1
|
Wallace MA, Wille M, Geoghegan J, Imrie RM, Holmes EC, Harrison XA, Longdon B. Making sense of the virome in light of evolution and ecology. Proc Biol Sci 2025; 292:20250389. [PMID: 40169018 PMCID: PMC11961256 DOI: 10.1098/rspb.2025.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the patterns and drivers of viral prevalence and abundance is of key importance for understanding pathogen emergence. Over the last decade, metagenomic sequencing has exponentially expanded our knowledge of the diversity and evolution of viruses associated with all domains of life. However, as most of these 'virome' studies are primarily descriptive, our understanding of the predictors of virus prevalence, abundance and diversity, and their variation in space and time, remains limited. For example, we do not yet understand the relative importance of ecological predictors (e.g. seasonality and habitat) versus evolutionary predictors (e.g. host and virus phylogenies) in driving virus prevalence and diversity. Few studies are set up to reveal the factors that predict the virome composition of individual hosts, populations or species. In addition, most studies of virus ecology represent a snapshot of single species viromes at a single point in time and space. Fortunately, recent studies have begun to use metagenomic data to directly test hypotheses about the evolutionary and ecological factors which drive virus prevalence, sharing and diversity. By synthesizing evidence across studies, we present some over-arching ecological and evolutionary patterns in virome composition, and illustrate the need for additional work to quantify the drivers of virus prevalence and diversity.
Collapse
Affiliation(s)
- Megan A. Wallace
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jemma Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ryan M. Imrie
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Edward C. Holmes
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
2
|
Straub F, Birkenbach M, Boesing AL, Manning P, Olsson O, Kuppler J, Wilfert L, Ayasse M. Local and landscape factors differently influence health and pollination services in two important pollinator groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178330. [PMID: 39752984 DOI: 10.1016/j.scitotenv.2024.178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Agricultural management significantly affects insects, especially pollinators, which are crucial for crop pollination and biodiversity. In agricultural landscapes, various factors spanning different spatial scales are known to affect pollinator health, which, in turn, can influence pollination services. However, the importance of these factors in driving the health and performance of different pollinator groups remains unclear. Using a long-term biodiversity research platform, the German Biodiversity Exploratories, we investigated links between local and landscape-level land-use, health and pollination services in common pollinators, the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, by measuring various traits as proxies for pollinator health and pollination services. Because of their different life histories, we expected the territorial bumblebees to be more vulnerable to land-use intensification at both spatial levels, compared with the migratory syrphid flies. Both land-use and environmental factors (climate) across spatial scales affected pollinator health, mostly via changes in body size: High land-use intensity reduced bumblebee body size, whereas higher ambient air temperature decreased syrphid fly body size. Increasing proportions of intensively managed areas at the landscape level decreased viral infections in both species. Additionally, landscape-level land-use and climate changed the bumblebees cuticular chemical profile, which is essential for communication in these social insects. Increasing land-use intensity at the local level and higher proportions of intensive land-use at the landscape level both had an indirect negative effect on pollination services in bumblebees via local flower cover and body size. Pollination services in both species were linked to body size. Thus, land-use factors affect pollinator health differently: bumblebees are more vulnerable to local and landscape-level land-use intensification, while syrphid flies are more resilient potentially due to their higher mobility. As pollinator health affects pollination services, our results indicate that land-use intensification poses a high risk to crops pollinated by species with small home ranges.
Collapse
Affiliation(s)
- Florian Straub
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Birkenbach
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andrea Larissa Boesing
- Senckenberg Biodiversität und Klima Forschungszentrum, Georg-Voigt-Straße 14-16, 60325 Frankfurt am Main, Germany
| | - Peter Manning
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ola Olsson
- Lund University, Department of Biology, Ecology Building, 22362 Lund, Sweden
| | - Jonas Kuppler
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Wilfert
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Ayasse
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
3
|
Maurer C, Schauer A, Yañez O, Neumann P, Gajda A, Paxton RJ, Pellissier L, Schweiger O, Szentgyörgyi H, Vanbergen AJ, Albrecht M. Species traits, landscape quality and floral resource overlap with honeybees determine virus transmission in plant-pollinator networks. Nat Ecol Evol 2024; 8:2239-2251. [PMID: 39367259 PMCID: PMC11618065 DOI: 10.1038/s41559-024-02555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Emerging infectious diseases pose a threat to pollinators. Virus transmission among pollinators via flowers may be reinforced by anthropogenic land-use change and concomitant alteration of plant-pollinator interactions. Here, we examine how species' traits and roles in flower-visitation networks and landscape-scale factors drive key honeybee viruses-black queen cell virus (BQCV) and deformed wing virus-in 19 wild bee and hoverfly species, across 12 landscapes varying in pollinator-friendly (flower-rich) habitat. Viral loads were on average more than ten times higher in managed honeybees than in wild pollinators. Viral loads in wild pollinators were higher when floral resource use overlapped with honeybees, suggesting these as reservoir hosts, and increased with pollinator abundance and viral loads in honeybees. Viral prevalence decreased with the amount of pollinator-friendly habitat in a landscape, which was partly driven by reduced floral resource overlap with honeybees. Black queen cell virus loads decreased with a wild pollinator's centrality in the network and the proportion of visited dish-shaped flowers. Our findings highlight the complex interplay of resource overlap with honeybees, species traits and roles in flower-visitation networks and flower-rich pollinator habitat shaping virus transmission.
Collapse
Affiliation(s)
- Corina Maurer
- Agroecology and Environment, Agroscope, Zürich, Switzerland.
- Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Gajda
- Warsaw University of Life Sciences, Institute of Veterinary Medicine, Laboratory of Bee Diseases, Warsaw, Poland
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Loïc Pellissier
- Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schweiger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research-UFZ, Department of Community Ecology, Halle (Saale), Germany
| | | | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
4
|
Sheraz M, Sun XF, Wang Y, Chen J, Sun L. Recent Developments in Aptamer-Based Sensors for Diagnostics. SENSORS (BASEL, SWITZERLAND) 2024; 24:7432. [PMID: 39685966 DOI: 10.3390/s24237432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Chronic and non-communicable diseases (NCDs) account for a large proportion of global disorders and mortality, posing significant burdens on healthcare systems. Early diagnosis and timely interference are critical for effective management and disease prevention. However, the traditional methods of diagnosis still suffer from high costs, time delays in processing, and infrastructure requirements that are usually unaffordable in resource-constrained settings. Aptamer-based biosensors have emerged as promising alternatives to offer enhanced specificity, stability, and cost-effectiveness for disease biomarker detection. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology allows developing aptamers with high-affinity binding capabilities to a variety of targets, for instance proteins, cells, or even small molecules, hence rendering them suitable for NCD diagnosis. Aptasensors-recent developments in the electrochemical and optical dominion-offer much enhanced sensitivity, selectivity, and stability of detection across a diverse range of diseases from lung cancer and leukemia to diabetes and chronic respiratory disorders. This study provides a comprehensive review of progress in aptamer-based sensors, focusing on their role in point-of-care diagnostics and adaptability in a real-world environment with future directions in overcoming current limitations.
Collapse
Affiliation(s)
- Muhammad Sheraz
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongke Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiayi Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Le Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Sun Y, Xing J, Xu S, Li Y, Zhong J, Gao H, Cheng S, Dong J, Zhang T, Lu G, Baele G, Zhang G. Demographic and zoological drivers of infectome diversity in companion cats with ascites. mSystems 2024; 9:e0063624. [PMID: 39120143 PMCID: PMC11406987 DOI: 10.1128/msystems.00636-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Cats (Felidae) have become an integral part of many households. However, our understanding of the full spectrum of pathogens affecting cats (referred to as the infectome) is limited, mainly due to the inadequacy of commonly used diagnostic tools in capturing the complete diversity of potential pathogens and the prevalence of pathogen co-infections. In this study, we employed a meta-transcriptomic approach to simultaneously characterize the infectome contributing to different disease syndromes and to investigate spatial, demographic, and ecological factors influencing pathogen diversity and community composition in a cohort of 27 hospitalized cats and seven stray cats. We identified 15 species of pathogens, with Candidatus Rickettsia tarasevichiae and Tritrichomonas foetus representing potential spillover risks. Importantly, although most cases of ascites hyperplasia were explained by coinfection with multiple pathogens, we identified the potential novel clinical outcomes of M. aubagnense infection among cats. We demonstrated that the increase in infectome diversity can be explained by a variety of predictors including age growth, temperature increase, and a higher proportion of females, with age growth presenting the strongest effect. Fine-scale analysis indicated that a higher diversity of infectomes were harbored in young cats rather than adult ones. Our results demonstrated that most feline diseases are better explained by the presence of virus-bacteria or virus-virus coinfection. This study serves as a timely endorsement for clinical diagnosis by vets to consider the cause of a disease based on a panel of cryptical co-infecting pathogens rather than on individual infectious agents. IMPORTANCE Frequent studies reported the risks of cats as an intermediate host of zoonotic pathogens (e.g., SARS-CoV-2). Cats have a physically close interaction with their owners through activities like petting, kissing, and being licked on the cheek and hands. However, there are still limited studies that systematically investigate the infectome structure of cats. In this study, we employed a meta-transcriptomics approach to characterize 15 species of pathogens in cats, with Candidatus Rickettsia tarasevichiae first characterizing infection in diseased cats. Most feline diseases were better explained by the presence of virus-bacteria or virus-virus coinfection. The increase in infectome diversity could be influenced by a variety of predictors including age growth, temperature increase, and a higher proportion of females. A higher diversity of pathogens was harbored in young cats rather than adults. Importantly, we showed the value of linking the modern influx of meta-transcriptomics with comparative ecology and demography and of utilizing it to affirm that ecological and demographic variations impact the total infectome.
Collapse
Affiliation(s)
- Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Han Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Song Cheng
- CAU Dong Jun laboratory, Guangzhou, China, Guangzhou, China
| | - Jun Dong
- CAU Dong Jun laboratory, Guangzhou, China, Guangzhou, China
| | - Tianyou Zhang
- CAU Dong Jun laboratory, Guangzhou, China, Guangzhou, China
- Guangzhou Chimelong Safari Park, Guangzhou, China
| | - Gang Lu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Meyer M, Melville DW, Baldwin HJ, Wilhelm K, Nkrumah EE, Badu EK, Oppong SK, Schwensow N, Stow A, Vallo P, Corman VM, Tschapka M, Drosten C, Sommer S. Bat species assemblage predicts coronavirus prevalence. Nat Commun 2024; 15:2887. [PMID: 38575573 PMCID: PMC10994947 DOI: 10.1038/s41467-024-46979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Adam Stow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| |
Collapse
|
7
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
8
|
Fearon ML, Gowler CD, Duffy MA. Inconsistent dilution: experimental but not field evidence for a dilution effect in Daphnia-bacteria interactions. Oecologia 2024; 204:351-363. [PMID: 38105355 DOI: 10.1007/s00442-023-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The dilution effect hypothesis, which suggests greater host biodiversity can reduce infectious disease transmission, occurs in many systems but is not universal. Most studies only investigate the dilution of a single parasite in a community, but many host communities have multiple parasites circulating. We studied a zooplankton host community with prior support for a dilution effect in laboratory- and field-based studies of a fungal parasite, Metschnikowia bicuspidata. We used paired experiments and field studies to ask whether dilution also occurred for a bacterial parasite, Pasteuria ramosa. We hypothesized that the similarities between the parasites might mean the dilution pattern seen in Metschnikowia would also be seen in Pasteuria. However, because Daphnia-Pasteuria interactions have strong host-parasite genotype specificity, dilution may be less likely if diluter host genotypes vary in their capacity to dilute Pasteuria. In a lab experiment, Pasteuria prevalence in susceptible Daphnia dentifera was reduced strongly by higher densities of D. pulicaria and marginally by higher densities of D. retrocurva. In a second experiment, different D. pulicaria genotypes had a similar capacity to dilute both Metschnikowia and Pasteuria, suggesting that Pasteuria's strong host-parasite genotype specificity should not prevent dilution. However, we found no evidence of an impact of the dilution effect on the size of Pasteuria epidemics in D. dentifera in Midwestern U.S. lakes. Our finding that a second parasite infecting the same host community does not show a similar dilution effect in the field suggests the impact of biodiversity can differ even among parasites in the same host community.
Collapse
Affiliation(s)
- Michelle L Fearon
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Camden D Gowler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Zbrozek M, Fearon ML, Weise C, Tibbetts EA. Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees. Ecol Evol 2023; 13:e10528. [PMID: 37736280 PMCID: PMC10511299 DOI: 10.1002/ece3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.
Collapse
Affiliation(s)
- Maryellen Zbrozek
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Michelle L. Fearon
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Weise
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Tibbetts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Raghwani J, Faust CL, François S, Nguyen D, Marsh K, Raulo A, Hill SC, Parag KV, Simmonds P, Knowles SCL, Pybus OG. Seasonal dynamics of the wild rodent faecal virome. Mol Ecol 2023; 32:4763-4776. [PMID: 36367339 PMCID: PMC7614976 DOI: 10.1111/mec.16778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Viral discovery studies in wild animals often rely on cross-sectional surveys at a single time point. As a result, our understanding of the temporal stability of wild animal viromes remains poorly resolved. While studies of single host-virus systems indicate that host and environmental factors influence seasonal virus transmission dynamics, comparable insights for whole viral communities in multiple hosts are lacking. Utilizing noninvasive faecal samples from a long-term wild rodent study, we characterized viral communities of three common European rodent species (Apodemus sylvaticus, A. flavicollis and Myodes glareolus) living in temperate woodland over a single year. Our findings indicate that a substantial fraction of the rodent virome is seasonally transient and associated with vertebrate or bacteria hosts. Further analyses of one of the most common virus families, Picornaviridae, show pronounced temporal changes in viral richness and evenness, which were associated with concurrent and up to ~3-month lags in host density, ambient temperature, rainfall and humidity, suggesting complex feedbacks from the host and environmental factors on virus transmission and shedding in seasonal habitats. Overall, this study emphasizes the importance of understanding the seasonal dynamics of wild animal viromes in order to better predict and mitigate zoonotic risks.
Collapse
Affiliation(s)
- Jayna Raghwani
- Department of BiologyUniversity of OxfordOxfordUK
- Department of Pathobiology and Population SciencesThe Royal Veterinary CollegeLondonUK
| | - Christina L. Faust
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - Dung Nguyen
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Kirsty Marsh
- School of BiosciencesUniversity of ExeterExeterUK
| | - Aura Raulo
- Department of BiologyUniversity of OxfordOxfordUK
- University of TurkuTurkuFinland
| | - Sarah C. Hill
- Department of Pathobiology and Population SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Peter Simmonds
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Oliver G. Pybus
- Department of BiologyUniversity of OxfordOxfordUK
- Department of Pathobiology and Population SciencesThe Royal Veterinary CollegeLondonUK
| |
Collapse
|
11
|
Kizilkurtlu AA, Demirbas E, Agel HE. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol Appl Biochem 2023; 70:1460-1479. [PMID: 37277950 DOI: 10.1002/bab.2485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 06/07/2023]
Abstract
A biosensor system refers to a biomedical device, which detects biological, chemical, or biochemical components by converting those signals to an electrical signal by utilizing and uniting physical or chemical transducer with biorecognition elements. An electrochemical biosensor is generally based on the reaction of either production or consumption of electrons under a three-electrode system. Biosensor systems are exploited in a wide range of areas, such as medicine, agriculture, husbandry, food, industry, environment protection, quality control, waste disposal, and the military. Pathogenic infections are the third leading cause of death worldwide after cardiovascular diseases and cancer. Therefore, there is an urgent need for effective diagnostic tools to control food, water, and soil contamination result in protecting human life and health. Aptamers are peptide or oligonucleotide-based molecules that show very high affinity to their targets that are produced from large pools of random amino acid or oligonucleotide sequences. Generally, aptamers have been utilized for fundamental sciences and clinical implementations for their target-specific affinity and have been intensely exploited for different kinds of biosensor applications for approximately 30 years. The convergence of aptamers with biosensor systems enabled the construction of voltammetric, amperometric, and impedimetric biosensors for the detection of specific pathogens. In this review, electrochemical aptamer biosensors were evaluated by discussing the definition, types, and production techniques of aptamers, the advantages of aptamers as a biological recognition element against their alternatives, and a wide range of aptasensor examples from literature in the detection of specific pathogens.
Collapse
Affiliation(s)
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hatice Esra Agel
- BioNano Functional Materials Technologies Research Group TÜBİTAK - Marmara Research Center, Gebze, Kocaeli, Turkey
| |
Collapse
|
12
|
Manley R, Doublet V, Wright ON, Doyle T, Refoy I, Hedges S, Pascall D, Carvell C, Brown MJF, Wilfert L. Conservation measures or hotspots of disease transmission? Agri-environment schemes can reduce disease prevalence in pollinator communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220004. [PMID: 36744563 PMCID: PMC9900712 DOI: 10.1098/rstb.2022.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/25/2022] [Indexed: 02/07/2023] Open
Abstract
Insects are under pressure from agricultural intensification. To protect pollinators, conservation measures such as the EU agri-environment schemes (AES) promote planting wildflowers along fields. However, this can potentially alter disease ecology by serving as transmission hubs or by diluting infections. We tested this by measuring plant-pollinator interactions and virus infections (DWV-A, DWV-B and ABPV) across pollinator communities in agricultural landscapes over a year. AES had a direct effect on DWV-B, reducing prevalence and load in honeybees, with a tentative general dilution effect on load in early summer. DWV-A prevalence was reduced both under AES and with increasing niche overlap between competent hosts, likely via a dilution effect. By contrast, AES had no impact on ABPV, its prevalence driven by the proportion of bumblebees in the community. Epidemiological differences were also reflected in the virus phylogenies, with DWV-B showing recent rapid expansion, while DWV-A and ABPV showed slower growth rates and geographical population structure. Phylogenies indicate that all three viruses freely circulate across their host populations. Our study illustrates how complex interactions between environmental, ecological and evolutionary factors may influence wildlife disease dynamics. Supporting pollinator nutrition can mitigate the transmission of important bee diseases, providing an unexpected boost to pollinator conservation. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Robyn Manley
- Department of Biosciences, University of Exeter, Streatham Campus, Exeter EX4 4QD, UK
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Owen N. Wright
- Department of Psychology, University of Exeter, Streatham Campus, Exeter EX4 4QG, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Isobel Refoy
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Sophie Hedges
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - David Pascall
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Claire Carvell
- UK Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Mark J. F. Brown
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
13
|
Fearon ML, Wood CL, Tibbetts EA. Habitat quality influences pollinator pathogen prevalence through both habitat-disease and biodiversity-disease pathways. Ecology 2023; 104:e3933. [PMID: 36448518 PMCID: PMC10078577 DOI: 10.1002/ecy.3933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022]
Abstract
The dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity-disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term "habitat-disease relationship" to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity-disease relationship). We used a path model to test the relative strength of links between habitat, biodiversity, and pathogen prevalence in a pollinator-virus system. High-quality habitat metrics were directly associated with viral prevalence, providing evidence for a habitat-disease relationship. However, the strength and direction of specific habitat effects on viral prevalence varied based on the characteristics of the habitat, host, and pathogen. In general, more natural area and richness of land-cover types were directly associated with increased viral prevalence, whereas greater floral density was associated with reduced viral prevalence. More natural habitat was also indirectly associated with reduced prevalence of two key viruses (black queen cell virus and deformed wing virus) via increased pollinator species richness, providing evidence for a habitat-mediated dilution effect on viral prevalence. Biodiversity-disease relationships varied across viruses, with the prevalence of sacbrood virus not being associated with any habitat quality or pollinator community metrics. Across all viruses and hosts, habitat-disease and biodiversity-disease paths had effects of similar magnitude on viral prevalence. Therefore, habitat quality is a key driver of variation in pathogen prevalence among communities via both direct habitat-disease and indirect biodiversity-disease pathways, though the specific patterns varied among different viruses and host species. Critically, habitat-disease relationships could either contribute to or obscure dilution effects in natural systems depending on the relative strength and direction of the habitat-disease and biodiversity-disease pathways in that host-pathogen system. Therefore, habitat may be an important driver in the complex interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Michelle L Fearon
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Tibbetts
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Jones LJ, Singh A, Schilder RJ, López-Uribe MM. Squash bees host high diversity and prevalence of parasites in the northeastern United States. J Invertebr Pathol 2022; 195:107848. [PMID: 36343669 DOI: 10.1016/j.jip.2022.107848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States). Our results indicate that all three parasite groups are commonly detected in these bee species, but E. pruinosa often exhibit higher prevalences. We further describe novel trypanosome parasites detected in E. pruinosa, however it is unknown how these parasites impact these bees. We suggest future work investigates parasite replication and infection outcomes.
Collapse
Affiliation(s)
- Laura J Jones
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Avehi Singh
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rudolf J Schilder
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Wei R, Cao L, Feng Y, Chen Y, Chen G, Zheng H. Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators. Viruses 2022; 14:1871. [PMID: 36146677 PMCID: PMC9505205 DOI: 10.3390/v14091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sacbrood virus (SBV) is one of the many viruses that infect both the Western honeybee (Apis mellifera) and the Eastern honeybee (Apis cerana). Recently, the interspecies transmission of SBV has been discovered, especially among wild pollinators. This newly discovered evolutionary occurrence regarding SBV indicates a much wider host range than previously believed, causing further concern about the future sustainability of agriculture and the resilience of ecosystems. Over the past few decades, vast numbers of studies have been undertaken concerning SBV infection in honeybees, and remarkable progress has been made in our understanding of the epidemiology, pathogenesis, transmission, and manifestations of SBV infection in honeybees and other pollinators. Meanwhile, some methods, including Chinese medicine, have been established to control and prevent sacbrood disease in A. cerana in Asian countries. In this review, we summarize the existing knowledge of SBV and address the gaps in the knowledge within the existing literature in the hope of providing future directions for the research and development of management strategies for controlling the spread of this deadly disease.
Collapse
Affiliation(s)
- Ruike Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianfei Cao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ye Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Cilia G, Tafi E, Zavatta L, Caringi V, Nanetti A. The Epidemiological Situation of the Managed Honey Bee (Apis mellifera) Colonies in the Italian Region Emilia-Romagna. Vet Sci 2022; 9:vetsci9080437. [PMID: 36006352 PMCID: PMC9412502 DOI: 10.3390/vetsci9080437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The recent decades witnessed the collapse of honey bee colonies at a global level. The major drivers of this collapse include both individual and synergic pathogen actions, threatening the colonies’ survival. The need to define the epidemiological pattern of the pathogens that are involved has led to the establishment of monitoring programs in many countries, Italy included. In this framework, the health status of managed honey bees in the Emilia–Romagna region (northern Italy) was assessed, throughout the year 2021, on workers from 31 apiaries to investigate the presence of major known and emerging honey bee pathogens. The prevalence and abundance of DWV, KBV, ABPV, CBPV, Nosema ceranae, and trypanosomatids (Lotmaria passim, Crithidia mellificae, Crithidia bombi) were assessed by molecular methods. The most prevalent pathogen was DWV, followed by CBPV and N. ceranae. Trypanosomatids were not found in any of the samples. Pathogens had different peaks in abundance over the months, showing seasonal trends that were related to the dynamics of both bee colonies and Varroa destructor infestation. For some of the pathogens, a weak but significant correlation was observed between abundance and geographical longitude. The information obtained in this study increases our understanding of the epidemiological situation of bee colonies in Emilia–Romagna and helps us to implement better disease prevention and improved territorial management of honey bee health.
Collapse
|
17
|
Cilia G, Flaminio S, Zavatta L, Ranalli R, Quaranta M, Bortolotti L, Nanetti A. Occurrence of Honey Bee ( Apis mellifera L.) Pathogens in Wild Pollinators in Northern Italy. Front Cell Infect Microbiol 2022; 12:907489. [PMID: 35846743 PMCID: PMC9280159 DOI: 10.3389/fcimb.2022.907489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.
Collapse
Affiliation(s)
| | | | | | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | | |
Collapse
|
18
|
Effects of planted pollinator habitat on pathogen prevalence and interspecific detection between bee species. Sci Rep 2022; 12:7806. [PMID: 35551218 PMCID: PMC9098541 DOI: 10.1038/s41598-022-11734-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Shared resources can instigate pathogen spread due to large congregations of individuals in both natural and human modified resources. Of current concern is the addition of pollinator habitat in conservation efforts as it attracts bees of various species, potentially instigating interspecific sharing of pathogens. Common pathogens have been documented across a wide variety of pollinators with shared floral resources instigating their spread in some, but not all, cases. To evaluate the impact of augmented pollinator habitat on pathogen prevalence, we extracted RNA from samples of eight bee species across three families and screened these samples for nine pathogens using RT-qPCR. We found that some habitat characteristics influenced pathogen detection; however, we found no evidence that pathogen detection in one bee species was correlated with pathogen detection in another. In fact, pathogen detection was rare in wild bees. While gut parasites were detected in 6 out of the 8 species included in this study, viruses were only detected in honey bees. Further, virus detection in honey bees was low with a maximum 21% of samples testing positive for BQCV, for example. These findings suggest factors other than the habitat itself may be more critical in the dissemination of pathogens among bee species. However, we found high relative prevalence and copy number of gut parasites in some bee species which may be of concern, such as Bombus pensylvanicus. Long-term monitoring of pathogens in different bee species at augmented pollinator habitat is needed to evaluate if these patterns will change over time.
Collapse
|
19
|
Pinilla-Gallego MS, Irwin RE. Effects of an alternative host on the prevalence and intensity of infection of a bumble bee parasite. Parasitology 2022; 149:562-567. [PMID: 35067238 PMCID: PMC10090601 DOI: 10.1017/s003118202200004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022]
Abstract
Several bee parasites are transmitted through flowers, and some of them can infect multiple host species. Given the shared use of flowers by bee species, parasites can potentially encounter multiple host species, which could affect the evolution of parasite virulence. We used the trypanosomatid parasite Crithidia bombi and its host, the common eastern bumble bee (Bombus impatiens), to explore the effect of infecting an alternative host, the alfalfa leaf-cutter bee (Megachile rotundata), on parasite infectivity and ability to replicate. We conducted a serial passage experiment on primary and alternative hosts, assessing infectivity and intensity of infection during five passes. Parasite cells from each pass through the alternative host were also used to infect a group of primary hosts. We found that serial passes through the alternative host increased infectivity, but there was no effect on intensity of infection. Interestingly, both the probability and intensity of infection on the primary host increased after serial passage through the alternative host. This increase in intensity of infection could be due to maladaptation after selection of new C. bombi strains has occurred in the alternative host. This study suggests that host switching has the potential to affect the adaptation of bee parasites to their hosts.
Collapse
Affiliation(s)
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
20
|
Cohen H, Smith GP, Sardiñas H, Zorn JF, McFrederick QS, Woodard SH, Ponisio LC. Mass-flowering monoculture attracts bees, amplifying parasite prevalence. Proc Biol Sci 2021; 288:20211369. [PMID: 34641730 DOI: 10.1098/rspb.2021.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As the global agricultural footprint expands, it is increasingly important to address the link between the resource pulses characteristic of monoculture farming and wildlife epidemiology. To understand how mass-flowering crops impact host communities and subsequently amplify or dilute parasitism, we surveyed wild and managed bees in a monoculture landscape with varying degrees of floral diversification. We screened 1509 bees from 16 genera in sunflower fields and in non-crop flowering habitat across 200 km2 of the California Central Valley. We found that mass-flowering crops increase bee abundance. Wild bee abundance was subsequently associated with higher parasite presence, but only in sites with a low abundance of non-crop flowers. Bee traits related to higher dispersal ability (body size) and diet breadth (pollen lecty) were also positively related to parasite presence. Our results highlight the importance of non-crop flowering habitat for supporting bee communities. We suggest monoculture alone cannot support healthy bees.
Collapse
Affiliation(s)
- Hamutahl Cohen
- Institute of Food and Agricultural Sciences, University of Florida, Collier County Extension Service, 14700 Immokalee Road, Naples, FL 34120, USA.,Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Gordon P Smith
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Hillary Sardiñas
- California Association of Resource Conservation Districts, 801 K Street, MS 14-15, Sacramento, CA 95814, USA
| | - Jocelyn F Zorn
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| | - Lauren C Ponisio
- Institute for Ecology and Evolution, University of Oregon, 272 Onyx Bridge, Eugene, OR 97403, USA.,Department of Entomology, University of California, Riverside, 417 Entomology Building, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Keesing F, Ostfeld RS. Dilution effects in disease ecology. Ecol Lett 2021; 24:2490-2505. [PMID: 34482609 PMCID: PMC9291114 DOI: 10.1111/ele.13875] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023]
Abstract
For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
Collapse
|
22
|
Proesmans W, Albrecht M, Gajda A, Neumann P, Paxton RJ, Pioz M, Polzin C, Schweiger O, Settele J, Szentgyörgyi H, Thulke HH, Vanbergen AJ. Pathways for Novel Epidemiology: Plant-Pollinator-Pathogen Networks and Global Change. Trends Ecol Evol 2021; 36:623-636. [PMID: 33865639 DOI: 10.1016/j.tree.2021.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Multiple global change pressures, and their interplay, cause plant-pollinator extinctions and modify species assemblages and interactions. This may alter the risks of pathogen host shifts, intra- or interspecific pathogen spread, and emergence of novel population or community epidemics. Flowers are hubs for pathogen transmission. Consequently, the structure of plant-pollinator interaction networks may be pivotal in pathogen host shifts and modulating disease dynamics. Traits of plants, pollinators, and pathogens may also govern the interspecific spread of pathogens. Pathogen spillover-spillback between managed and wild pollinators risks driving the evolution of virulence and community epidemics. Understanding this interplay between host-pathogen dynamics and global change will be crucial to predicting impacts on pollinators and pollination underpinning ecosystems and human wellbeing.
Collapse
Affiliation(s)
- Willem Proesmans
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| | | | - Anna Gajda
- Institute of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, CH-3003 Bern, Switzerland
| | - Robert J Paxton
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Maryline Pioz
- Abeilles et Environnement, INRAE, 84140 Avignon, France
| | - Christine Polzin
- Department of Environmental Politics, UFZ Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Oliver Schweiger
- UFZ Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Josef Settele
- UFZ Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany; iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, 04103 Leipzig, Germany; Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, 4031 Los Baños, Laguna, Philippines
| | - Hajnalka Szentgyörgyi
- Institute of Botany, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, UFZ Helmholtz Centre for Environmental Research, 04138 Leipzig, Germany
| | - Adam J Vanbergen
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|