systems. SOCIAL SCIENCES 2018. [DOI: 10.3390/socsci7070109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Community structure of shallow water Alcyonacea (Anthozoa: Octocorallia) from the southern Tropical Eastern Pacific. Ecol Res 2018. [DOI: 10.1007/s11284-018-1567-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Tracy AM, Weil E, Harvell CD. Octocoral co-infection as a balance between host immunity and host environment. Oecologia 2017; 186:743-753. [PMID: 29280003 DOI: 10.1007/s00442-017-4051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022]
Abstract
Co-infection is the reality in natural populations, but few studies incorporate the players that matter in the wild. We integrate the environment, host demography, two parasites, and host immunity in a study of co-infection to determine the drivers of parasite interactions. Here, we use an ecologically important Caribbean sea fan octocoral, Gorgonia ventalina, that is co-infected by a copepod and a labyrinthulid protist. We first expanded upon laboratory studies by showing that immune suppression is associated with the labyrinthulid in a natural setting. Histological analyses revealed that immune cells (amoebocytes) were significantly suppressed in both labyrinthulid infections and co-infections relative to healthy sea fans, but remained unchanged in copepod infections. However, surveys of natural coral populations demonstrated a critical role for the environment and host demography in this co-infection: the prevalence of copepod infections increased with sea fan size while labyrinthulid prevalence increased with water depth. Although we predicted that immune suppression by the labyrinthulid would facilitate copepod infection, the two parasites did not co-occur in the sea fans more often than expected by chance. These results suggest that the distinct ecological drivers for each parasite overwhelm the role of host immune suppression in determining the distribution of parasites among hosts. This interplay of the environment and parasite-mediated immune suppression in sea fan co-infection provides insights into the factors underlying co-occurrence patterns in wild co-infections. Moving forward, simultaneous consideration of co-occurring parasites, host traits, and the environmental context will improve the understanding of host - parasite interactions and their consequences.
Collapse
Affiliation(s)
- Allison M Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2601, USA.
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, 00680, USA
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2601, USA
| |
Collapse
|