1
|
Qi J, Zhuang J. A review of optimization and decision models of prescribed burning for wildfire management. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 39580154 DOI: 10.1111/risa.17680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Prescribed burning is an essential forest management tool that requires strategic planning to effectively address its multidimensional impacts, particularly given the influence of global climate change on fire behavior. Despite the inherent complexity in planning prescribed burns, limited efforts have been made to comprehensively identify the critical elements necessary for formulating effective models. In this work, we present a systematic review of the literature on optimization and decision models for prescribed burning, analyzing 471 academic papers published in the last 25 years. Our study identifies four main types of models: spatial-allocation, spatial-extent, temporal-only, and spatial-temporal. We observe a growing number of studies on modeling prescribed burning, primarily due to the expansion in spatial-allocation and spatial-temporal models. There is also an increase in complexity as the models consider more elements affecting prescribed burning effectiveness. We identify the essential components for optimization models, including stakeholders, decision variables, objectives, and influential factors, to enhance model practicality. The review also examines solution techniques, such as integer programming in spatial allocation, stochastic dynamic programming in probabilistic models, and multiobjective programming in balancing trade-offs. These techniques' strengths and limitations are discussed to help researchers adapt methods to specific challenges in prescribed burning optimization. In addition, we investigate general assumptions in the models and challenges in relaxation to enhance practicality. Lastly, we propose future research to develop more comprehensive models incorporating dynamic fire behaviors, stakeholder preferences, and long-term impacts. Enhancing these models' accuracy and applicability will enable decision-makers to better manage wildfire treatment outcomes.
Collapse
Affiliation(s)
- Jianzhou Qi
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, New York, USA
| | - Jun Zhuang
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Rodman KC, Davis KT, Parks SA, Chapman TB, Coop JD, Iniguez JM, Roccaforte JP, Sánchez Meador AJ, Springer JD, Stevens-Rumann CS, Stoddard MT, Waltz AEM, Wasserman TN. Refuge-yeah or refuge-nah? Predicting locations of forest resistance and recruitment in a fiery world. GLOBAL CHANGE BIOLOGY 2023; 29:7029-7050. [PMID: 37706328 DOI: 10.1111/gcb.16939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Climate warming, land use change, and altered fire regimes are driving ecological transformations that can have critical effects on Earth's biota. Fire refugia-locations that are burned less frequently or severely than their surroundings-may act as sites of relative stability during this period of rapid change by being resistant to fire and supporting post-fire recovery in adjacent areas. Because of their value to forest ecosystem persistence, there is an urgent need to anticipate where refugia are most likely to be found and where they align with environmental conditions that support post-fire tree recruitment. Using biophysical predictors and patterns of burn severity from 1180 recent fire events, we mapped the locations of potential fire refugia across upland conifer forests in the southwestern United States (US) (99,428 km2 of forest area), a region that is highly vulnerable to fire-driven transformation. We found that low pre-fire forest cover, flat slopes or topographic concavities, moderate weather conditions, spring-season burning, and areas affected by low- to moderate-severity fire within the previous 15 years were most commonly associated with refugia. Based on current (i.e., 2021) conditions, we predicted that 67.6% and 18.1% of conifer forests in our study area would contain refugia under moderate and extreme fire weather, respectively. However, potential refugia were 36.4% (moderate weather) and 31.2% (extreme weather) more common across forests that experienced recent fires, supporting the increased use of prescribed and resource objective fires during moderate weather conditions to promote fire-resistant landscapes. When overlaid with models of tree recruitment, 23.2% (moderate weather) and 6.4% (extreme weather) of forests were classified as refugia with a high potential to support post-fire recruitment in the surrounding landscape. These locations may be disproportionately valuable for ecosystem sustainability, providing habitat for fire-sensitive species and maintaining forest persistence in an increasingly fire-prone world.
Collapse
Affiliation(s)
- Kyle C Rodman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kimberley T Davis
- Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, USA
| | - Sean A Parks
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, USDA Forest Service, Missoula, Montana, USA
| | - Teresa B Chapman
- Monitoring, Evaluation, and Learning Program, Chief Conservation Office, The Nature Conservancy, Arlington, Virginia, USA
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, Gunnison, Colorado, USA
| | - Jose M Iniguez
- Rocky Mountain Research Station, USDA Forest Service, Flagstaff, Arizona, USA
| | - John P Roccaforte
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Andrew J Sánchez Meador
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Judith D Springer
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Camille S Stevens-Rumann
- Colorado Forest Restoration Institute, Colorado State University, Fort Collins, Colorado, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | - Michael T Stoddard
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Amy E M Waltz
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tzeidle N Wasserman
- Ecological Restoration Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Grünig M, Seidl R, Senf C. Increasing aridity causes larger and more severe forest fires across Europe. GLOBAL CHANGE BIOLOGY 2023; 29:1648-1659. [PMID: 36517954 DOI: 10.1111/gcb.16547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 05/28/2023]
Abstract
Area burned has decreased across Europe in recent decades. This trend may, however, reverse under ongoing climate change, particularly in areas not limited by fuel availability (i.e. temperate and boreal forests). Investigating a novel remote sensing dataset of 64,448 fire events that occurred across Europe between 1986 and 2020, we find a power-law relationship between maximum fire size and area burned, indicating that large fires contribute disproportionally to fire activity in Europe. We further show a robust positive correlation between summer vapor pressure deficit and both maximum fire size (R2 = .19) and maximum burn severity (R2 = .12). Europe's fire regimes are thus highly sensitive to changes in future climate, with the probability for extreme fires more than doubling by the end of the century. Our results suggest that climate change will challenge current fire management approaches and could undermine the ability of Europe's forests to provide ecosystem services to society.
Collapse
Affiliation(s)
- Marc Grünig
- TUM School of Life Sciences, Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
| | - Rupert Seidl
- TUM School of Life Sciences, Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
| | - Cornelius Senf
- TUM School of Life Sciences, Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Coop JD. Postfire futures in southwestern forests: Climate and landscape influences on trajectories of recovery and conversion. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2725. [PMID: 36054332 PMCID: PMC10078526 DOI: 10.1002/eap.2725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Southwestern ponderosa pine forests are vulnerable to fire-driven conversion in a warming and drying climate, yet little is known about what kinds of ecological communities may replace them. To characterize postfire vegetation trajectories and their environmental determinants, plant assemblages (361 sample plots including 229 vascular plant species, surveyed in 2017) were sampled within eight burns that occurred between 2000 and 2003. I used nonmetric multidimensional scaling, k-means clustering, principal component analysis, and random forest models to assess relationships between vegetation pattern, topographic and landscape factors, and gridded climate data. I describe seven postfire community types, including regenerating forests of ponderosa pine, aspen, and mixed conifers, shrub-dominated communities of Gambel oak and mixed species, and herb-dominated communities of native bunchgrasses and mixtures of ruderal, native, and nonnative species. Forest recovery was generally associated with cooler, mesic sites in proximity to forested refugia; shifts toward scrub and grassland types were most common in warmer, dryer locations distant from forested refugia. Under future climate scenarios, models project decreases in postfire forest recovery and increases in nonforest vegetation. However, forest to nonforest conversion was partially offset under a scenario of reduced burn severity and increased retention of forested refugia, highlighting important management opportunities. Burning trends in the southwestern United States suggest that postfire vegetation will occupy a growing landscape fraction, compelling renewed management focus on these areas and paradigm shifts that accommodate ecological change. I illustrate how management decisions around resisting, accepting, or directing change could be informed by an understanding of processes and patterns of postfire community variation and likely future trajectories.
Collapse
Affiliation(s)
- Jonathan D. Coop
- Clark School of Environment and SustainabilityWestern Colorado UniversityGunnisonColoradoUSA
| |
Collapse
|
5
|
Abstract
As the effects of climate change accumulate and intensify, resource managers juggle existing goals and new mandates to operationalize adaptation. Fire managers contend with the direct effects of climate change on resources in addition to climate-induced disruptions to fire regimes and subsequent ecosystem effects. In systems stressed by warming and drying, increased fire activity amplifies the pace of change and scale of severe disturbance events, heightening the urgency for management action. Fire managers are asked to integrate information on climate impacts with their professional expertise to determine how to achieve management objectives in a changing climate with altered fire regimes. This is a difficult task, and managers need support as they incorporate climate adaptation into planning and operations. We present a list of adaptation strategies and approaches specific to fire and climate based on co-produced knowledge from a science–management partnership and pilot-tested in a two-day workshop with natural resource managers and regional stakeholders. This “menu” is a flexible and useful tool for fire managers who need to connect the dots between fire ecology, climate science, adaptation intent, and management implementation. It was created and tested as part of an adaptation framework used widely across the United States and should be applicable and useful in many fire-prone forest ecosystems.
Collapse
|
6
|
Hagmann RK, Hessburg PF, Prichard SJ, Povak NA, Brown PM, Fulé PZ, Keane RE, Knapp EE, Lydersen JM, Metlen KL, Reilly MJ, Sánchez Meador AJ, Stephens SL, Stevens JT, Taylor AH, Yocom LL, Battaglia MA, Churchill DJ, Daniels LD, Falk DA, Henson P, Johnston JD, Krawchuk MA, Levine CR, Meigs GW, Merschel AG, North MP, Safford HD, Swetnam TW, Waltz AEM. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02431. [PMID: 34339067 PMCID: PMC9285092 DOI: 10.1002/eap.2431] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 05/06/2023]
Abstract
Implementation of wildfire- and climate-adaptation strategies in seasonally dry forests of western North America is impeded by numerous constraints and uncertainties. After more than a century of resource and land use change, some question the need for proactive management, particularly given novel social, ecological, and climatic conditions. To address this question, we first provide a framework for assessing changes in landscape conditions and fire regimes. Using this framework, we then evaluate evidence of change in contemporary conditions relative to those maintained by active fire regimes, i.e., those uninterrupted by a century or more of human-induced fire exclusion. The cumulative results of more than a century of research document a persistent and substantial fire deficit and widespread alterations to ecological structures and functions. These changes are not necessarily apparent at all spatial scales or in all dimensions of fire regimes and forest and nonforest conditions. Nonetheless, loss of the once abundant influence of low- and moderate-severity fires suggests that even the least fire-prone ecosystems may be affected by alteration of the surrounding landscape and, consequently, ecosystem functions. Vegetation spatial patterns in fire-excluded forested landscapes no longer reflect the heterogeneity maintained by interacting fires of active fire regimes. Live and dead vegetation (surface and canopy fuels) is generally more abundant and continuous than before European colonization. As a result, current conditions are more vulnerable to the direct and indirect effects of seasonal and episodic increases in drought and fire, especially under a rapidly warming climate. Long-term fire exclusion and contemporaneous social-ecological influences continue to extensively modify seasonally dry forested landscapes. Management that realigns or adapts fire-excluded conditions to seasonal and episodic increases in drought and fire can moderate ecosystem transitions as forests and human communities adapt to changing climatic and disturbance regimes. As adaptation strategies are developed, evaluated, and implemented, objective scientific evaluation of ongoing research and monitoring can aid differentiation of warranted and unwarranted uncertainties.
Collapse
Affiliation(s)
- R. K. Hagmann
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - P. F. Hessburg
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
| | - S. J. Prichard
- College of the Environment‐SEFSUniversity of WashingtonSeattleWashington98195USA
| | - N. A. Povak
- USDA‐FS, Forestry Sciences LaboratoryPacific Northwest Research StationWenatcheeWashington98801USA
- USDA‐FS, Pacific Southwest Research StationPlacervilleCalifornia95667USA
| | - P. M. Brown
- Rocky Mountain Tree‐Ring ResearchFort CollinsColorado80526USA
| | - P. Z. Fulé
- School of ForestryNorthern Arizona UniversityFlagstaffArizona86011USA
| | - R. E. Keane
- Missoula Fire Sciences LaboratoryUSDA‐FS, Rocky Mountain Research StationMissoulaMontana59808USA
| | - E. E. Knapp
- USDA‐FS, Pacific Southwest Research StationReddingCalifornia96002USA
| | - J. M. Lydersen
- Fire and Resource Assessment ProgramCalifornia Department of Forestry and Fire ProtectionSacramentoCalifornia94244USA
| | | | - M. J. Reilly
- USDA‐FS, Pacific Northwest Research StationCorvallisOregon97333USA
| | - A. J. Sánchez Meador
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| | - S. L. Stephens
- Department of Environmental Science, Policy, and ManagementUniversity of California–BerkeleyBerkeleyCalifornia94720USA
| | - J. T. Stevens
- U.S. Geological SurveyFort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87508USA
| | - A. H. Taylor
- Department of Geography, Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvania16802USA
| | - L. L. Yocom
- Department of Wildland Resources and the Ecology CenterUtah State UniversityLoganUtah84322USA
| | - M. A. Battaglia
- USDA‐FS, Rocky Mountain Research StationFort CollinsColorado80526USA
| | - D. J. Churchill
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - L. D. Daniels
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - D. A. Falk
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizona85721USA
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - P. Henson
- Oregon Fish and Wildlife OfficeUSDI Fish & Wildlife ServicePortlandOregon97232USA
| | - J. D. Johnston
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. A. Krawchuk
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - C. R. Levine
- Spatial Informatics GroupPleasantonCalifornia94566USA
| | - G. W. Meigs
- Washington State Department of Natural ResourcesOlympiaWashington98504USA
| | - A. G. Merschel
- College of ForestryOregon State UniversityCorvallisOregon97333USA
| | - M. P. North
- USDA‐FS, Pacific Southwest Research StationMammoth LakesCalifornia93546USA
| | - H. D. Safford
- USDA‐FS, Pacific Southwest RegionVallejoCalifornia94592USA
| | - T. W. Swetnam
- Laboratory of Tree‐Ring ResearchUniversity of ArizonaTucsonArizona85721USA
| | - A. E. M. Waltz
- Ecological Restoration InstituteNorthern Arizona UniversityFlagstaffArizona86011USA
| |
Collapse
|
7
|
Prichard SJ, Hessburg PF, Hagmann RK, Povak NA, Dobrowski SZ, Hurteau MD, Kane VR, Keane RE, Kobziar LN, Kolden CA, North M, Parks SA, Safford HD, Stevens JT, Yocom LL, Churchill DJ, Gray RW, Huffman DW, Lake FK, Khatri‐Chhetri P. Adapting western North American forests to climate change and wildfires: 10 common questions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02433. [PMID: 34339088 PMCID: PMC9285930 DOI: 10.1002/eap.2433] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.
Collapse
Affiliation(s)
- Susan J. Prichard
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Paul F. Hessburg
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- U.S. Forest Service PNW Research StationWenatcheeWashington98801USA
| | - R. Keala Hagmann
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
- Applegate Forestry LLCCorvallisOregon97330USA
| | - Nicholas A. Povak
- U.S. Forest ServicePacific Southwest Research StationInstitute of Forest Genetics2480 Carson RoadPlacervilleCalifornia95667USA
| | - Solomon Z. Dobrowski
- University of Montana College of Forestry and ConservationMissoulaMontana59812USA
| | - Matthew D. Hurteau
- University of New Mexico Biology DepartmentAlbuquerqueNew Mexico87131‐0001USA
| | - Van R. Kane
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| | - Robert E. Keane
- U.S. Forest Service Rocky Mountain Research StationMissoula Fire Sciences LaboratoryMissoulaMontana59808USA
| | - Leda N. Kobziar
- Department of Natural Resources and SocietyUniversity of IdahoMoscowIdaho83844USA
| | - Crystal A. Kolden
- School of EngineeringUniversity of California MercedMercedCalifornia95343USA
| | - Malcolm North
- U.S. Forest Service Pacific Southwest Research Station1731 Research ParkDavisCalifornia95618USA
| | - Sean A. Parks
- U.S. Forest Service Aldo Leopold Wilderness Research InstituteMissoulaMontana59801USA
| | - Hugh D. Safford
- U.S. Forest Service Pacific Southwest Research StationAlbanyCalifornia94710USA
| | - Jens T. Stevens
- U.S. Geological Survey Fort Collins Science CenterNew Mexico Landscapes Field StationSanta FeNew Mexico87544USA
| | - Larissa L. Yocom
- Department of Wildland Resources and Ecology CenterUtah State University College of Agriculture and Applied SciencesLoganUtah84322USA
| | - Derek J. Churchill
- Washington State Department of Natural Resources Forest Health ProgramOlympiaWashington98504USA
| | - Robert W. Gray
- R.W. Gray ConsultingChilliwackBritish ColumbiaV2R2N2Canada
| | - David W. Huffman
- Northern Arizona University Ecological Restoration InstituteFlagstaffArizona86011USA
| | - Frank K. Lake
- U.S. Forest Service Pacific Southwest Research StationArcataCalifornia95521USA
| | - Pratima Khatri‐Chhetri
- University of Washington School of Environmental and Forest SciencesSeattleWashington98195‐2100USA
| |
Collapse
|
8
|
Taylor AH, Harris LB, Drury SA. Drivers of fire severity shift as landscapes transition to an active fire regime, Klamath Mountains, USA. Ecosphere 2021. [DOI: 10.1002/ecs2.3734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alan H. Taylor
- Department of Geography Earth and Environmental Systems Institute The Pennsylvania State University University Park Pennsylvania USA
| | - Lucas B. Harris
- Department of Geography Earth and Environmental Systems Institute The Pennsylvania State University University Park Pennsylvania USA
| | - Stacy A. Drury
- Pacific Southwest Research Station USDA Forest Service Davis California 95618 USA
| |
Collapse
|
9
|
Vanderhoof MK, Hawbaker TJ, Ku A, Merriam K, Berryman E, Cattau M. Tracking rates of postfire conifer regeneration vs. deciduous vegetation recovery across the western United States. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02237. [PMID: 33064886 DOI: 10.1002/eap.2237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Postfire shifts in vegetation composition will have broad ecological impacts. However, information characterizing postfire recovery patterns and their drivers are lacking over large spatial extents. In this analysis, we used Landsat imagery collected when snow cover (SCS) was present, in combination with growing season (GS) imagery, to distinguish evergreen vegetation from deciduous vegetation. We sought to (1) characterize patterns in the rate of postfire, dual-season Normalized Difference Vegetation Index (NDVI) across the region, (2) relate remotely sensed patterns to field-measured patterns of re-vegetation, and (3) identify seasonally specific drivers of postfire rates of NDVI recovery. Rates of postfire NDVI recovery were calculated for both the GS and SCS for more than 12,500 burned points across the western United States. Points were partitioned into faster and slower rates of NDVI recovery using thresholds derived from field plot data (n = 230) and their associated rates of NDVI recovery. We found plots with conifer saplings had significantly higher SCS NDVI recovery rates relative to plots without conifer saplings, while plots with ≥50% grass/forbs/shrubs cover had significantly higher GS NDVI recovery rates relative to plots with <50%. GS rates of NDVI recovery were best predicted by burn severity and anomalies in postfire maximum temperature. SCS NDVI recovery rates were best explained by aridity and growing degree days. This study is the most extensive effort, to date, to track postfire forest recovery across the western United States. Isolating patterns and drivers of evergreen recovery from deciduous recovery will enable improved characterization of forest ecological condition across large spatial scales.
Collapse
Affiliation(s)
- Melanie K Vanderhoof
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, P.O. Box 25046, DFC, MS980, Denver, Colorado, 80225, USA
| | - Todd J Hawbaker
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, P.O. Box 25046, DFC, MS980, Denver, Colorado, 80225, USA
| | - Andrea Ku
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, P.O. Box 25046, DFC, MS980, Denver, Colorado, 80225, USA
| | - Kyle Merriam
- Sierra Cascade Province Ecology Program, USDA Forest Service, Quincy, California, 95971, USA
| | - Erin Berryman
- State and Private Forestry, Forest Health Protection, USDA Forest Service, 2150 Centre Avenue, Building A, Suite 331, Fort Collins, Colorado, 80526, USA
| | - Megan Cattau
- Human-Environment Systems, Boise State University, Boise, Idaho, 83706, USA
| |
Collapse
|
10
|
García-Llamas P, Suárez-Seoane S, Fernández-Manso A, Quintano C, Calvo L. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110706. [PMID: 32778251 DOI: 10.1016/j.jenvman.2020.110706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Severe fires associated to climate change and land cover changes are becoming more frequent in Mediterranean Europe. The influence of environmental drivers on fire severity, especially under different environmental conditions is still not fully understood. In this study we aim to determine the main environmental variables that control fire severity in large fires (>500 ha) occurring in fire-prone ecosystems under two different environmental conditions following a transition (Mediterranean-Oceanic)-Mediterranean climatic gradient within the Iberian Peninsula, and to provide management recommendations to mitigate fire damage. We estimated fire severity as the differenced Normalized Burn Ratio, through images obtained from Landsat 8 OLI. We also examined the relative influence of pre-fire vegetation structure (vegetation composition and configuration), pre-fire weather conditions, fire history and topography on fire severity using Random Forest machine learning algorithms. The results indicated that the severity of fires occurring along the transition (Mediterranean-Oceanic)-Mediterranean climatic gradient was primarily controlled by pre-fire vegetation composition. Nevertheless, the effect of vegetation composition was strongly dependent on interactions with fire recurrence and pre-fire vegetation structural configuration. The relationship between fire severity, weather and topographic predictors was not consistent among fires occurring in the Mediterranean-Oceanic transition and Mediterranean sites. In the Mediterranean-Oceanic transition site, fire severity was determined by weather conditions (i.e., summer cumulative rainfall), rather than being associated to topography, suggesting that the control exerted by topography may be overwhelmed by weather controls. Conversely, results showed that topography only had a major effect on fire severity in the Mediterranean site. The results of this study highlight the need to prioritise fuel treatments aiming at breaking fuel continuity and reducing fuel loads as an effective management strategy to mitigate fire damage in areas of high fire recurrence.
Collapse
Affiliation(s)
- Paula García-Llamas
- Biodiversity and Environmental Management Dpt., Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana s/n, 24071, León, Spain; Institute of Environmental Research (IMA), University of Léon, 24071, León, Spain.
| | - Susana Suárez-Seoane
- University of Oviedo. Department of Organisms and Systems Biology (Ecology Unit) and Research Unit of Biodiversity (UO-CSIC-PA), Oviedo, Mieres, Spain
| | - Alfonso Fernández-Manso
- Agrarian Science and Engineering Department, University of León, Av. Astorga s/n, 24400, Ponferrada, Spain
| | - Carmen Quintano
- Electronic Technology Department, Sustainable Forest Management Research Institute, University of Valladolid, Spanish National Institute for Agriculture and Food Research and Technology (INIA), C/Francisco Mendizábal s/n, 47014, Valladolid, Spain
| | - Leonor Calvo
- Biodiversity and Environmental Management Dpt., Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana s/n, 24071, León, Spain; Institute of Environmental Research (IMA), University of Léon, 24071, León, Spain
| |
Collapse
|
11
|
Coop JD, Parks SA, Stevens-Rumann CS, Crausbay SD, Higuera PE, Hurteau MD, Tepley A, Whitman E, Assal T, Collins BM, Davis KT, Dobrowski S, Falk DA, Fornwalt PJ, Fulé PZ, Harvey BJ, Kane VR, Littlefield CE, Margolis EQ, North M, Parisien MA, Prichard S, Rodman KC. Wildfire-Driven Forest Conversion in Western North American Landscapes. Bioscience 2020; 70:659-673. [PMID: 32821066 PMCID: PMC7429175 DOI: 10.1093/biosci/biaa061] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.
Collapse
Affiliation(s)
- Jonathan D Coop
- School of Environment and Sustainability, Western Colorado University, Gunnison
| | - Sean A Parks
- Research ecologist with the Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, US Forest Service, Missoula, Montana
| | | | - Shelley D Crausbay
- Senior scientist with Conservation Science Partners, Fort Collins, Colorado
| | - Philip E Higuera
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana
| | | | - Alan Tepley
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Ellen Whitman
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Timothy Assal
- Department of Geography, Kent State University, Kent, Ohio
| | - Brandon M Collins
- Fire Research and Outreach, University of California, Berkeley, Berkeley, California, and with the Pacific Southwest Research Station, US Forest Service, in Davis, California
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula
| | | | - Donald A Falk
- Natural Resources and the Environment, University of Arizona, Tucson
| | - Paula J Fornwalt
- Rocky Mountain Research Station, US Forest Service, Fort Collins, Colorado
| | - Peter Z Fulé
- School of Forestry, Northern Arizona University, Flagstaff
| | - Brian J Harvey
- School of Environmental and Forest Sciences, University of Washington, Seattle
| | - Van R Kane
- School of Environmental and Forest Sciences, University of Washington, Seattle
| | - Caitlin E Littlefield
- Caitlin Littlefield is a postdoctoral research associate, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington
| | - Ellis Q Margolis
- US Geological Survey, New Mexico Landscapes Field Station, Santa Fe
| | - Malcolm North
- US Forest Service, Pacific Southwest Research Station, Mammoth Lakes, California
| | - Marc-André Parisien
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada
| | - Susan Prichard
- School of Environmental and Forest Sciences, University of Washington, Seattle
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison
| |
Collapse
|
12
|
Ritter SM, Hoffman CM, Battaglia MA, Stevens‐Rumann CS, Mell WE. Fine‐scale fire patterns mediate forest structure in frequent‐fire ecosystems. Ecosphere 2020. [DOI: 10.1002/ecs2.3177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Scott M. Ritter
- Department of Forest and Rangeland Stewardship Warner College of Natural Resources Colorado State University Fort Collins Colorado 80523USA
| | - Chad M. Hoffman
- Department of Forest and Rangeland Stewardship Warner College of Natural Resources Colorado State University Fort Collins Colorado 80523USA
| | - Mike A. Battaglia
- Rocky Mountain Research Station USDA Forest Service Fort Collins Colorado 80526USA
| | - Camille S. Stevens‐Rumann
- Department of Forest and Rangeland Stewardship Warner College of Natural Resources Colorado State University Fort Collins Colorado 80523USA
| | - William E. Mell
- Pacific Northwest Research Station USDA Forest Service Seattle Washington 98103USA
| |
Collapse
|
13
|
Effectiveness of Restoration Treatments for Reducing Fuels and Increasing Understory Diversity in Shrubby Mixed-Conifer Forests of the Southern Rocky Mountains, USA. FORESTS 2020. [DOI: 10.3390/f11050508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exclusion of natural surface fires in warm/dry mixed-conifer forests of the western U.S. has increased potential for stand-replacing crown fires and reduced resilience of these systems to other disturbances, such as drought and insect attack. Tree thinning and the application of prescribed fire are commonly used to restore more resilient ecological conditions, but currently, there is a lack of long-term data with which to evaluate restoration treatment effectiveness in forest types where resprouting shrubs dominate understory communities. At a mixed-conifer site in southwestern Colorado, we compared forest structure and understory vegetation responses to three restoration treatments (thin/burn, burn, and control) over 10 years in a completely randomized and replicated experiment. Forest density, canopy cover, and crown fuel loads were consistently lower, and crown base height was higher, in thin/burn than burn or controls, but the effects diminished over time. Ten years following treatment, >99% of all plant species within both treatments and the control were native in origin. There were no differences between treatments in understory richness, diversity, cover, or surface fuels, but graminoid cover more than doubled in all treatments over the 15-year monitoring period. Similarly, there was more than a 250% increase post-treatment in shrub density, with the greatest increases in the thin/burn treatment. In addition, we saw an increase in the average shrub height for both treatments and the control, with shrub stems >80 cm becoming the dominant size class in the thin/burn treatment. Conifer seedling density was significantly lower in thin/burn compared with burn and control treatments after 10 years. Taken together, these conditions create challenges for managers aiming to reestablish natural fire patterns and sustain mixed-conifer forests. To limit the dominance of resprouting shrubs and facilitate conifer regeneration after overstory thinning and prescribed fire, managers may need to consider new or more intensive approaches to forest restoration, particularly given current and projected climate change.
Collapse
|
14
|
|
15
|
Hansen WD, Abendroth D, Rammer W, Seidl R, Turner MG. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02030. [PMID: 31674698 PMCID: PMC7612770 DOI: 10.1002/eap.2030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
In subalpine forests of the western United States that historically experienced infrequent, high-severity fire, whether fire management can shape 21st-century fire regimes and forest dynamics to meet natural resource objectives is not known. Managed wildfire use (i.e., allowing lightning-ignited fires to burn when risk is low instead of suppressing them) is one approach for maintaining natural fire regimes and fostering mosaics of forest structure, stand age, and tree-species composition, while protecting people and property. However, little guidance exists for where and when this strategy may be effective with climate change. We simulated most of the contiguous forest in Grand Teton National Park, Wyoming, USA to ask: (1) how would subalpine fires and forest structure be different if fires had not been suppressed during the last three decades? And (2) what is the relative influence of climate change vs. fire management strategy on future fire and forests? We contrasted fire and forests from 1989 to 2098 under two fire management scenarios (managed wildfire use and fire suppression), two general circulation models (CNRM-CM5 and GFDL-ESM2M), and two representative concentration pathways (8.5 and 4.5). We found little difference between management scenarios in the number, size, or severity of fires during the last three decades. With 21st-century warming, fire activity increased rapidly, particularly after 2050, and followed nearly identical trajectories in both management scenarios. Area burned per year between 2018 and 2099 was 1,700% greater than in the last three decades (1989-2017). Large areas of forest were abruptly lost; only 65% of the original 40,178 ha of forest remained by 2098. However, forests stayed connected and fuels were abundant enough to support profound increases in burning through this century. Our results indicate that strategies emphasizing managed wildfire use, rather than suppression, will not alter climate-induced changes to fire and forests in subalpine landscapes of western North America. This suggests that managers may continue to have flexibility to strategically suppress subalpine fires without concern for long-term consequences, in distinct contrast with dry conifer forests of the Rocky Mountains and mixed conifer forest of California where maintaining low fuel loads is essential for sustaining frequent, low-severity surface fire regimes.
Collapse
Affiliation(s)
- Winslow D. Hansen
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin 53706 USA
| | - Diane Abendroth
- Institute of Silviculture, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna Austria
| | - Werner Rammer
- Grand Teton National Park, Teton Interagency Fire, Moose, Wyoming 83012 USA
| | - Rupert Seidl
- Grand Teton National Park, Teton Interagency Fire, Moose, Wyoming 83012 USA
| | - Monica G. Turner
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, Wisconsin 53706 USA
| |
Collapse
|
16
|
Chapman TB, Schoennagel T, Veblen TT, Rodman KC. Still standing: Recent patterns of post-fire conifer refugia in ponderosa pine-dominated forests of the Colorado Front Range. PLoS One 2020; 15:e0226926. [PMID: 31940320 PMCID: PMC6961861 DOI: 10.1371/journal.pone.0226926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Forested fire refugia (trees that survive fires) are important disturbance legacies that provide seed sources for post-fire regeneration. Conifer regeneration has been limited following some recent western fires, particularly in ponderosa pine (Pinus ponderosa) forests. However, the extent, characteristics, and predictability of ponderosa pine fire refugia are largely unknown. Within 23 fires in ponderosa pine-dominated forests of the Colorado Front Range (1996-2013), we evaluated the spatial characteristics and predictability of refugia: first using Monitoring Trends in Burn Severity (MTBS) burn severity metrics, then using landscape variables (topography, weather, anthropogenic factors, and pre-fire forest cover). Using 1-m resolution aerial imagery, we created a binary variable of post-fire conifer presence ('Conifer Refugia') and absence ('Conifer Absence') within 30-m grid cells. We found that maximum patch size of Conifer Absence was positively correlated with fire size, and 38% of the burned area was ≥ 50m from a conifer seed source, revealing a management challenge as fire sizes increase with warming further limiting conifer recovery. In predicting Conifer Refugia with two MTBS-produced databases, thematic burn severity classes (TBSC) and continuous Relative differenced Normalized Burn Ratio (RdNBR) values, Conifer Absence was high in previously forested areas of Low and Moderate burn severity classes in TBSC. RdNBR more accurately identified post-fire conifer survivorship. In predicting Conifer Refugia with landscape variables, Conifer Refugia were less likely during burn days with high maximum temperatures: while Conifer Refugia were more likely on moister soils and closer to higher order streams, homes, and roads; and on less rugged, valley topography. Importantly, pre-fire forest canopy cover was not strongly associated with Conifer Refugia. This study further informs forest management by mapping post-fire patches lacking conifer seed sources, validating the use of RdNBR for fire refugia, and detecting abiotic and topographic variables that may promote conifer refugia.
Collapse
Affiliation(s)
- Teresa B. Chapman
- The Nature Conservancy, Boulder, Colorado, United States of America
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Tania Schoennagel
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, United States of America
- Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Thomas T. Veblen
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Kyle C. Rodman
- Department of Geography, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
17
|
Koontz MJ, North MP, Werner CM, Fick SE, Latimer AM. Local forest structure variability increases resilience to wildfire in dry western U.S. coniferous forests. Ecol Lett 2020; 23:483-494. [PMID: 31922344 DOI: 10.1111/ele.13447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
A 'resilient' forest endures disturbance and is likely to persist. Resilience to wildfire may arise from feedback between fire behaviour and forest structure in dry forest systems. Frequent fire creates fine-scale variability in forest structure, which may then interrupt fuel continuity and prevent future fires from killing overstorey trees. Testing the generality and scale of this phenomenon is challenging for vast, long-lived forest ecosystems. We quantify forest structural variability and fire severity across >30 years and >1000 wildfires in California's Sierra Nevada. We find that greater variability in forest structure increases resilience by reducing rates of fire-induced tree mortality and that the scale of this effect is local, manifesting at the smallest spatial extent of forest structure tested (90 × 90 m). Resilience of these forests is likely compromised by structural homogenisation from a century of fire suppression, but could be restored with management that increases forest structural variability.
Collapse
Affiliation(s)
- Michael J Koontz
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Plant Sciences, University of California, Davis, CA, USA.,Earth Lab, University of Colorado-Boulder, Boulder, CO, USA
| | - Malcolm P North
- Department of Plant Sciences, University of California, Davis, CA, USA.,Pacific Southwest Research Station, USDA Forest Service, Mammoth Lakes, CA, USA
| | - Chhaya M Werner
- Department of Plant Sciences, University of California, Davis, CA, USA.,Center for Population Biology, University of California, Davis, CA, USA.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany
| | - Stephen E Fick
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Krofcheck DJ, Litvak ME, Hurteau MD. Allometric relationships for
Quercus gambelii
and
Robinia neomexicana
for biomass estimation following disturbance. Ecosphere 2019. [DOI: 10.1002/ecs2.2905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Dan J. Krofcheck
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Marcy E. Litvak
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Matthew D. Hurteau
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
19
|
Coop JD, DeLory TJ, Downing WM, Haire SL, Krawchuk MA, Miller C, Parisien M, Walker RB. Contributions of fire refugia to resilient ponderosa pine and dry mixed‐conifer forest landscapes. Ecosphere 2019. [DOI: 10.1002/ecs2.2809] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jonathan D. Coop
- School of Environment and Sustainability Western Colorado University Gunnison Colorado 81231 USA
| | | | - William M. Downing
- Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon 97331 USA
| | - Sandra L. Haire
- Haire Laboratory for Landscape Ecology Belfast Maine 04915 USA
| | - Meg A. Krawchuk
- Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon 97331 USA
| | - Carol Miller
- Aldo Leopold Wilderness Research Institute Rocky Mountain Research Station USDA Forest Service Missoula Montana 59801 USA
| | - Marc‐André Parisien
- Northern Forestry Centre Canadian Forest Service Natural Resources Canada Edmonton Alberta Canada
| | - Ryan B. Walker
- School of Environment and Sustainability Western Colorado University Gunnison Colorado 81231 USA
| |
Collapse
|
20
|
Parks SA, Dobrowski SZ, Shaw JD, Miller C. Living on the edge: trailing edge forests at risk of fire‐facilitated conversion to non‐forest. Ecosphere 2019. [DOI: 10.1002/ecs2.2651] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Sean A. Parks
- Aldo Leopold Wilderness Research Institute Rocky Mountain Research Station US Forest Service 790 E. Beckwith Avenue Missoula Montana 59801 USA
| | - Solomon Z. Dobrowski
- W.A. Franke College of Forestry and Conservation University of Montana Missoula Montana 59812 USA
| | - John D. Shaw
- Forest Inventory and Analysis Rocky Mountain Research Station 507 25th Street Ogden Utah 84322 USA
| | - Carol Miller
- Aldo Leopold Wilderness Research Institute Rocky Mountain Research Station US Forest Service 790 E. Beckwith Avenue Missoula Montana 59801 USA
| |
Collapse
|
21
|
Azpeleta Tarancón A, Fulé PZ, Sánchez Meador AJ, Kim Y, Padilla T. Spatiotemporal variability of fire regimes in adjacent Native American and public forests, New Mexico, USA. Ecosphere 2018. [DOI: 10.1002/ecs2.2492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Peter Z. Fulé
- School of Forestry Northern Arizona University P.O. Box 15018 Flagstaff Arizona 86011 USA
| | | | - Yeon‐Su Kim
- School of Forestry Northern Arizona University P.O. Box 15018 Flagstaff Arizona 86011 USA
| | - Thora Padilla
- Division of Resource Management and Protection Mescalero Apache Tribe P.O. Box 250, 268 Pine St. Mescalero New Mexico 88340 USA
| |
Collapse
|
22
|
Keane RE, Loehman RA, Holsinger LM, Falk DA, Higuera P, Hood SM, Hessburg PF. Use of landscape simulation modeling to quantify resilience for ecological applications. Ecosphere 2018. [DOI: 10.1002/ecs2.2414] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Robert E. Keane
- USDA Forest Service; Rocky Mountain Research Station; Missoula Fire Sciences Laboratory; 5775 Highway 10 West Missoula Montana 59808 USA
| | - Rachel A. Loehman
- US Geological Survey; Alaska Science Center; 4210 University Drive Anchorage Alaska 99508 USA
| | - Lisa M. Holsinger
- USDA Forest Service; Rocky Mountain Research Station; Missoula Fire Sciences Laboratory; 5775 Highway 10 West Missoula Montana 59808 USA
| | - Donald A. Falk
- School of Natural Resources and the Environment; Environment and Natural Resources II; University of Arizona; Tucson Arizona 85721 USA
| | - Philip Higuera
- W.A. Franke College of Forestry & Conservation; University of Montana; 32 Campus Drive Missoula Montana 59812 USA
| | - Sharon M. Hood
- USDA Forest Service; Rocky Mountain Research Station; Missoula Fire Sciences Laboratory; 5775 Highway 10 West Missoula Montana 59808 USA
| | - Paul F. Hessburg
- USDA Forest Service; Pacific Northwest Research Station; Forestry Sciences Laboratory; 1133 N. Western Avenue Wenatchee Washington 98801 USA
| |
Collapse
|
23
|
Davis KT, Higuera PE, Sala A. Anticipating fire‐mediated impacts of climate change using a demographic framework. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimberley T. Davis
- Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana
| | - Philip E. Higuera
- Department of Ecosystem and Conservation Sciences University of Montana Missoula Montana
| | - Anna Sala
- Division of Biological Sciences University of Montana Missoula Montana
| |
Collapse
|
24
|
|