1
|
Veneros J, Hansen AJ, Jantz P, Roberts D, Noguera-Urbano E, García L. Analysis of changes in temperature and precipitation in South American countries and ecoregions: Comparison between reference conditions and three representative concentration pathways for 2050. Heliyon 2025; 11:e42459. [PMID: 40034275 PMCID: PMC11872500 DOI: 10.1016/j.heliyon.2025.e42459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Climate change is a global concern, and its impact on environmental variables such as temperature and annual precipitation is unknown spatially in the desert, andes, and rainforest ecoregions of Peru, Ecuador, and Colombia. In this study, we conducted a general review of climate drivers for South America (SA) and explored climate data using the GCM compareR package (General Circulation Models) and average ensembles for temperature and precipitation. Our results showed that all GCMs demonstrated increases in the annual mean temperature (BIO1) and in the mean temperature of the driest quarter (BIO9) for Peru, Ecuador, and Colombia for 2050 in three RCPs (2.6, 4.5, and 8.5). Also, most of the GCMs showed increases in the annual precipitation (BIO12) and the precipitation in the driest quarter (BIO17). We conducted non-parametric tests (Kruskal-Wallis Test) to assess if the medians of temperature and precipitation in the three ecoregions are equal for both the baseline and the climate change scenarios. We rejected the null hypothesis that the medians are equal for both temperatures and precipitation in the baseline vs. 2050 RCPs (2.6, 4.5, and 8.5). A spatial analysis was conducted to visualize the variations in temperature and precipitation between the RCPs versus the baseline, and the spatial variation at the country or ecoregion level can be observed. The annual mean temperature (°C) or annual precipitation (mm) divided by its standard deviation for each ecoregion (M metric) was analyzed to see how much the average temperature or the annual precipitation is relatively large compared to the variability or dispersion of temperatures or precipitation respectively; the average temperature and the annual precipitation for the baseline and the three RCPs are relatively large and associated with the variability or dispersion of their temperatures in the Napo moist forest compared to the other ecoregions. Our study provides important insights into the potential impacts of climate change on these ecosystems. Prospects in the Napo moist forest ecoregion, where significant changes in temperature and humidity have already occurred, and new species have invaded or evolved in the western Amazon rainforest, are particularly highlighted and reflected in terms of risk mitigation, ecosystem restoration, surveillance, and monitoring.
Collapse
Affiliation(s)
- Jaris Veneros
- Department of Ecology, Montana State University, Bozeman, MT, USA
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Peru
| | - Andrew J Hansen
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Patrick Jantz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Dave Roberts
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Elkin Noguera-Urbano
- Alexander von Humboldt Biological Resources Research Institute, Bogotá, Colombia
| | - Ligia García
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Peru
| |
Collapse
|
2
|
Costa FRC, Schietti J, Stark SC, Smith MN. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? THE NEW PHYTOLOGIST 2023; 237:714-733. [PMID: 35037253 DOI: 10.1111/nph.17914] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Tropical forest function is of global significance to climate change responses, and critically determined by water availability patterns. Groundwater is tightly related to soil water through the water table depth (WT), but historically neglected in ecological studies. Shallow WT forests (WT < 5 m) are underrepresented in forest research networks and absent in eddy flux measurements, although they represent c. 50% of the Amazon and are expected to respond differently to global-change-related droughts. We review WT patterns and consequences for plants, emerging results, and advance a conceptual model integrating environment and trait distributions to predict climate change effects. Shallow WT forests have a distinct species composition, with more resource-acquisitive and hydrologically vulnerable trees, shorter canopies and lower biomass than deep WT forests. During 'normal' climatic years, shallow WT forests have higher mortality and lower productivity than deep WT forests, but during moderate droughts mortality is buffered and productivity increases. However, during severe drought, shallow WT forests may be more sensitive due to shallow roots and drought-intolerant traits. Our evidence supports the hypothesis of neglected shallow WT forests being resilient to moderate drought, challenging the prevailing view of widespread negative effects of climate change on Amazonian forests that ignores WT gradients, but predicts they could collapse under very strong droughts.
Collapse
Affiliation(s)
- Flavia R C Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av André Araújo 2223, Manaus, AM, 69067-375, Brazil
| | - Juliana Schietti
- Departmento de Biologia, Universidade Federal do Amazonas, Manaus, AM, 69067-005, Brazil
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
4
|
A New Look into the South America Precipitation Regimes: Observation and Forecast. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
South America is a vast continent characterized by diverse atmospheric phenomena and climate regimes. In this context, seasonal climate predictions are helpful for decision-making in several relevant socioeconomic segments in this territory, such as agriculture and energy generation. Thus, the present work evaluates the performance of ECMWF-SEAS5 in simulating the South American precipitation regimes by applying a non-hierarchical clustering technique. In addition, the study describes the main atmospheric systems that cause precipitation in each cluster and updates a previous work performed in South America in 2010. As a result, ECMWF-SEAS5 simulates (with good correspondence) the eight climate regimes identified in the analysis of precipitation from the Climate Prediction Center (CPC). Moreover, ECMWF-SEAS5 has a satisfactory ability in representing the rainfall regime in low and medium climate predictability regions, such as central and southern South America. ECMWF-SEAS5 has good performance in the climate characterization of South America and it gives us confidence in using its seasonal climate predictions throughout the continent.
Collapse
|
5
|
Changes in land use enhance the sensitivity of tropical ecosystems to fire-climate extremes. Sci Rep 2022; 12:964. [PMID: 35046481 PMCID: PMC8770517 DOI: 10.1038/s41598-022-05130-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
The Pantanal, the largest contiguous wetland in the world with a high diversity of ecosystems and habitat for several endangered species, was impacted by record-breaking wildfires in 2020. In this study, we integrate satellite and modeling data that enable exploration of natural and human contributing factors to the unprecedented 2020 fires. We demonstrate that the fires were fueled by an exceptional multi-year drought, but dry conditions solely could not explain the spatial patterns of burning. Our analysis reveals how human-caused fires exacerbated drought effects on natural ecosystem within the Pantanal, with large burned fractions primarily over natural (52%), and low cattle density areas (44%) in 2020. The post-fire ecosystem and hydrology changes also had strong ecological effects, with vegetation productivity less than − 1.5 σ over more than 30% of the natural and conservation areas. In contrast to more managed areas, there was a clear decrease in evaporation (by ~ 9%) and an increase in runoff (by ~ 5%) over the natural areas, with long-term impacts on ecosystem recovery and fire risk. This study provides the first tropical evidence outside rainforests of the synergy between climate, land management and fires, and the associated impacts on the ecosystem and hydrology over the largest contiguous wetlands in the world.
Collapse
|
6
|
Pratt RB. Vegetation-type conversion of evergreen chaparral shrublands to savannahs dominated by exotic annual herbs: causes and consequences for ecosystem function. AMERICAN JOURNAL OF BOTANY 2022; 109:9-28. [PMID: 34636412 DOI: 10.1002/ajb2.1777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, USA
| |
Collapse
|
7
|
Fadini RF, Brocardo CR, Rosa C, Aragón S, Lima AP, Magnusson WE. Long-term standardized ecological research in an Amazonian savanna: a laboratory under threat. AN ACAD BRAS CIENC 2021; 93:e20210879. [PMID: 34909832 DOI: 10.1590/0001-3765202120210879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
A few decades ago, researchers from the National Institute for Amazonian Research (INPA) started a pilot study to integrate the ecological studies of several organisms using monitoring plots, which then became the embryo for the creation of the RAPELD (Rapid Assessments and Long-term Ecological Research) system used by the Program for Biodiversity Research (PPBio) and the Long-term ecological research site POPA (PELD Western Pará). They installed and maintained permanent plots in an Amazonian-savanna patch near to the village of Alter do Chão. Amazonian savannas constitute a threatened ecosystem comprising only 6% of the Amazon biome. Most of the studies focused on three main long-term ecological research questions, but the site was also of importance for other inquiries and for the training of young researchers, contributing 71 articles so far and 32 masters and doctorate theses. Here, we present the experimental design and results of standardized studies in the savannas and forest fragments near Alter do Chão that have been carried out over the years. We discuss the future prospects and local threats to the area (e.g. soy crops and land speculation), and highlight the need to incorporate Alter do Chão villagers in land-use planning in the region.
Collapse
Affiliation(s)
- Rodrigo F Fadini
- Universidade Federal do Oeste do Pará, Laboratório de Ecologia e Conservação, Rua Vera Paz, s/n, Salé, 68040-255 Santarém, PA, Brazil.,Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, 68135-110 Santarém, PA, Brazil
| | - Carlos R Brocardo
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, 68135-110 Santarém, PA, Brazil
| | - Clarissa Rosa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
| | - Susan Aragón
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, 68040-255 Santarém, PA, Brazil.,Institute of Environment, Territory and Renewable Energy (INTE) Pontificia Universidad Catolica del Peru (PUCP), Av. Universitaria, 1801, Lima 15088, Peru
| | - Albertina P Lima
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
| | - William E Magnusson
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
| |
Collapse
|
8
|
Pontes-Lopes A, Silva CVJ, Barlow J, Rincón LM, Campanharo WA, Nunes CA, de Almeida CT, Silva Júnior CHL, Cassol HLG, Dalagnol R, Stark SC, Graça PMLA, Aragão LEOC. Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Proc Biol Sci 2021; 288:20210094. [PMID: 34004131 PMCID: PMC8131120 DOI: 10.1098/rspb.2021.0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/23/2021] [Indexed: 11/12/2022] Open
Abstract
While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change.
Collapse
Affiliation(s)
- Aline Pontes-Lopes
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
| | - Camila V. J. Silva
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Amazon Environmental Research Institute (IPAM), Brasília 71503-505, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Lorena M. Rincón
- National Institute for Research in Amazonia (INPA), Manaus 69067-375, Brazil
| | - Wesley A. Campanharo
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
| | - Cássio A. Nunes
- Department of Ecology and Conservation, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil
| | - Catherine T. de Almeida
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ), Piracicaba 13418-900, Brazil
| | - Celso H. L. Silva Júnior
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
- Department of Agricultural Engineering, State University of Maranhão (UEMA), São Luís 65055-310, Brazil
| | - Henrique L. G. Cassol
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
| | - Ricardo Dalagnol
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
| | - Scott C. Stark
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | | | - Luiz E. O. C. Aragão
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| |
Collapse
|