1
|
Sheng Y, Lu M, Bai J, Xie X, Ma L, Li W, Zhang Z, Ming F, Zhang X, Zhang Z, Xu Z, Han Y, Guan B, Ruan L. Ecological drivers of nesting behavior in a subtropical city: An observational study on spotted doves. Ecol Evol 2024; 14:e11655. [PMID: 38966243 PMCID: PMC11222170 DOI: 10.1002/ece3.11655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
Due to rapid homogenization in habitat types as a result of urbanization, some urban birds adapt their nesting strategies to changes in local habitat characteristics. Bird nesting decisions might have been mainly linked to resource constraints and ensuring reproductive success. In this study, we examined patterns of nesting behavior by spotted doves (Spilopelia chinensis) in a rapidly urbanizing area of Nanchang, China using ArcGIS 10.8, satellite tracking, camera traps, and field survey. To explore the mechanisms underlying nesting behavior in urban habitats, we assessed the correlations between nest reuse and reproductive success, and between nest reuse and nest predation. From December 2018 to December 2021, a total of 302 breeding nests were surveyed. The results revealed that the nest reuse rate was 38.08% (n = 115). Nests closer to trunk, with lower nest position and higher large-scale urbanization score tended to have higher reuse rate. In addition, nests with the higher the nest height and percent of canopy cover, and the lower small-scale urbanization score were more likely to reproduce successfully, and the reused nests also reproduce more successfully. The reproductive success associated with nest reuse was significantly higher than that associated with new nests (χ 2 = 8.461, p = .004). High degree of urbanization promoted nest reuse of spotted doves (large-scale urbanization score, z = 2.094, p = .036), which apparently enhanced their reproductive success (nest reuse, z = 2.737, p = .006). In conclusion, a nest structure with good permeability is the material basis for the nest reuse in spotted dove, while the relatively low risk of predation in urban habitat and the scarcity of nest site resources due to urbanization increase the tendency of birds to reuse old nests, which is associated with their reproductive success and evolutionary fitness.
Collapse
Affiliation(s)
- Yao Sheng
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Mengjie Lu
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Junpeng Bai
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
- Qingdao Jiaodong International AirportQingdaoChina
| | - Xiaobin Xie
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Long Ma
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
- Jinhui Liquor Company LimitedLongnanChina
| | - Wanyou Li
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Zhen Zhang
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Fang Ming
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Xueli Zhang
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
- Guangdong Maoming Health Vocational CollegeMaomingChina
| | - Ziwei Zhang
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Zhifeng Xu
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Yuqing Han
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Bicai Guan
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| | - Luzhang Ruan
- School of Life Sciences, State Ministry of Education Key Laboratory of Poyang Lake Environment and Resource UtilizationNanchang UniversityNanchangChina
| |
Collapse
|
2
|
Zheng X, Babst F, Camarero JJ, Li X, Lu X, Gao S, Sigdel SR, Wang Y, Zhu H, Liang E. Density-dependent species interactions modulate alpine treeline shifts. Ecol Lett 2024; 27:e14403. [PMID: 38577961 DOI: 10.1111/ele.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.
Collapse
Affiliation(s)
- Xiangyu Zheng
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA
| | | | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Lu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yafeng Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Hallett LM, Aoyama L, Barabás G, Gilbert B, Larios L, Shackelford N, Werner CM, Godoy O, Ladouceur ER, Lucero JE, Weiss-Lehman CP, Chase JM, Chu C, Harpole WS, Mayfield MM, Faist AM, Shoemaker LG. Restoration ecology through the lens of coexistence theory. Trends Ecol Evol 2023; 38:1085-1096. [PMID: 37468343 DOI: 10.1016/j.tree.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.
Collapse
Affiliation(s)
- Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA.
| | - Lina Aoyama
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA
| | - György Barabás
- Division of Ecological and Environmental Modeling (ECOMOD), Dept. IFM, Linköping University, SE-58183 Linköping, Sweden; Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Loralee Larios
- Department of Botany and Plant Sciences, University of California Riverside, CA 92521, USA
| | - Nancy Shackelford
- School of Environmental Studies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chhaya M Werner
- University of Wyoming, Botany Department, Laramie, WY 82071, USA; Department of Environmental Science, Policy, & Sustainability, Southern Oregon University, Ashland, OR 97520, USA
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, E-11510 Puerto Real, Spain
| | - Emma R Ladouceur
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany
| | - Jacob E Lucero
- Department of Rangeland, Wildlife, and Fisheries Management, Texas A&M University, College Station, TX 77843, USA
| | | | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - W Stanley Harpole
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv), Puschstrasse 4, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Margaret M Mayfield
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Akasha M Faist
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
4
|
Noel AR, Shriver RK, Crausbay SD, Bradford JB. Where can managers effectively resist climate-driven ecological transformation in pinyon-juniper woodlands of the US Southwest? GLOBAL CHANGE BIOLOGY 2023; 29:4327-4341. [PMID: 37246831 DOI: 10.1111/gcb.16756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
Pinyon-juniper (PJ) woodlands are an important component of dryland ecosystems across the US West and are potentially susceptible to ecological transformation. However, predicting woodland futures is complicated by species-specific strategies for persisting and reproducing under drought conditions, uncertainty in future climate, and limitations to inferring demographic rates from forest inventory data. Here, we leverage new demographic models to quantify how climate change is expected to alter population demographics in five PJ tree species in the US West and place our results in the context of a climate adaptation framework to resist, accept, or direct ecological transformation. Two of five study species, Pinus edulis and Juniperus monosperma, are projected to experience population declines, driven by both rising mortality and decreasing recruitment rates. These declines are reasonably consistent across various climate futures, and the magnitude of uncertainty in population growth due to future climate is less than uncertainty due to how demographic rates will respond to changing climate. We assess the effectiveness of management to reduce tree density and mitigate competition, and use the results to classify southwest woodlands into areas where transformation is (a) unlikely and can be passively resisted, (b) likely but may be resisted by active management, and (c) likely unavoidable, requiring managers to accept or direct the trajectory. Population declines are projected to promote ecological transformation in the warmer and drier PJ communities of the southwest, encompassing 37.1%-81.1% of our sites, depending on future climate scenarios. Less than 20% of sites expected to transform away from PJ have potential to retain existing tree composition by density reduction. Our results inform where this adaptation strategy could successfully resist ecological transformation in coming decades and allow for a portfolio design approach across the geographic range of PJ woodlands.
Collapse
Affiliation(s)
- Adam R Noel
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert K Shriver
- Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, Nevada, USA
| | | | - John B Bradford
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Ohse B, Compagnoni A, Farrior CE, McMahon SM, Salguero-Gómez R, Rüger N, Knight TM. Demographic synthesis for global tree species conservation. Trends Ecol Evol 2023; 38:579-590. [PMID: 36822929 DOI: 10.1016/j.tree.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Conserving the tree species of the world requires syntheses on which tree species are most vulnerable to pressing threats, such as climate change, invasive pests and pathogens, or selective logging. Here, we review the population and forest dynamics models that, when parameterized with data from population studies, forest inventories, or tree rings, have been used for identifying life-history strategies of species and threat-related changes in population demography and dynamics. The available evidence suggests that slow-growing and/or long-lived species are the most vulnerable. However, a lack of comparative, multi-species studies still challenges more precise predictions of the vulnerability of tree species to threats. Improving data coverage for mortality and recruitment, and accounting for interactions among threats, would greatly advance vulnerability assessments for conservation prioritizations of trees worldwide.
Collapse
Affiliation(s)
- Bettina Ohse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
| | - Aldo Compagnoni
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | | | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Economics, University of Leipzig, Leipzig, Germany; Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Tiffany M Knight
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Yang X, Angert AL, Zuidema PA, He F, Huang S, Li S, Li SL, Chardon NI, Zhang J. The role of demographic compensation in stabilising marginal tree populations in North America. Ecol Lett 2022; 25:1676-1689. [PMID: 35598109 DOI: 10.1111/ele.14028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022]
Abstract
Demographic compensation-the opposing responses of vital rates along environmental gradients-potentially delays anticipated species' range contraction under climate change, but no consensus exists on its actual contribution. We calculated population growth rate (λ) and demographic compensation across the distributional ranges of 81 North American tree species and examined their responses to simulated warming and tree competition. We found that 43% of species showed stable population size at both northern and southern edges. Demographic compensation was detected in 25 species, yet 15 of them still showed a potential retraction from southern edges, indicating that compensation alone cannot maintain range stability. Simulated climatic warming caused larger decreases in λ for most species and weakened the effectiveness of demographic compensation in stabilising ranges. These findings suggest that climate stress may surpass the limited capacity of demographic compensation and pose a threat to the viability of North American tree populations.
Collapse
Affiliation(s)
- Xianyu Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center of Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, P.R. China.,Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, Canada
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, the Netherlands
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Shongming Huang
- Government of Alberta, Department of Agriculture, Forestry and Rural Economic Development, Edmonton, Canada
| | - Shouzhong Li
- Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, School of Geographical Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Shou-Li Li
- State Key Laboratory of Grassland Agro-ecosystems, and College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Nathalie I Chardon
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Research Center of Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, P.R. China
| |
Collapse
|
7
|
Shifting Forests and Carbon: Linking Community Composition and Aboveground Carbon Attributes. Ecosystems 2022. [DOI: 10.1007/s10021-022-00765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
The aboveground and belowground growth characteristics of juvenile conifers in the southwestern United States. Ecosphere 2021. [DOI: 10.1002/ecs2.3839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
9
|
Bradford JB, Shriver RK, Robles MD, McCauley LA, Woolley TJ, Andrews CA, Crimmins M, Bell DM. Tree mortality response to drought‐density interactions suggests opportunities to enhance drought resistance. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- John. B. Bradford
- Southwest Biological Science Center U.S. Geological Survey Flagstaff AZ USA
| | - Robert K. Shriver
- Department of Natural Resources and Environmental Science University of Nevada Reno NV USA
| | - Marcos D. Robles
- Center for Science and Public Policy The Nature Conservancy Tucson AZ USA
| | - Lisa A. McCauley
- Center for Science and Public Policy The Nature Conservancy Tucson AZ USA
| | - Travis J. Woolley
- Center for Science and Public Policy The Nature Conservancy Tucson AZ USA
| | - Caitlin A. Andrews
- Southwest Biological Science Center U.S. Geological Survey Flagstaff AZ USA
| | - Michael Crimmins
- Department of Environmental Science University of Arizona Tucson AZ USA
| | - David M. Bell
- Pacific Northwest Research Station USDA Forest Service Corvallis OR USA
| |
Collapse
|
10
|
Schlaepfer DR, Bradford JB, Lauenroth WK, Shriver RK. Understanding the future of big sagebrush regeneration: challenges of projecting complex ecological processes. Ecosphere 2021. [DOI: 10.1002/ecs2.3695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Daniel R. Schlaepfer
- Southwest Biological Science Center U.S. Geological Survey Flagstaff Arizona 86001 USA
- Center for Adaptable Western Landscapes Northern Arizona University Flagstaff Arizona 86011 USA
- Yale School of the Environment Yale University New Haven Connecticut 06511 USA
| | - John B. Bradford
- Southwest Biological Science Center U.S. Geological Survey Flagstaff Arizona 86001 USA
| | - William K. Lauenroth
- Yale School of the Environment Yale University New Haven Connecticut 06511 USA
- Department of Botany University of Wyoming Laramie Wyoming 82071 USA
| | - Robert K. Shriver
- Department of Natural Resources and Environmental Science University of Nevada‐Reno Reno Nevada 89557 USA
| |
Collapse
|