1
|
Zhou W, Chen L, Cheng W, Li Y, Li T, Smith P, Cheng K. Synergistic effects of climate change and nitrogen use on future nitric oxide emissions from China's croplands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124643. [PMID: 39983579 DOI: 10.1016/j.jenvman.2025.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Accurate quantification of soil nitric oxide (NO) emissions can establish a scientific foundation for developing targeted strategies to mitigate emissions, thereby reducing their environmental impact. Using a database with 476 field measurements across China, a NO emission model was constructed by employing four machine learning algorithms including Extreme Gradient Boosting (XGBoost), Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). Our validation with independent observational data revealed that the XGBoost model performed the best, achieving a R2 of 0.67. The most important management, soil, and meteorological variables affecting the NO model were mineral nitrogen input, soil organic carbon content, and air temperature, respectively. This study also found that NO emissions exhibited nonlinear responses to different variables. NO emissions from China's farmland were estimated to be approximately 204.48 kt NO-N in 2020. By 2050, we predicted that NO emissions could increase by 2.9%-9.9% under various climate change scenarios, with the highest increment of 9.9% occurring under the RCP8.5 scenario. The southern agricultural region, which was particularly vulnerable to climate change, experienced the largest increase, ranging from approximately 15%-31%. The implementation of nitrogen management strategies that are adapted to future climate conditions could potentially reduce NO emissions by 15%-16.2%.
Collapse
Affiliation(s)
- Wenjing Zhou
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, China
| | - Libo Chen
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu, China
| | - Wenxin Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, China
| | - Yunpeng Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu, China
| | - Tong Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Yang Y, Li Z, Chen Y, Zhang Y, Lu L. Periodic flooding alters ecological processes and carbon metabolism efficiency of riparian soil microbial communities in the three Gorges Reservoir area, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124534. [PMID: 39965502 DOI: 10.1016/j.jenvman.2025.124534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Soil microbial communities are the most active components in the riparian biota, and are critical in driving carbon cycling. The periodic flooding in riparian zones is a primary driving force in the changes of soil microbial community structures and function. However, whether such events can induce changes in microbial carbon metabolism efficiency has not been fully revealed, especially in large reservoirs that experience counter-seasonal water level fluctuations (WLFs). In this study, high-throughput sequencing and the 18O-H2O cultivation method were applied to investigate the soil microbial community and carbon metabolism in a tributary riparian zone in China's Three Gorges Reservoir, which has experienced large WLFs. Three elevations in the riparian zone (155, 165, and 170 m) were selected as treatments for different flooding intensities. As the frequency of flooding decreased, soil enzyme activity decreased first and then increased. In contrast, soil water content, fungal α-diversity, microbial co-occurrence network complexity, average variation degree, βNTI, and total cohesion decreased slowly. The assembly mechanism of microbial communities is primarily governed by homogeneous dispersion. This suggests that periodic flooding significantly alters microbial ecological processes. Additionally, we found that decreased extracellular enzyme activity increases microbial carbon use efficiency and decreases the metabolic quotient, promoting soil carbon storage. This study enhances our understanding of the response and mechanisms of soil microbial communities to periodic flooding. It provides a theoretical foundation for soil ecosystem management and conservation.
Collapse
Affiliation(s)
- Yining Yang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhe Li
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Yuanyuan Zhang
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Lunhui Lu
- CAS Key Laboratory of Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
3
|
Broderick CM, Benucci GMN, Bachega LR, Miller GD, Evans SE, Hawkes CV. Long-term climate establishes functional legacies by altering microbial traits. THE ISME JOURNAL 2025; 19:wraf005. [PMID: 39804671 PMCID: PMC11805608 DOI: 10.1093/ismejo/wraf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025]
Abstract
Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions. Using shotgun metagenomics, we assessed the composition of soil microbial functional genes across a mean annual precipitation gradient that previously showed evidence of strong climate legacies in soil carbon flux and extracellular enzyme activity. Sampling coincided with recovery from a regional, multi-year severe drought, allowing us to document how the strength of climate legacies varied with contemporary conditions. We found increased investment in genes associated with resource cycling with historically higher precipitation across the gradient, particularly in traits related to resource transport and complex carbon degradation. This legacy effect was strongest in seasons with the lowest soil moisture, suggesting that contemporary conditions-particularly, resource stress under water limitation-influences the strength of legacy effects. In contrast, investment in stress tolerance did not vary with historical precipitation, likely due to frequent periodic drought throughout the gradient. Differences in the relative abundance of functional genes explained over half of variation in microbial functional capacity-potential enzyme activity-more so than historical precipitation or current moisture conditions. Together, these results suggest that long-term climate can alter the functional potential of soil microbial communities, leading to legacies in carbon cycling.
Collapse
Affiliation(s)
- Caitlin M Broderick
- W.K. Kellogg Biological Station, Michigan State University, 3700 Gull Lake Drive, Hickory Corners, MI 49060, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Gian Maria Niccolò Benucci
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Luciana Ruggiero Bachega
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, United States
| | - Gabriel D Miller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - Sarah E Evans
- W.K. Kellogg Biological Station, Michigan State University, 3700 Gull Lake Drive, Hickory Corners, MI 49060, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, United States
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
4
|
Hu H, Liu X, He Y, Feng J, Xu Y, Jing J. Legacy effects of precipitation change: Theories, dynamics, and applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123729. [PMID: 39693973 DOI: 10.1016/j.jenvman.2024.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
The intensification of climate-induced precipitation change poses a dual challenge to terrestrial ecosystems: immediate effects on their structure and function, coupled with legacy effects that persist beyond the cessation of precipitation change. Quantifying these legacy effects accurately can greatly assist in assessing the long-term impact of precipitation change. However, their broader understanding is just beginning. Therefore, this review endeavors to synthesize the existing knowledge concerning the legacy effects of precipitation change, elucidating their nature, characteristics, driving factors, and implications, thereby fostering further advancements in this research domain. To begin, we define that precipitation legacies are carried by the information and/or material remnants arising from previous precipitation change, with the enduring impacts of these remnants (precipitation legacy carriers) on the current ecosystem being termed the precipitation legacy effects. To comprehensively investigate the performances of precipitation legacy effects, we introduce a multi-faceted characterization framework, encompassing magnitude, direction, duration, and spatial-temporal variability. This framework is complemented by a proposed sequential analysis approach, spanning the pre-, during, and post-precipitation change phases. Next, we emphasize that the nature of precipitation legacy carriers and the pattern of precipitation change jointly determine the characteristics of precipitation legacy effect. Subsequently, we elucidate the possible carriers of precipitation legacies across species, community, and ecosystem levels, as well as the linkages among these carriers and levels, thereby introducing the underlying formation mechanism of precipitation legacy effects. Lastly, from the perspective of ecosystem stability debt, we propose potential applications of precipitation legacy effects in future climate change research. The viewpoints and methodologies outlined in this review can deepen our comprehension of precipitation legacy effects, contributing to the comprehensive assessment of precipitation impact on soil-vegetation systems and providing guidance for formulating effective strategies to address future climate change.
Collapse
Affiliation(s)
- Hongjiao Hu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinping Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yuhui He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Lanzhou Ecological Agriculture Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jie Feng
- Forestry and Grassland Research Institute of Tongliao, Tongliao, 010020, China
| | - Yuanzhi Xu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Jing
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Camenzind T, Aguilar-Trigueros CA, Hempel S, Lehmann A, Bielcik M, Andrade-Linares DR, Bergmann J, Dela Cruz J, Gawronski J, Golubeva P, Haslwimmer H, Lartey L, Leifheit E, Maaß S, Marhan S, Pinek L, Powell JR, Roy J, Veresoglou SD, Wang D, Wulf A, Zheng W, Rillig MC. Towards establishing a fungal economics spectrum in soil saprobic fungi. Nat Commun 2024; 15:3321. [PMID: 38637578 PMCID: PMC11026409 DOI: 10.1038/s41467-024-47705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.
Collapse
Affiliation(s)
- Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Carlos A Aguilar-Trigueros
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Stefan Hempel
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Milos Bielcik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Diana R Andrade-Linares
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
| | - Joana Bergmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Jeane Dela Cruz
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jessie Gawronski
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Polina Golubeva
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Heike Haslwimmer
- Institute of Soil Science and Land Evaluation, Soil Biology department, University of Hohenheim, Emil-Wolff-Str. 27, 70599, Stuttgart, Germany
| | - Linda Lartey
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Eva Leifheit
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefanie Maaß
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology department, University of Hohenheim, Emil-Wolff-Str. 27, 70599, Stuttgart, Germany
| | - Liliana Pinek
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Julien Roy
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dongwei Wang
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anja Wulf
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Weishuang Zheng
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, 518057, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
6
|
Amarasinghe A, Chen C, Van Zwieten L, Rashti MR. The role of edaphic variables and management practices in regulating soil microbial resilience to drought - A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169544. [PMID: 38141972 DOI: 10.1016/j.scitotenv.2023.169544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Environmental disturbances such as drought can impact soil health and the resistance (ability to withstand environmental stress) and resilience (ability to recover functional and structural integrity after stress) of soil microbial functional activities. A paucity of information exists on the impact of drought on soil microbiome and how soil biological systems respond to and demonstrate resilience to drought stress. To address this, we conducted a systematic review and meta-analysis (using only laboratory studies) to assess the response of soil microbial biomass and respiration to drought stress across agriculture, forest, and grassland ecosystems. The meta-analysis revealed an overall negative response of microbial biomass in resistance (-31.6 %) and resilience (-0.3 %) to drought, suggesting a decrease in soil microbial biomass content. Soil microbial respiration also showed a negative response in resistance to drought stress indicating a decrease in soil microbial respiration in agriculture (-17.5 %), forest (-64.0 %), and grassland (-65.5 %) ecosystems. However, it showed a positive response in resilience to drought, suggesting an effective recovery in microbial respiration post-drought. Soil organic carbon (SOC), clay content, and pH were the main regulating factors of the responses of soil microbial biomass and respiration to drought. In agriculture ecosystem, soil pH was primarily correlated with soil microbial respiration resistance and resilience to drought, potentially influenced by frequent land preparation and fertilizer applications, while in forest ecosystem SOC, clay content, and pH significantly impacted microbial biomass and respiration resistance and resilience. In grassland ecosystem, SOC was strongly associated with biomass resilience to drought. The impact of drought stress on soil microbiome showed different patterns in natural and agriculture ecosystems, and the magnitude of microbial functional responses regulated by soil intrinsic properties. This study highlighted the importance of understanding the role of soil properties in shaping microbial responses to drought stress for better ecosystem management.
Collapse
Affiliation(s)
- Apsara Amarasinghe
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lukas Van Zwieten
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia; NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - Mehran Rezaei Rashti
- Australian Rivers Institute, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
7
|
Mousavi SA, Ramula S. The invasive legume Lupinus polyphyllus has minor site-specific impacts on the composition of soil bacterial communities. Ecol Evol 2024; 14:e11030. [PMID: 38357596 PMCID: PMC10864723 DOI: 10.1002/ece3.11030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Plant invasions can have major impacts on ecosystems, both above- and belowground. In particular, invasions by legumes, which often host nitrogen-fixing symbionts (rhizobia), are known to modify soil bacterial communities. Here, we examined the effect of the invasive herbaceous legume Lupinus polyphyllus on the alpha diversity and community composition of soil bacteria. We also explored the relationships between these bacterial communities and vegetation cover, the cover of other (non-invasive) legumes, or the number of vascular plants present. For this, we sampled rhizosphere soil and surveyed vegetation from ten paired sites (uninvaded versus invaded more than 10 years ago) in southwestern Finland, and identified bacterial DNA using 16S rRNA gene amplicon sequencing. The presence of the plant invader and the three vegetation variables considered had no effect on the alpha diversity of soil bacteria in terms of bacterial richness or Shannon and Inverse Simpson diversity indices. However, the composition of soil bacterial communities differed between invaded and uninvaded soils at four out of the ten sites. Interestingly, the relative abundances of the top bacterial families in invaded and uninvaded soils were inconsistent across sites, including for legume-associated rhizobia in the family Bradyrhizobiaceae. Other factors-such as vegetation cover, legume cover (excluding L. polyphyllus), number of plant species-also explained a small proportion of the variation in bacterial community composition. Our findings indicate that L. polyphyllus has the potential to modify the composition of local soil bacterial community, at least in sites where it has been present for more than a decade.
Collapse
Affiliation(s)
| | - Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
8
|
Ranheim Sveen T, Hannula SE, Bahram M. Microbial regulation of feedbacks to ecosystem change. Trends Microbiol 2024; 32:68-78. [PMID: 37500365 DOI: 10.1016/j.tim.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Microbes are key biodiversity components of all ecosystems and control vital ecosystem functions. Although we have just begun to unravel the scales and factors that regulate microbial communities, their role in mediating ecosystem stability in response to disturbances remains underexplored. Here, we review evidence of how, when, and where microbes regulate or drive disturbance feedbacks. Negative feedbacks dampen the impacts of disturbance, which maintain ecosystem stability, whereas positive feedbacks instead erode stability by amplifying the disturbance. Here we describe the processes underlying the responses to disturbance using a hierarchy of functional traits, and we exemplify how these may drive biogeochemical feedbacks. We suggest that the feedback potential of functional traits at different hierarchical levels is contingent on the complexity and heterogeneity of the environment.
Collapse
Affiliation(s)
- T Ranheim Sveen
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden.
| | - S E Hannula
- Institute of Environmental Sciences, Leiden University, Leiden 2333, The Netherlands
| | - M Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Nelson AR, Rhoades CC, Fegel TS, Roth HK, Caiafa MV, Glassman SI, Borch T, Wilkins MJ. Wildfire impact on soil microbiome life history traits and roles in ecosystem carbon cycling. ISME COMMUNICATIONS 2024; 4:ycae108. [PMID: 39963501 PMCID: PMC11831523 DOI: 10.1093/ismeco/ycae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 02/20/2025]
Abstract
Wildfires, which are increasing in frequency and severity with climate change, reduce soil microbial biomass and alter microbial community composition and function. The soil microbiome plays a vital role in carbon (C) and nitrogen (N) cycling, but its complexity makes it challenging to predict post-wildfire soil microbial dynamics and resulting impacts on ecosystem biogeochemistry. The application of biogeochemically relevant conceptual trait-based frameworks to the soil microbiome can distill this complexity, enabling enhanced predictability of soil microbiome recovery following wildfire and subsequent impacts to biogeochemical cycles. Conceptual frameworks that have direct links to soil C and N cycling have been developed for the soil microbiome; the Y-A-S framework overviews soil microbiome life history strategies that have tradeoffs with one another and others have proposed frameworks specific to wildfire. Here, we aimed to delineate post-wildfire changes of bacterial traits in western US coniferous forests to inform how severe wildfire influences soil microbiome recovery and resultant biogeochemical cycling. We utilized a comprehensive metagenome-assembled genome catalog from post-wildfire soils representing 1 to 11 years following low- and high-severity burning to identify traits that enable the persistence of microbial taxa in burned soils and influence ecosystem C and N cycling. We found that high-severity wildfire initially selects for fast growers and, up to a decade post-fire, taxa that invest in genes for acquiring diverse resources from the external environment, which in combination could increase soil C losses. This work begins to disentangle how climate change-induced shifts in wildfire behavior might alter microbially mediated soil biogeochemical cycling.
Collapse
Affiliation(s)
- Amelia R Nelson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Charles C Rhoades
- Rocky Mountain Research Station, United States Forest Service, Fort Collins, CO 80526, United States
| | - Timothy S Fegel
- Rocky Mountain Research Station, United States Forest Service, Fort Collins, CO 80526, United States
| | - Holly K Roth
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Marcos V Caiafa
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sydney I Glassman
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
10
|
Allison SD. Microbial drought resistance may destabilize soil carbon. Trends Microbiol 2023:S0966-842X(23)00078-1. [PMID: 37059647 DOI: 10.1016/j.tim.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
Droughts are becoming more frequent and intense with climate change. As plants and microbes respond to drought, there may be consequences for the vast stocks of organic carbon stored in soils. If microbes sustain their activity under drought, soils could lose carbon, especially if inputs from plants decline. Empirical and theoretical studies reveal multiple mechanisms of microbial drought resistance, including tolerance and avoidance. Physiological responses allow microbes to acclimate to drought within minutes to days. Along with dispersal, shifts in community composition could allow microbiomes to maintain functioning despite drought. Microbes might also adapt to drier conditions through evolutionary processes. Together, these mechanisms could result in soil carbon losses larger than currently anticipated under climate change.
Collapse
Affiliation(s)
- Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA; Department of Earth System Science, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Dodd RJ, Chadwick DR, Hill PW, Hayes F, Sánchez-Rodríguez AR, Gwynn-Jones D, Smart SM, Jones DL. Resilience of ecosystem service delivery in grasslands in response to single and compound extreme weather events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160660. [PMID: 36464051 DOI: 10.1016/j.scitotenv.2022.160660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Extreme weather events are increasing in frequency and magnitude with profound effects on ecosystem functioning. Further, there is now a greater likelihood that multiple extreme events are occurring within a single year. Here we investigated the effect of a single drought, flood or compound (flood + drought) extreme event on temperate grassland ecosystem processes in a field experiment. To assess system resistance and resilience, we studied changes in a wide range of above- and below-ground indicators (plant diversity and productivity, greenhouse gas emissions, soil chemical, physical and biological metrics) during the 8 week stress events and then for 2 years post-stress. We hypothesized that agricultural grasslands would have different degrees of resistance and resilience to flood and drought stress. We also investigated two alternative hypotheses that the combined flood + drought treatment would either, (A) promote ecosystem resilience through more rapid recovery of soil moisture conditions or (B) exacerbate the impact of the single flood or drought event. Our results showed that flooding had a much greater effect than drought on ecosystem processes and that the grassland was more resistant and resilient to drought than to flood. The immediate impact of flooding on all indicators was negative, especially for those related to production, and climate and water regulation. Flooding stress caused pronounced and persistent shifts in soil microbial and plant communities with large implications for nutrient cycling and long-term ecosystem function. The compound flood + drought treatment failed to show a more severe impact than the single extreme events. Rather, there was an indication of quicker recovery of soil and microbial parameters suggesting greater resilience in line with hypothesis (A). This study clearly reveals that contrasting extreme weather events differentially affect grassland ecosystem function but that concurrent events of a contrasting nature may promote ecosystem resilience to future stress.
Collapse
Affiliation(s)
- Rosalind J Dodd
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Ave, Bailrigg LA1 4AP, UK; Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - David R Chadwick
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Paul W Hill
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Antonio R Sánchez-Rodríguez
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Departamento de Agronomía, Universidad de Córdoba, Córdoba 14071, Spain
| | - Dylan Gwynn-Jones
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Simon M Smart
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Ave, Bailrigg LA1 4AP, UK
| | - Davey L Jones
- Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| |
Collapse
|
12
|
Krichels AH, Greene AC, Jenerette GD, Spasojevic MJ, Glassman SI, Homyak PM. Precipitation legacies amplify ecosystem nitrogen losses from nitric oxide emissions in a Pinyon-Juniper dryland. Ecology 2023; 104:e3930. [PMID: 36451599 DOI: 10.1002/ecy.3930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022]
Abstract
Climate change is increasing the variability of precipitation, altering the frequency of soil drying-wetting events and the distribution of seasonal precipitation. These changes in precipitation can alter nitrogen (N) cycling and stimulate nitric oxide (NO) emissions (an air pollutant at high concentrations), which may vary according to legacies of past precipitation and represent a pathway for ecosystem N loss. To identify whether precipitation legacies affect NO emissions, we excluded or added precipitation during the winter growing season in a Pinyon-Juniper dryland and measured in situ NO emissions following experimental wetting. We found that the legacy of both excluding and adding winter precipitation increased NO emissions early in the following summer; cumulative NO emissions from the winter precipitation exclusion plots (2750 ± 972 μg N-NO m-2 ) and winter water addition plots (2449 ± 408 μg N-NO m-2 ) were higher than control plots (1506 ± 397 μg N-NO m-2 ). The increase in NO emissions with previous precipitation exclusion was associated with inorganic N accumulation, while the increase in NO emissions with previous water addition was associated with an upward trend in microbial biomass. Precipitation legacies can accelerate soil NO emissions and may amplify ecosystem N loss in response to more variable precipitation.
Collapse
Affiliation(s)
- Alexander H Krichels
- Environmental Sciences, University of California, Riverside, California, USA.,Center for Conservation Biology, University of California, Riverside, California, USA
| | - Aral C Greene
- Environmental Sciences, University of California, Riverside, California, USA
| | - G Darrel Jenerette
- Center for Conservation Biology, University of California, Riverside, California, USA.,Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Marko J Spasojevic
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Sydney I Glassman
- Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Peter M Homyak
- Environmental Sciences, University of California, Riverside, California, USA.,Center for Conservation Biology, University of California, Riverside, California, USA
| |
Collapse
|
13
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
14
|
Xi N, Chen D, Bahn M, Wu H, Chu C, Cadotte MW, Bloor JMG. Drought soil legacy alters drivers of plant diversity-productivity relationships in oldfield systems. SCIENCE ADVANCES 2022; 8:eabn3368. [PMID: 35507655 PMCID: PMC9067920 DOI: 10.1126/sciadv.abn3368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/16/2022] [Indexed: 05/26/2023]
Abstract
Ecosystem functions are threatened by both recurrent droughts and declines in biodiversity at a global scale, but the drought dependency of diversity-productivity relationships remains poorly understood. Here, we use a two-phase mesocosm experiment with simulated drought and model oldfield communities (360 experimental mesocosms/plant communities) to examine drought-induced changes in soil microbial communities along a plant species richness gradient and to assess interactions between past drought (soil legacies) and subsequent drought on plant diversity-productivity relationships. We show that (i) drought decreases bacterial and fungal richness and modifies relationships between plant species richness and microbial groups; (ii) drought soil legacy increases net biodiversity effects, but responses of net biodiversity effects to plant species richness are unaffected; and (iii) linkages between plant species richness and complementarity/selection effects vary depending on past and subsequent drought. These results provide mechanistic insight into biodiversity-productivity relationships in a changing environment, with implications for the stability of ecosystem function under climate change.
Collapse
Affiliation(s)
- Nianxun Xi
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongxia Chen
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Hangyu Wu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Marc W. Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Juliette M. G. Bloor
- Université Clermont Auvergne, INRAE, VetAgro-Sup, UREP, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
| |
Collapse
|
15
|
D’Angioli AM, Giles AL, Costa PB, Wolfsdorf G, Pecoral LLF, Verona L, Piccolo F, Sampaio AB, Schmidt IB, Rowland L, Lambers H, Kandeler E, Oliveira RS, Abrahão A. Abandoned pastures and restored savannahs have distinct patterns of plant‐soil feedback and nutrient cycling compared with native Brazilian savannahs. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- André M. D’Angioli
- Programa de pós‐graduação em Ecologia, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas Brasil
| | - André L. Giles
- Programa de pós‐graduação em Ecologia, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas Brasil
| | - Patricia B. Costa
- Programa de pós‐graduação em Biologia Vegetal, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas Brasil
- School of Biological Sciences University of Western Australia Perth Australia
| | - Gabriel Wolfsdorf
- Programa de pós‐graduação em Ecologia, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas Brasil
| | - Luisa L. F. Pecoral
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo Brasil
| | - Larissa Verona
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo Brasil
| | - Fernanda Piccolo
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo Brasil
| | | | - Isabel B. Schmidt
- Departamento de Ecologia, Universidade de Brasília, Brasília DF Brasil
| | - Lucy Rowland
- College of Life and Environmental Sciences University of Exeter Exeter UK
| | - Hans Lambers
- School of Biological Sciences University of Western Australia Perth Australia
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department University of Hohenheim Stuttgart Germany
| | - Rafael S. Oliveira
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo Brasil
- School of Biological Sciences University of Western Australia Perth Australia
| | - Anna Abrahão
- Programa de pós‐graduação em Biologia Vegetal, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas Brasil
- Institute of Soil Science and Land Evaluation, Soil Biology Department University of Hohenheim Stuttgart Germany
| |
Collapse
|
16
|
Wang B, Allison SD. Climate-Driven Legacies in Simulated Microbial Communities Alter Litter Decomposition Rates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying diversity-functioning relationships have been a consistent area of inquiry in biogeochemistry since the 1950s. Though these mechanisms remain unresolved in soil microbiomes, many approaches at varying scales have pointed to the same notion—composition matters. Confronting the methodological challenge arising from the complexity of microbiomes, this study used the model DEMENTpy, a trait-based modeling framework, to explore trait-based drivers of microbiome-dependent litter decomposition. We parameterized DEMENTpy for five sites along a climate gradient in Southern California, United States, and conducted reciprocal transplant simulations analogous to a prior empirical study. The simulations demonstrated climate-dependent legacy effects of microbial communities on plant litter decomposition across the gradient. This result is consistent with the previous empirical study across the same gradient. An analysis of community-level traits further suggests that a 3-way tradeoff among resource acquisition, stress tolerance, and yield strategies influences community assembly. Simulated litter decomposition was predictable with two community traits (indicative of two of the three strategies) plus local environment, regardless of the system state (transient vs. equilibrium). Although more empirical confirmation is still needed, community traits plus local environmental factors (e.g., environment and litter chemistry) may robustly predict litter decomposition across spatial-temporal scales. In conclusion, this study offers a potential trait-based explanation for climate-dependent community effects on litter decomposition with implications for improved understanding of whole-ecosystem functioning across scales.
Collapse
|
17
|
Evans S, Allison S, Hawkes C. Microbes, memory, and moisture: predicting microbial moisture responses and their impact on carbon cycling. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Evans
- W.K. Kellogg Biological Station, Ecology and Evolutionary Biology Program Department of Integrative Biology Michigan State University Hickory Corners MI 49083 USA
| | - Steve Allison
- Department of Ecology and Evolutionary Biology Department of Earth System Science University of California Irvine California 92697 USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology North Carolina State University Raleigh NC 27607 USA
| |
Collapse
|