1
|
Messier J, Becker-Scarpitta A, Li Y, Violle C, Vellend M. Root and biomass allocation traits predict changes in plant species and communities over four decades of global change. Ecology 2024; 105:e4389. [PMID: 39252476 DOI: 10.1002/ecy.4389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 04/28/2024] [Indexed: 09/11/2024]
Abstract
Global change is affecting the distribution and population dynamics of plant species across the planet, leading to trends such as shifts in distribution toward the poles and to higher elevations. Yet, we poorly understand why individual species respond differently to warming and other environmental changes, or how the trait composition of communities responds. Here we ask two questions regarding plant species and community changes over 42 years of global change in a temperate montane forest in Québec, Canada: (1) How did the trait composition, alpha diversity, and beta diversity of understory vascular plant communities change between 1970 and 2010, a period over which the region experienced 1.5°C of warming and changes in nitrogen deposition? (2) Can traits predict shifts in species elevation and abundance over this time period? For 46 understory vascular species, we locally measured six aboveground traits, and for 36 of those (not including shrubs), we also measured five belowground traits. Collectively, they capture leading dimensions of phenotypic variation that are associated with climatic and resource niches. At the community level, the trait composition of high-elevation plots shifted, primarily for two root traits: specific root length decreased and rooting depth increased. The mean trait values of high-elevation plots shifted over time toward values initially associated with low-elevation plots. These changes led to trait homogenization across elevations. The community-level shifts in traits mirrored the taxonomic shifts reported elsewhere for this site. At the species level, two of the three traits predicting changes in species elevation and abundance were belowground traits (low mycorrhizal fraction and shallow rooting). These findings highlight the importance of root traits, which, along with leaf mass fraction, were associated with shifts in distribution and abundance over four decades. Community-level trait changes were largely similar across the elevational and temporal gradients. In contrast, traits typically associated with lower elevations at the community level did not predict differences among species in their shift in abundance or distribution, indicating a decoupling between species- and community-level responses. Overall, changes were consistent with some influence of both climate warming and increased nitrogen availability.
Collapse
Affiliation(s)
- Julie Messier
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Becker-Scarpitta
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Agriculture, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Yuanzhi Li
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Cyrille Violle
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Marquis B. Simulations reveal variability in exposure to drier conditions during timing of budbreak for tree species of the mixedwood forests of Québec, Canada. FORESTRY RESEARCH 2024; 4:e026. [PMID: 39524433 PMCID: PMC11524311 DOI: 10.48130/forres-0024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 11/16/2024]
Abstract
Due to climate change, the timing of budbreak is occurring earlier in temperate and boreal tree species. Since the warmer conditions also cause snow to melt earlier in the spring, the hypothesis that bud reactivation of tree species of the mixedwood forests of Québec would occur under drier conditions in the future and that species from the temperate forests with late budbreak would be most exposed to dry conditions was tested. The thermal-time bud phenology model was used to predict the timing of budbreak for early and late species using 300 and 500 growing degree-days as the threshold for the timing of budbreak. Climate data was obtained from four CMIP6 climate models from 1950-2100 for two socioeconomic pathways at two locations, one in the temperate forest and one in the boreal mixedwood forest. Using linear regressions, the anomaly, which results from the difference between the historical mean (1950-1980) and the yearly values in timing of budbreak was predicted by the anomaly in drought index (SPEI) per site, climate model, socioeconomic pathways, and species with early or late budbreak timing. Budbreak is expected to occur earlier in the future, whereas the temporal trends in SPEI remained weak during April and May. When paired with the anomalies in both timing of budbreak and drought index, analyses showed that budbreak could be expected to occur under drier conditions in the future. However, due to differences between climate models, it remains uncertain whether drought stress will begin earlier in the future.
Collapse
Affiliation(s)
- Benjamin Marquis
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen Street East Sault Ste. Marie, P6A 2E5, ON, Canada
| |
Collapse
|
3
|
Thomas M, Boulanger Y, Asselin H, Lamara M, Fenton NJ. How will climate change and forest harvesting influence the habitat quality of two culturally salient species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172148. [PMID: 38569957 DOI: 10.1016/j.scitotenv.2024.172148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Boreal landscapes face increasing disturbances which can affect cultural keystone species, i.e. culturally salient species that shape in a major way the cultural identity of a people. Given their importance, the fate of such species should be assessed to be able to act to ensure their perennity. We assessed how climate change and forest harvesting will affect the habitat quality of Rhododendron groenlandicum and Vaccinium angustifolium, two cultural keystone species for many Indigenous peoples in eastern Canada. We used the forest landscape model LANDIS-II in combination with species distribution models to simulate the habitat quality of these two species on the territories of three Indigenous communities according to different climate change and forest harvesting scenarios. Climate-sensitive parameters included wildfire regimes as well as tree growth. Moderate climate change scenarios were associated with an increased proportion of R. groenlandicum and V. angustifolium in the landscape, the latter species also responding positively to severe climate change scenarios. Harvesting had a minimal effect, but slightly decreased the probability of presence of both species where it occurred. According to the modeling results, neither species is at risk under moderate climate change scenarios. However, under severe climate change, R. groenlandicum could decline as the proportion of deciduous trees would increase in the landscape. Climate change mitigation strategies, such as prescribed fires, may be necessary to limit this increase. This would prevent the decrease of R. groenlandicum, as well as contribute to preserve biodiversity and harvestable volumes.
Collapse
Affiliation(s)
- Maxime Thomas
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada.
| | | | - Hugo Asselin
- École d'études autochtones, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| | - Mebarek Lamara
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| | - Nicole J Fenton
- Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| |
Collapse
|
4
|
Heilmayr R, Dudney J, Moore FC. Drought sensitivity in mesic forests heightens their vulnerability to climate change. Science 2023; 382:1171-1177. [PMID: 38060640 DOI: 10.1126/science.adi1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Climate change is shifting the structure and function of global forests, underscoring the critical need to predict which forests are most vulnerable to a hotter and drier future. We analyzed 6.6 million tree rings from 122 species to assess trees' sensitivity to water and energy availability. We found that trees growing in wetter portions of their range exhibit the greatest drought sensitivity. To test how these patterns of drought sensitivity influence vulnerability to climate change, we predicted tree growth through 2100. Our results suggest that drought adaptations in arid regions will partially buffer trees against climate change. By contrast, trees growing in the wetter, hotter portions of their climatic range may experience unexpectedly large adverse impacts under climate change.
Collapse
Affiliation(s)
- Robert Heilmayr
- Environmental Studies Program, University of California, Santa Barbara, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Joan Dudney
- Environmental Studies Program, University of California, Santa Barbara, Santa Barbara, CA, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Frances C Moore
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Mirabel A, Girardin MP, Metsaranta J, Way D, Reich PB. Increasing atmospheric dryness reduces boreal forest tree growth. Nat Commun 2023; 14:6901. [PMID: 37903759 PMCID: PMC10616230 DOI: 10.1038/s41467-023-42466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Rising atmospheric vapour pressure deficit (VPD) associated with climate change affects boreal forest growth via stomatal closure and soil dryness. However, the relationship between VPD and forest growth depends on the climatic context. Here we assess Canadian boreal forest responses to VPD changes from 1951-2018 using a well-replicated tree-growth increment network with approximately 5,000 species-site combinations. Of the 3,559 successful growth models, we observed a relationship between growth and concurrent summer VPD in one-third of the species-site combinations, and between growth and prior summer VPD in almost half of those combinations. The relationship between previous year VPD and current year growth was almost exclusively negative, while current year VPD also tended to reduce growth. Tree species, age, annual temperature, and soil moisture primarily determined tree VPD responses. Younger trees and species like white spruce and Douglas fir exhibited higher VPD sensitivity, as did areas with high annual temperature and low soil moisture. Since 1951, summer VPD increases in Canada have paralleled tree growth decreases, particularly in spruce species. Accelerating atmospheric dryness in the decades ahead will impair carbon storage and societal-economic services.
Collapse
Affiliation(s)
- Ariane Mirabel
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada.
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, Rennes, France.
| | - Martin P Girardin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada.
| | - Juha Metsaranta
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Cartereau M, Leriche A, Médail F, Baumel A. Tree biodiversity of warm drylands is likely to decline in a drier world. GLOBAL CHANGE BIOLOGY 2023; 29:3707-3722. [PMID: 37060269 DOI: 10.1111/gcb.16722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/02/2023] [Indexed: 06/06/2023]
Abstract
Warm drylands represent 19% of land surfaces worldwide and host ca. 1100 tree species. The risk of decline due to climate aridification of this neglected biodiversity has been overlooked despite its ecological and societal importance. To fill this gap, we assessed the risk of decline due to climate aridification of tree species in warm drylands based on spatialized occurrence data and climate models. We considered both species vulnerability and exposure, compared the risk of tree species decline across five bioregions and searched for phylogenetic correlates. Depending on the future climate model, from 44% to 88% of warm drylands' tree species will undergo climate aridification with a high risk of decline even under the most optimistic conditions. On a regional scale, the rate of species that will undergo climate aridification in the future varies from 21% in the Old World North, to 90% in Australia, with a risk of decline confirming the high level of risk predicted at the global scale. Using generalized linear mixed models, we found that, species more exposed to climate aridification will be more at risk, but also that species vulnerability is a key driver of their risk of decline. Indeed, the warm drylands specialist species will be less at risk due to climate aridification than species being marginal in warm drylands. We also found that the risk of decline is widespread across the main clades of the phylogeny and involves several evolutionary distinct species. Estimating a high risk of decline for numerous tree species in all warm drylands, including emblematic dryland endemics, our work warns that future increase in aridity could result in an extensive erosion of tree biodiversity in these ecosystems.
Collapse
Affiliation(s)
- Manuel Cartereau
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - Agathe Leriche
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - Frédéric Médail
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - Alex Baumel
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Aix-en-Provence, France
| |
Collapse
|
7
|
Kocur-Bera K, Czyża S. Socio-Economic Vulnerability to Climate Change in Rural Areas in the Context of Green Energy Development-A Study of the Great Masurian Lakes Mesoregion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2689. [PMID: 36768054 PMCID: PMC9915550 DOI: 10.3390/ijerph20032689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Green energy production has become a common and recognized method of electricity generation. Giving up reliance on non-renewable energy sources is an important trend in the economies of many countries. The paper presents an analysis of the impact of indicators like increased green energy production on the level of vulnerability to climate change. The model of the Climate Change Vulnerability Index (VCC) recommended by the Intergovernmental Panel on Climate Change (considering three aspects: exposure, vulnerability, and adaptive capacity of the studied spatial unit/society) was applied. Sensitivity analysis, spatial heterogeneity, and temporal dynamics of indicators characterizing changes in electricity consumption, renewable energy production, greenhouse gas emissions, and variability of financial losses due to extreme weather events and their number were implemented. Several findings arose. First, the vulnerability to climate change (the level of the VCC index), does not decrease after the implementation of a single action, like the development of green energy production. The level of index of vulnerability to climate change (VCC1) from the reference year (2017) relative to VCC2 (2021) has changed slightly, despite the development of RES. The variation does not exceed a 1% reduction in the value of the VCC1 index. Second, the decrease in the level of the vulnerability requires global, coordinated action. The value of the VCC3 index, reflecting, including changes in green energy production (X15), electricity consumption/inhabitant (X38), and green-house gas emissions (X14), exhibited more favorably the impact of these indicators on vulnerability to climate change, compared to the VCC1 reference value. In eleven poviats, the VCC3 index decreased between 1 and 4%. In seven of these poviats, green energy production increased, resulting in an average 10% decrease in the X15 indicator, the X14 indicator representing green-house gas emissions decreased by an average of 7%, while the X38 indicator describing electricity consumption/per capita decreased by an average of 16%. Third, harmonized and inclusive action by the population holds the potential to be the clue to reducing vulnerability to climate change.
Collapse
|
8
|
Klápště J, Jaquish B, Porth I. Building resiliency in conifer forests: Interior spruce crosses among weevil resistant and susceptible parents produce hybrids appropriate for multi-trait selection. PLoS One 2022; 17:e0263488. [PMID: 36459506 PMCID: PMC9718410 DOI: 10.1371/journal.pone.0263488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Tree planting programs now need to consider climate change increasingly, therefore, the resistance to pests plays an essential role in enabling tree adaptation to new ranges through tree population movement. The weevil Pissodes strobi (Peck) is a major pest of spruces and substantially reduces lumber quality. We revisited a large Interior spruce provenance/progeny trial (2,964 genotypes, 42 families) of varying susceptibility, established in British Columbia. We employed multivariate mixed linear models to estimate covariances between, and genetic control of, juvenile height growth and resistance traits. We performed linear regressions and ordinal logistic regressions to test for impact of parental origin on growth and susceptibility to the pest, respectively. A significant environmental component affected the correlations between resistance and height, with outcomes dependent on families. Parents sourced from above 950 m a.s.l. elevation negatively influenced host resistance to attacks, probably due to higher P. engelmannii proportion. For the genetic contribution of parents sourced from above 1,200 m a.s.l., however, we found less attack severity, probably due to a marked mismatch in phenologies. This clearly highlights that interspecific hybrid status might be a good predictor for weevil attacks and delineates the boundaries of successful spruce population movement. Families resulting from crossing susceptible parents generally showed fast-growing trees were the most affected by weevil attacks. Such results indicate that interspecific 'hybrids' with a higher P. glauca ancestry might be genetically better equipped with an optimized resource allocation between defence and growth and might provide the solution for concurrent improvement in resistance against weevil attacks, whilst maintaining tree productivity.
Collapse
Affiliation(s)
- Jaroslav Klápště
- Scion (New Zealand Forest Research Institute Ltd.), Rotorua, New Zealand
| | - Barry Jaquish
- BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Vernon, B.C., Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Université Laval, Québec City, Québec, Canada
- Institute for System and Integrated Biology (IBIS), Université Laval, Québec City, Québec, Canada
- Centre for Forest Research, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
9
|
Ribeyre Z, Messier C, Nolet P. No stress memory pattern was detected in sugar maple and white spruce seedlings subjected to experimental droughts. Ecosphere 2022. [DOI: 10.1002/ecs2.4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
- Département des Sciences Biologiques, Centre d'Étude de la Forêt (CEF) University of Québec à Montréal (UQAM) Montreal Quebec Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| |
Collapse
|
10
|
Boisvert‐Marsh L, Pedlar JH, de Blois S, Le Squin A, Lawrence K, McKenney DW, Williams C, Aubin I. Migration‐based simulations for Canadian trees show limited tracking of suitable climate under climate change. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Laura Boisvert‐Marsh
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie Ontario Canada
- Department of Plant Science Macdonald Campus of McGill University Ste‐Anne‐de‐Bellevue Quebec Canada
| | - John H. Pedlar
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie Ontario Canada
| | - Sylvie de Blois
- Department of Plant Science Macdonald Campus of McGill University Ste‐Anne‐de‐Bellevue Quebec Canada
- Bieler School of Environment McGill University Montreal Quebec Canada
| | - Amael Le Squin
- Département de Biologie Université de Sherbrooke Sherbrooke Quebec Canada
| | - Kevin Lawrence
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie Ontario Canada
| | - Daniel W. McKenney
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie Ontario Canada
| | - Charlene Williams
- Atlantic Forestry Centre, Canadian Forest Service Natural Resources Canada Fredericton New Brunswick Canada
- Vineland Research and Innovation Centre Lincoln Ontario Canada
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie Ontario Canada
| |
Collapse
|
11
|
Royer‐Tardif S, Boisvert‐Marsh L, Godbout J, Isabel N, Aubin I. Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecol Evol 2021; 11:13081-13100. [PMID: 34646454 PMCID: PMC8495821 DOI: 10.1002/ece3.8024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 01/09/2023] Open
Abstract
Adaptive capacity, one of the three determinants of vulnerability to climate change, is defined as the capacity of species to persist in their current location by coping with novel environmental conditions through acclimation and/or evolution. Although studies have identified indicators of adaptive capacity, few have assessed this capacity in a quantitative way that is comparable across tree species. Yet, such multispecies assessments are needed by forest management and conservation programs to refine vulnerability assessments and to guide the choice of adaptation measures. In this paper, we propose a framework to quantitatively evaluate five key components of tree adaptive capacity to climate change: individual adaptation through phenotypic plasticity, population phenotypic diversity as influenced by genetic diversity, genetic exchange within populations, genetic exchange between populations, and genetic exchange between species. For each component, we define the main mechanisms that underlie adaptive capacity and present associated metrics that can be used as indices. To illustrate the use of this framework, we evaluate the relative adaptive capacity of 26 northeastern North American tree species using values reported in the literature. Our results show adaptive capacity to be highly variable among species and between components of adaptive capacity, such that no one species ranks consistently across all components. On average, the conifer Picea glauca and the broadleaves Acer rubrum and A. saccharinum show the greatest adaptive capacity among the 26 species we documented, whereas the conifers Picea rubens and Thuja occidentalis, and the broadleaf Ostrya virginiana possess the lowest. We discuss limitations that arise when comparing adaptive capacity among species, including poor data availability and comparability issues in metrics derived from different methods or studies. The breadth of data required for such an assessment exemplifies the multidisciplinary nature of adaptive capacity and the necessity of continued cross-collaboration to better anticipate the impacts of a changing climate.
Collapse
Affiliation(s)
- Samuel Royer‐Tardif
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre d'enseignement et de recherche en foresterie de Sainte‐Foy inc. (CERFO)QuébecQCCanada
| | - Laura Boisvert‐Marsh
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
| | - Julie Godbout
- Ministère des Forêts de la Faune et des Parcs du QuébecDirection de la recherche forestièreQuébecQCCanada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Isabelle Aubin
- Natural Resources CanadaCanadian Forest ServiceGreat Lakes Forestry CentreSault Sainte MarieONCanada
- Centre for Forest ResearchUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
12
|
Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options. FORESTS 2021. [DOI: 10.3390/f12030273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Climate change is threatening our ability to manage forest ecosystems sustainably. Despite strong consensus on the need for a broad portfolio of options to face this challenge, diversified management options have yet to be widely implemented. Inspired by functional zoning, a concept aimed at optimizing biodiversity conservation and wood production in multiple-use forest landscapes, we present a portfolio of management options that intersects management objectives with forest vulnerability to better address the wide range of goals inherent to forest management under climate change. Using this approach, we illustrate how different adaptation options could be implemented when faced with impacts related to climate change and its uncertainty. These options range from establishing ecological reserves in climatic refuges, where self-organizing ecological processes can result in resilient forests, to intensive plantation silviculture that could ensure a stable wood supply in an uncertain future. While adaptation measures in forests that are less vulnerable correspond to the traditional functional zoning management objectives, forests with higher vulnerability might be candidates for transformative measures as they may be more susceptible to abrupt changes in structure and composition. To illustrate how this portfolio of management options could be applied, we present a theoretical case study for the eastern boreal forest of Canada. Even if these options are supported by solid evidence, their implementation across the landscape may present some challenges and will require good communication among stakeholders and with the public.
Collapse
|
13
|
Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary. CLIMATE 2021. [DOI: 10.3390/cli9020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wine producers face several challenges regarding climate change, which will affect this industry both in the present and the future. Vulnerability assessments are at the forefront of current climate research, therefore, the present paper has two main aims. First, to assess two components of climate vulnerability regarding the Szekszárd wine region, Hungary; second, to collect and analyze adaptation farming techniques in terms of environmental sustainability aspects. Exposure analyses revealed that the study area will face several challenges regarding intensive drought periods in the future. Sensitivity indicators show the climate-related characteristics of the most popular grapevines and their relatively high level of susceptibility regarding changing climatic patterns. Since both external and intrinsic factors of vulnerability show deteriorating trends, the development of adaptation actions is needed. Adaptation interventions often provide unsustainable solutions or entail maladaptation issues, therefore, an environmental-focused sustainability assessment of collected interventions was performed to avoid long-term negative path dependencies. The applied evaluation methodology pointed out that nature-based adaptation actions are preferred in comparison to using additional machines or resource-intensive solutions. This study can fill the scientific gap by analyzing this wine region for the first time, via performing an ex-ante lock-in analysis of available and widely used adaptation interventions in the viticulture sector.
Collapse
|
14
|
Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald AM, Brunori A, Canavan S, Campagnaro T, Celesti-Grapow L, Dechoum MDS, Dufour-Dror JM, Essl F, Flory SL, Genovesi P, Guarino F, Guangzhe L, Hulme PE, Jäger H, Kettle CJ, Krumm F, Langdon B, Lapin K, Lozano V, Le Roux JJ, Novoa A, Nuñez MA, Porté AJ, Silva JS, Schaffner U, Sitzia T, Tanner R, Tshidada N, Vítková M, Westergren M, Wilson JRU, Richardson DM. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NEOBIOTA 2020. [DOI: 10.3897/neobiota.61.58380] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainably managed non-native trees deliver economic and societal benefits with limited risk of spread to adjoining areas. However, some plantations have launched invasions that cause substantial damage to biodiversity and ecosystem services, while others pose substantial threats of causing such impacts. The challenge is to maximise the benefits of non-native trees, while minimising negative impacts and preserving future benefits and options.
A workshop was held in 2019 to develop global guidelines for the sustainable use of non-native trees, using the Council of Europe – Bern Convention Code of Conduct on Invasive Alien Trees as a starting point.
The global guidelines consist of eight recommendations: 1) Use native trees, or non-invasive non-native trees, in preference to invasive non-native trees; 2) Be aware of and comply with international, national, and regional regulations concerning non-native trees; 3) Be aware of the risk of invasion and consider global change trends; 4) Design and adopt tailored practices for plantation site selection and silvicultural management; 5) Promote and implement early detection and rapid response programmes; 6) Design and adopt tailored practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems; 7) Engage with stakeholders on the risks posed by invasive non-native trees, the impacts caused, and the options for management; and 8) Develop and support global networks, collaborative research, and information sharing on native and non-native trees.
The global guidelines are a first step towards building global consensus on the precautions that should be taken when introducing and planting non-native trees. They are voluntary and are intended to complement statutory requirements under international and national legislation. The application of the global guidelines and the achievement of their goals will help to conserve forest biodiversity, ensure sustainable forestry, and contribute to the achievement of several Sustainable Development Goals of the United Nations linked with forest biodiversity.
Collapse
|
15
|
Using a Trait-Based Approach to Compare Tree Species Sensitivity to Climate Change Stressors in Eastern Canada and Inform Adaptation Practices. FORESTS 2020. [DOI: 10.3390/f11090989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite recent advances in understanding tree species sensitivities to climate change, ecological knowledge on different species remains scattered across disparate sources, precluding their inclusion in vulnerability assessments. Information on potential sensitivities is needed to identify tree species that require consideration, inform changes to current silvicultural practices and prioritize management actions. A trait-based approach was used to overcome some of the challenges involved in assessing sensitivity, providing a common framework to facilitate data integration and species comparisons. Focusing on 26 abundant tree species from eastern Canada, we developed a series of trait-based indices that capture a species’ ability to cope with three key climate change stressors—increased drought events, shifts in climatically suitable habitat, increased fire intensity and frequency. Ten indices were developed by breaking down species’ response to a stressor into its strategies, mechanisms and traits. Species-specific sensitivities varied across climate stressors but also among the various ways a species can cope with a given stressor. Of the 26 species assessed, Tsuga canadensis (L.) Carrière and Abies balsamea (L.) Mill are classified as the most sensitive species across all indices while Acer rubrum L. and Populus spp. are the least sensitive. Information was found for 95% of the trait-species combinations but the quality of available data varies between indices and species. Notably, some traits related to individual-level sensitivity to drought were poorly documented as well as deciduous species found within the temperate biome. We also discuss how our indices compare with other published indices, using drought sensitivity as an example. Finally, we discuss how the information captured by these indices can be used to inform vulnerability assessments and the development of adaptation measures for species with different management requirements under climate change.
Collapse
|
16
|
Caners RT. Bryophytes at the Western Limits of Canada's Great Lakes Forest: Floristic Patterns and Conservation Implications. Northeast Nat (Steuben) 2020. [DOI: 10.1656/045.027.m1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Richard T. Caners
- Royal Alberta Museum, 9810 103A Avenue, Edmonton, Alberta, T5J 0G2, Canada, and Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, T6G 2H1, Canada;
| |
Collapse
|
17
|
Yan H, He J, Zhao Y, Zhang L, Zhu C, Wu D. Gentiana macrophylla response to climate change and vulnerability evaluation in China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Fremout T, Thomas E, Gaisberger H, Van Meerbeek K, Muenchow J, Briers S, Gutierrez-Miranda CE, Marcelo-Peña JL, Kindt R, Atkinson R, Cabrera O, Espinosa CI, Aguirre-Mendoza Z, Muys B. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. GLOBAL CHANGE BIOLOGY 2020; 26:3552-3568. [PMID: 32020698 DOI: 10.1111/gcb.15028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait-based scoring approach to estimate species-specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species-specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species' distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species-specific restoration and conservation actions, proposing management interventions to focus on (a) in situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats; (b) ex situ conservation or translocation of populations in areas with high climate change vulnerability; and (c) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user-friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.
Collapse
Affiliation(s)
- Tobias Fremout
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Alliance Bioversity International - CIAT, Lima, Peru
| | - Evert Thomas
- Alliance Bioversity International - CIAT, Lima, Peru
| | | | - Koenraad Van Meerbeek
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Jannes Muenchow
- Institute of Geography, Friedrich Schiller University, Jena, Germany
| | - Siebe Briers
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Omar Cabrera
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Carlos I Espinosa
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | - Bart Muys
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Lange J, Carrer M, Pisaric MFJ, Porter TJ, Seo JW, Trouillier M, Wilmking M. Moisture-driven shift in the climate sensitivity of white spruce xylem anatomical traits is coupled to large-scale oscillation patterns across northern treeline in northwest North America. GLOBAL CHANGE BIOLOGY 2020; 26:1842-1856. [PMID: 31799729 DOI: 10.1111/gcb.14947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Tree growth at northern treelines is generally temperature-limited due to cold and short growing seasons. However, temperature-induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree-ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell-wall thickness, cell number) and TRW were correlated with the drought-sensitive standardized precipitation-evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925-1946), cool/wet (1947-1976) and again warm/dry (1977-1998) climate regimes. Xylem anatomical traits revealed water-limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture-driven shift in growth-limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture-driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.
Collapse
Affiliation(s)
- Jelena Lange
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Marco Carrer
- Department TESAF, University of Padova, Padova, Italy
| | - Michael F J Pisaric
- Department of Geography and Tourism Studies, Brock University, Saint Catharines, ON, Canada
| | - Trevor J Porter
- Department of Geography, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Jeong-Wook Seo
- Department of Wood & Paper Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Mario Trouillier
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Lochhead K, Ghafghazi S, LeMay V, Bull GQ. Examining the vulnerability of localized reforestation strategies to climate change at a macroscale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109625. [PMID: 31604183 DOI: 10.1016/j.jenvman.2019.109625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Climate change is altering the nature and condition of vast areas in the boreal forest of Canada. There are great uncertainties concerning impacts on the forest, along with how policy and economic responses will translate effectively between local and macroscales. In particular, planting tree seedlings with improved characteristics following harvesting is one localized response strategy considered essential by policymakers. However, planting costs limit the macroscale adoption of this strategy which may result in trade-offs between profitability and reducing vulnerability. In this study, we developed a decision support tool (called Q3) that links stand-level decision making to the macroscale and applied this model to investigate the financial attractiveness of planting improved stocks under one climate change threat, drought-induced seedling mortality. Using several scenarios describing planting effort, improved yields and risk to drought-induced seedling mortality, we showed that adopting improved planting stock strategies across a macroscale (i.e., the western Boreal forest of Canada) can be financially attractive when considering stand-establishment constraints and drought risk. In particular, a proactive approach can be less costly than a reactive approach to drought-induced seedling mortality. To maximize profits, the forestry industry would need to prioritize younger stands closer to processing mills that had a smaller percentage of conifer growing stocks prior to harvest. This research improves the linkages between macroscale policies and forest management activities critical for recommending future development paths that the forestry industry could follow to decrease climate change vulnerabilities.
Collapse
Affiliation(s)
- Kyle Lochhead
- Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424, Main Mall. V6T 1Z4, Vancouver, BC, Canada.
| | - Saeed Ghafghazi
- Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424, Main Mall. V6T 1Z4, Vancouver, BC, Canada; Natural Resources Canada, Canadian Forest Service, 1500 - 605 Robson St, Vancouver, British Columbia, Canada, V6B 5J3.
| | - Valerie LeMay
- Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424, Main Mall. V6T 1Z4, Vancouver, BC, Canada.
| | - Gary Q Bull
- Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424, Main Mall. V6T 1Z4, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Kumordzi BB, Aubin I, Cardou F, Shipley B, Violle C, Johnstone J, Anand M, Arsenault A, Bell FW, Bergeron Y, Boulangeat I, Brousseau M, De Grandpré L, Delagrange S, Fenton NJ, Gravel D, Macdonald SE, Hamel B, Higelin M, Hébert F, Isabel N, Mallik A, McIntosh AC, McLaren JR, Messier C, Morris D, Thiffault N, Tremblay J, Munson AD. Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bright B. Kumordzi
- Centre d’étude de la forêt, Département des sciences du bois et de la forêt Université Laval Québec QC Canada
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie ON Canada
| | - Françoise Cardou
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie ON Canada
- Département de biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Bill Shipley
- Département de biologie Université de Sherbrooke Sherbrooke QC Canada
| | - Cyrille Violle
- CEFE, UMR 5175 CNRS – Université de Montpellier – Université Paul‐Valéry Montpellier – EPHE Montpellier France
| | - Jill Johnstone
- Department of Biology University of Saskatchewan Saskatoon SK Canada
| | - Madhur Anand
- School of Environmental Sciences University of Guelph Guelph ON Canada
| | - André Arsenault
- Atlantic Forestry Centre, Canadian Forest Service and School of Science and the Environment Memorial University of Newfoundland Corner Brook NL Canada
| | - F. Wayne Bell
- Ontario Forest Research Institute Ontario Ministry of Natural Resources and Forestry Sault Ste Marie ON Canada
| | - Yves Bergeron
- Institut de recherche sur les forêts Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda QC Canada
| | | | - Maxime Brousseau
- Département de biologie and Centre d'étude de la forêt Université Laval Québec QC Canada
| | - Louis De Grandpré
- Laurentian Forestry Centre, Canadian Forest Service Natural Resources Canada Québec QC Canada
| | - Sylvain Delagrange
- Institut des Sciences de la Forêt Tempérée Université du Québec en Outaouais Ripon QC Canada
| | - Nicole J. Fenton
- Institut de recherche sur les forêts Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda QC Canada
| | - Dominique Gravel
- Département de biologie Université de Sherbrooke Sherbrooke QC Canada
| | - S. Ellen Macdonald
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - Benoit Hamel
- Great Lakes Forestry Centre, Canadian Forest Service Natural Resources Canada Sault Ste Marie ON Canada
| | - Morgane Higelin
- Institut de recherche sur les forêts Université du Québec en Abitibi‐Témiscamingue Rouyn‐Noranda QC Canada
| | - François Hébert
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs Québec QC Canada
| | - Nathalie Isabel
- Laurentian Forestry Centre, Canadian Forest Service Natural Resources Canada Québec QC Canada
| | - Azim Mallik
- Department of Biology Lakehead University Thunder Bay ON Canada
| | | | - Jennie R. McLaren
- Department of Biological Sciences University of Texas at El Paso El Paso TX USA
| | - Christian Messier
- Institut des Sciences de la Forêt Tempérée Université du Québec en Outaouais Ripon QC Canada
- Centre d'Étude de la Forêt Université du Québec à Montréal Montréal QC Canada
| | - Dave Morris
- Centre for Northern Forest Ecosystem Research Ontario Ministry of Natural Resources and Forestry Thunder Bay ON Canada
| | - Nelson Thiffault
- Centre d’étude de la forêt, Département des sciences du bois et de la forêt Université Laval Québec QC Canada
- Canadian Wood Fibre Centre Natural Resources Canada Québec QC Canada
| | - Jean‐Pierre Tremblay
- Département de biologie and Centre d'étude de la forêt Université Laval Québec QC Canada
| | - Alison D. Munson
- Centre d’étude de la forêt, Département des sciences du bois et de la forêt Université Laval Québec QC Canada
| |
Collapse
|
22
|
Boucher D, Boulanger Y, Aubin I, Bernier PY, Beaudoin A, Guindon L, Gauthier S. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1245-1259. [PMID: 29645330 DOI: 10.1002/eap.1724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/14/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Canada's forests are shaped by disturbances such as fire, insect outbreaks, and droughts that often overlap in time and space. The resulting cumulative disturbance risks and potential impacts on forests are generally not well accounted for by models used to predict future impacts of disturbances on forest. This study aims at projecting future cumulative effects of four main natural disturbances, fire, mountain pine beetle, spruce budworm and drought, on timber volumes across Canada's forests using an approach that accounts for potential overlap among disturbances. Available predictive models for the four natural disturbances were used to project timber volumes at risk under aggressive climate forcing up to 2100. Projections applied to the current vegetation suggest increases of volumes at risk related to fire, mountain pine beetle, and drought over time in many regions of Canada, but a decrease of the volume at risk related to spruce budworm. When disturbance effects are accumulated, important changes in volumes at risk are projected to occur as early as 2011-2041, particularly in central and eastern Canada. In our last simulation period covering 2071-2100, nearly all timber volumes in most of Canada's forest regions could be at risk of being affected by at least one of the four natural disturbances considered in our analysis, a six-fold increase relative to the baseline period (1981-2010). Tree species particularly vulnerable to specific disturbances (e.g., trembling aspen to drought) could suffer disproportionate increases in their volume at risk with potential impacts on forest composition. By 2100, estimated wood volumes not considered to be at risk could be lower than current annual timber harvests in central and eastern Canada. Current level of harvesting could thus be difficult to maintain without the implementation of adaptation measures to cope with these disturbances.
Collapse
Affiliation(s)
- Dominique Boucher
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec City, Quebec, G1V 4C7, Canada
| | - Yan Boulanger
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec City, Quebec, G1V 4C7, Canada
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste Marie, Ontario, P6A 2E5, Canada
| | - Pierre Y Bernier
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec City, Quebec, G1V 4C7, Canada
| | - André Beaudoin
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec City, Quebec, G1V 4C7, Canada
| | - Luc Guindon
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec City, Quebec, G1V 4C7, Canada
| | - Sylvie Gauthier
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Station Sainte-Foy, Quebec City, Quebec, G1V 4C7, Canada
| |
Collapse
|