1
|
Sievert EP, Franke MC, Thomas KB, Yoon Y, Shi Y, Sciammas R. Distinct plasmablast developmental intermediates produce graded expression of IgM secretory transcripts. Cell Rep 2025; 44:115283. [PMID: 39923238 PMCID: PMC12023845 DOI: 10.1016/j.celrep.2025.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Differentiation into plasma cells (PCs) enables secretion of ∼10,000 immunoglobulin molecules per second. This extraordinary capacity requires the upregulation of PC transcriptional determinants that specify PC fate, increase immunoglobulin mRNA synthesis, coordinate alternative 3' end processing of the heavy chain transcript from the distal to proximal polyadenylation site (PAS), and remodel the secretory pathway. We developed a dual-fluorescent protein reporter mouse to prospectively study the post-transcriptional-level transition from membrane anchored to secretory immunoglobulin M; μM-PAS and μS-PAS, respectively. We observed (1) graded μS-PAS usage during PC differentiation, (2) IRF4 and Blimp-1 functioned hierarchically to increase μ abundance as well as μS-PAS usage, and (3) graded μS populations did or did not express Blimp-1. Interestingly, the low and high μS and Blimp-1-expressing populations arose from distinct developmental intermediates that exhibited dissimilar endoplasmic reticulum features. The distinct cell and μS-PAS fate trajectories may have implications for derivatization of the secretory pathway.
Collapse
Affiliation(s)
- Evelyn P Sievert
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Marissa C Franke
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Kayla B Thomas
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA, USA.
| | - Roger Sciammas
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Wang AYL, Aviña AE, Liu YY, Chang YC, Kao HK. Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases. Antioxidants (Basel) 2025; 14:183. [PMID: 40002370 PMCID: PMC11851694 DOI: 10.3390/antiox14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1's emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Elahi M, Ebrahim Soltani Z, Afrooghe A, Ahmadi E, Dehpour AR. Sex Dimorphism in Pain Threshold and Neuroinflammatory Response: The Protective Effect of Female Sexual Hormones on Behavior and Seizures in an Allergic Rhinitis Model. J Neuroimmune Pharmacol 2024; 19:16. [PMID: 38652402 DOI: 10.1007/s11481-024-10114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.
Collapse
Affiliation(s)
- Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Elham Ahmadi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
4
|
Zhu Q, Wang L, Ren H, Zhang J, Zuo Q, Li M, Zhu J, Yang G, Zhang F. Molecular characterization of the B lymphocyte-induced maturation protein-1 (blimp1) gene of common carp (Cyprinus carpio) and its transcription repression involves recruitment of histone deacetylase HDAC3. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109216. [PMID: 37944681 DOI: 10.1016/j.fsi.2023.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Blimp1 is the master regulator of B cell terminal differentiation in mammals, it inhibits expression of many transcription factors including bcl6, which provides the basis for promoting further development of activated B lymphocytes into plasma cells. Blimp-1 is thought to act as a sequence-specific recruitment factor for chromatin-modifying enzymes including histone deacetylases (HDAC) and methyltransferases to repress target genes. The cDNA of Ccblimp1a (Cyprinus carpio) open reading frame is 2337 bp encoding a protein of 777 amino acids. CcBlimp1a contains a SET domain, two Proline Rich domains, and five ZnF_C2H2 domains. Blimp1 are conserved in vertebrate species. Ccblimp1a transcripts were detected in common carp larvae from 1 dpf (day post fertilization)to 31 dpf. Ccblimp1a expression was up-regulated in peripheral blood leukocytes (PBL) and spleen leukocytes (SPL) of common carp stimulated by intraperitoneal lipopolysaccharide (LPS) injection. Ccblimp1a expression in PBL and SPL of common carp was induced by TNP-LPS and TNP-KLH. The results indicated TNP-LPS induced a rapid response in PBL and TNP-KLH induced much stronger response in SPL and PBL. IHC results showed that CcBlimp1 positive cells were distributed in the head kidney, trunk kidney, liver, and gut. Immunofluorescence stain results showed that CcBlimp1 was expressed in IgM + lymphocytes. The subcellular localization of CcBlimp1 in the nuclei indicated CcBlimp1 may be involved in the differentiation of IgM + lymphocytes. Further study focusing on the function of CcBlimp1 transcriptional repression was performed using dual luciferase assay. The results showed that the transcription repression of CcBlimp1 on bcl6aa promoter was affected by the histone deacetylation inhibitor and was synergized with histone deacetylase 3 (HDAC3). The results of Co-IP in HEK293T and immunoprecipitation in SPL indicated that CcBlimp1 recruited HDAC3 and might be involved in the formation of complexes. These results suggest that CcBlimp1 is an important transcription factor in common carp lymphocytes. Histone deacetylation modification mediated by HDAC3 may have important roles in CcBlimp1 transcriptional repression during the differentiation of lymphocytes.
Collapse
Affiliation(s)
- Qiannan Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Haoyue Ren
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Jiaqi Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Qingyun Zuo
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Mojin Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Jianping Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China
| | - Guiwen Yang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China.
| | - Fumiao Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
5
|
Lycium barbarum Polysaccharides Promote Maturity of Murine Dendritic Cells through Toll-Like Receptor 4-Erk1/2-Blimp1 Signaling Pathway. J Immunol Res 2020; 2020:1751793. [PMID: 33344654 PMCID: PMC7725586 DOI: 10.1155/2020/1751793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 12/04/2022] Open
Abstract
In previous studies, Lycium barbarum polysaccharides (LBP), a traditional Chinese medicine, can promote immature dendritic cells (DCs) to mature. However, the molecular mechanisms by which LBP works are not yet elucidated. Here, we found that LBP can induce DCs maturation, which is mainly characterized by the upregulation of MHCII and costimulatory molecules (CD80, CD86), and increase the production of IL-6 and IL-4. Furthermore, we found that LBP could increase the mRNA and protein expression of TLR4, p38, Erk1/2, JNK, and Blimp1 signal molecules. More interestingly, after blocking by Toll-like receptor 4 inhibitor, Resatorvid (TAK 242), the mRNA and protein expression of TLR4, Erk1/2, and Blimp1 was significantly decreased while the expression of p38 and JNK has not changed. Then, we found that after blocking by p38 inhibitor (SB203580), Erk inhibitor (PD98059), and JNK inhibitor (SP603580) separately, Blimp1 protein expression was significantly reduced; after downregulating Blimp1 by Blimp1-siRNA, the production of IL-6 was reduced. In conclusion, our results indicate that LBP can induce maturation of DCs through the TLR4-Erk1/2-Blimp1 signal pathway instead of the JNK/p38-Blimp1 pathway. Our findings may provide a novel evidence for understanding the molecular mechanisms of LBP on activating murine DCs.
Collapse
|
6
|
Baptista BJA, Granato A, Canto FB, Montalvão F, Tostes L, de Matos Guedes HL, Coutinho A, Bellio M, Vale AM, Nobrega A. TLR9 Signaling Suppresses the Canonical Plasma Cell Differentiation Program in Follicular B Cells. Front Immunol 2018; 9:2281. [PMID: 30546358 PMCID: PMC6279956 DOI: 10.3389/fimmu.2018.02281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
The relative potency and quality of mouse B cell response to Toll-like receptors (TLRs) signaling varies significantly depending on the B cell subset and on the TLR member being engaged. Although it has been shown that marginal zone cells respond faster than follicular (FO) splenic B cells to TLR4 stimulus, FO B cells retain full capacity to proliferate and generate plasmablasts and plasma cells (PBs/PCs) with 2–3 days delayed kinetics. It is not clear whether this scenario could be extended to other members of the TLR family. Here, using quantitative cell culture conditions optimized for B cell growth and differentiation, we show that TLR9 signaling by CpG, while promoting vigorous proliferation, completely fails to induce differentiation of FO B cells into PBs/PCs. Little or absent Ig secretion following TLR9 stimulus was accompanied by lack of expression of cell surface markers and canonical transcription factors involved in PB/PC differentiation. Moreover, not only TLR9 did not induce plasmocyte differentiation, but it also strongly inhibited the massive PB/PC differentiation of FO B cells triggered by LPS/TLR4. Our study reveals unexpected opposite roles for TLR4 and TLR9 in the control of plasma cell differentiation program and disagrees with previous conclusions obtained in high-density cultures conditions on the generation of plasmocytes by TRL9 signaling. The potential implications of these findings on the role of TLR9 in controlling self-tolerance, clonal sizes and regulation of humoral responses are discussed.
Collapse
Affiliation(s)
| | - Alessandra Granato
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio B Canto
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabricio Montalvão
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Tostes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Bellio
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M Vale
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nobrega
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Abstract
Previous studies have identified the immunological functions of transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) in various adaptive immune cell types such as T and B lymphocytes. More recently, it has been shown that Blimp-1 extends its functional roles to dendritic cells (DCs) and macrophages, two cell types belonging to the innate immune system. The protein acts as a direct and indirect regulator of target genes by recruiting chromatin modification factors and by regulating microRNA expression, respectively. In DCs, Blimp-1 has been identified as one of the components involved in antigen presentation. Genome-wide association studies identified polymorphisms associated with multiple autoimmune diseases such as system lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease in PRDM1, the gene encoding Blimp-1 protein. In this review, we will discuss the immune regulatory functions of Blimp-1 in DCs with a main focus on the tolerogenic mechanisms of Blimp-1 required to protect against the development of autoimmune diseases.
Collapse
|
8
|
Sakaguchi N, Maeda K. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation. Adv Immunol 2016; 131:135-86. [PMID: 27235683 DOI: 10.1016/bs.ai.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.
Collapse
Affiliation(s)
- N Sakaguchi
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - K Maeda
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Laboratory of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Tanaka H, Muto A, Shima H, Katoh Y, Sax N, Tajima S, Brydun A, Ikura T, Yoshizawa N, Masai H, Hoshikawa Y, Noda T, Nio M, Ochiai K, Igarashi K. Epigenetic Regulation of the Blimp-1 Gene (Prdm1) in B Cells Involves Bach2 and Histone Deacetylase 3. J Biol Chem 2016; 291:6316-30. [PMID: 26786103 DOI: 10.1074/jbc.m116.713842] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Indexed: 11/06/2022] Open
Abstract
B lymphocyte-induced maturation protein 1 (Blimp-1) encoded by Prdm1 is a master regulator of plasma cell differentiation. The transcription factor Bach2 represses Blimp-1 expression in B cells to stall terminal differentiation, by which it supports reactions such as class switch recombination of the antibody genes. We found that histones H3 and H4 around the Prdm1 intron 5 Maf recognition element were acetylated at higher levels in X63/0 plasma cells expressing Blimp-1 than in BAL17 mature B cells lacking its expression. Conversely, methylation of H3-K9 was lower in X63/0 cells than BAL17 cells. Purification of the Bach2 complex in BAL17 cells revealed its interaction with histone deacetylase 3 (HDAC3), nuclear co-repressors NCoR1 and NCoR2, transducin β-like 1X-linked (Tbl1x), and RAP1-interacting factor homolog (Rif1). Chromatin immunoprecipitation confirmed the binding of HDAC3 and Rif1 to the Prdm1 locus. Reduction of HDAC3 or NCoR1 expression by RNA interference in B cells resulted in an increased Prdm1 mRNA expression. Bach2 is suggested to cooperate with HDAC3-containing co-repressor complexes in B cells to regulate the stage-specific expression of Prdm1 by writing epigenetic modifications at the Prdm1 locus.
Collapse
Affiliation(s)
- Hiromu Tanaka
- From the Department of Biochemistry and the Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Sendai 980-0874
| | - Akihiko Muto
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | - Hiroki Shima
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | - Yasutake Katoh
- From the Department of Biochemistry and Center for Regulatory Epigenome and Diseases,Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575
| | - Nicolas Sax
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | | | | | - Tsuyoshi Ikura
- the Radiation Biology Center, Kyoto University, Kyoto 606-8501
| | - Naoko Yoshizawa
- Tokyo Metropolitan Institute of Medical Sciences, Kamikitazawa 1-6, Tokyo 156-8506, and
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Sciences, Kamikitazawa 1-6, Tokyo 156-8506, and
| | - Yutaka Hoshikawa
- the Japanese Foundation for Cancer Research, Cancer Institute, Ariake 3-10-6, Tokyo 135-8550, Japan
| | - Tetsuo Noda
- the Japanese Foundation for Cancer Research, Cancer Institute, Ariake 3-10-6, Tokyo 135-8550, Japan
| | - Masaki Nio
- the Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Seiryo-machi 1-1, Sendai 980-0874
| | - Kyoko Ochiai
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575
| | - Kazuhiko Igarashi
- From the Department of Biochemistry and CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, Center for Regulatory Epigenome and Diseases,Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575,
| |
Collapse
|
10
|
Günal-Sadık G, Paszkowski-Rogacz M, Singaravelu K, Beyer A, Buchholz F, Jessberger R. Stage-specific binding profiles of cohesin in resting and activated B lymphocytes suggest a role for cohesin in immunoglobulin class switching and maturation. PLoS One 2014; 9:e111748. [PMID: 25375358 PMCID: PMC4222939 DOI: 10.1371/journal.pone.0111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
The immunoglobulin heavy chain locus (Igh) features higher-order chromosomal interactions to facilitate stage-specific assembly of the Ig molecule. Cohesin, a ring-like protein complex required for sister chromatid cohesion, shapes chromosome architecture and chromatin interactions important for transcriptional regulation and often acts together with CTCF. Cohesin is likely involved in B cell activation and Ig class switch recombination. Hence, binding profiles of cohesin in resting mature murine splenic B lymphocytes and at two stages after cell activation were elucidated by chromatin immunoprecipitation and deep sequencing. Comparative genomic analysis revealed cohesin extensively changes its binding to transcriptional control elements after 48 h of stimulation with LPS/IL-4. Cohesin was clearly underrepresented at switch regions regardless of their activation status, suggesting that switch regions need to be cohesin-poor. Specific binding changes of cohesin at B-cell specific gene loci Pax5 and Blimp-1 indicate new cohesin-dependent regulatory pathways. Together with conserved cohesin/CTCF sites at the Igh 3'RR, a prominent cohesin/CTCF binding site was revealed near the 3' end of Cα where PolII localizes to 3' enhancers. Our study shows that cohesin likely regulates B cell activation and maturation, including Ig class switching.
Collapse
Affiliation(s)
- Gamze Günal-Sadık
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Kalaimathy Singaravelu
- Cellular Networks and Systems Biology, Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Andreas Beyer
- Cellular Networks and Systems Biology, Biotechnology Center, Dresden University of Technology, Dresden, Germany
- CECAD, Universität zu Köln, Köln, Germany
| | - Frank Buchholz
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
11
|
Upadhyay M, Priya GK, Ramesh P, Madhavi MB, Rath S, Bal V, George A, Vaidya T. CD40 signaling drives B lymphocytes into an intermediate memory-like state, poised between naïve and plasma cells. J Cell Physiol 2014; 229:1387-96. [PMID: 24482285 DOI: 10.1002/jcp.24572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/16/2014] [Indexed: 01/18/2023]
Abstract
Immunological memory comprising of antigen-specific B and T cells contributes to the acquisition of long-term resistance to pathogens. Interactions between CD40 on B cells and CD40L on T cells are responsible for several aspects of acquired immune responses including generation of memory B cells. In order to gain insights into events leading to memory B cell formation, we analyzed the genome-wide expression profile of murine naive B cells stimulated in the presence of anti-CD40. We have identified over 8,000 genes whose expression is altered minimally 1.5-fold at least at one time point over a 3-day time course. The array analysis indicates that changes in expression level of maximum number of these genes occur within 24 h of anti-CD40 treatment. In parallel, we have studied the events following CD40 ligation by examining the expression of known regulators of naive B cell to plasma cell transition, including Pax5 and BLIMP1. The expression profile of these regulatory genes indicates firstly, that CD40 signaling activates naïve B cells to a phenotype that is intermediate between the naive and plasma cell stages of the B cell differentiation. Secondly, the major known regulator of plasma cell differentiation, BLIMP1, gets irreversibly downregulated upon anti-CD40 treatment. Additionally, our data reveal that CD40 signaling mediated BLIMP1 downregulation occurs by non-Pax5/non-Bcl6 dependent mechanisms, indicating novel mechanisms at work that add to the complexity of understanding of B cell master regulatory molecules like BLIMP1 and Pax5.
Collapse
Affiliation(s)
- Mala Upadhyay
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Igarashi K, Ochiai K, Itoh-Nakadai A, Muto A. Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 2014; 261:116-25. [DOI: 10.1111/imr.12201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry; Tohoku University Graduate School of Medicine; Sendai Japan
- CREST; Japan Science and Technology Agency; Sendai Japan
| | - Kyoko Ochiai
- Department of Biochemistry; Tohoku University Graduate School of Medicine; Sendai Japan
- CREST; Japan Science and Technology Agency; Sendai Japan
| | - Ari Itoh-Nakadai
- Department of Biochemistry; Tohoku University Graduate School of Medicine; Sendai Japan
- CREST; Japan Science and Technology Agency; Sendai Japan
| | - Akihiko Muto
- Department of Biochemistry; Tohoku University Graduate School of Medicine; Sendai Japan
- CREST; Japan Science and Technology Agency; Sendai Japan
| |
Collapse
|
13
|
Identification and expression profiles of prdm1 in medaka Oryzias latipes. Mol Biol Rep 2013; 41:617-26. [PMID: 24343424 DOI: 10.1007/s11033-013-2899-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Mouse Prdm1, also known as Blimp1, plays important roles in maturation and survival of lymphoid cells, as well as in organogenesis of muscle, limb, sensor organs and primordial germ cells. The homologues of mouse prdm1 have been identified in a diverse of animals including zebrafish and fugu. Here, we report the identification and expression profiles of two homologues of prdm1, namely prdm1a and prdm1b in medaka, Oryzias latipes. The transcripts of prdm1a and prdm1b were detectable in all the tissues including immune organs such as gill, spleen, kidney, liver and intestine that we have checked on. The transcripts of prdm1a could be detected in the embryonic shield at mid-gastrula stage and later in the somite, eye, otic vesicle, branchial arches, fin, intestine and cloaca during embryogenesis using in situ hybridization. Moreover, the expression of prdm1a in the liver of both medaka and zebrafish could be up-regulated by the immune stimuli including lipopolysaccharide, polyI:C and the grass carp reovirus, similarly to the up-regulation of IL1B. These results indicate that Prdm1a may play important roles in embryogenesis and also in immune response in fish.
Collapse
|
14
|
Cooperative transcriptional repression by BCL6 and BACH2 in germinal center B-cell differentiation. Blood 2013; 123:1012-20. [PMID: 24277074 DOI: 10.1182/blood-2013-07-518605] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressors BCL6 and BACH2 are crucial regulators of germinal center (GC) B-cell fate, and are known to interact and repress transcription of PRDM1, a key driver of plasma cell differentiation. How these factors cooperate is not fully understood. Herein, we show that GC formation is only minimally impaired in Bcl6(+/-) or Bach2(+/-) mice, although double heterozygous Bcl6(+/-)Bach2(+/-) mice exhibit profound reduction in GC formation. Splenic B cells from Bcl6(+/-) Bach2(+/-) mice display accelerated plasmacytic differentiation and high expression of key plasma cell genes such as Prdm1, Xbp1, and CD138. Chromatin immunoprecipitation sequencing revealed that in B cells, BACH2 is mostly bound to genes together with its heterodimer partner MAFK. The BACH2-MAFK complex binds to sets of genes known to be involved in the GC response, 60% of which are also targets of BCL6. Approximately 30% of BACH2 peaks overlap with BCL6, including cis-regulatory sequences of the PRDM1 gene. BCL6 also modulates BACH2 protein stability and their protein levels are positively correlated in GC B cells. Therefore, BCL6 and BACH2 cooperate to orchestrate gene expression patterning in GC B cells through both transcriptional and biochemical mechanisms, which collectively determine the proper initiation and timing of terminal differentiation.
Collapse
|
15
|
Blimp-1 siRNA inhibits B cell differentiation and prevents the development of lupus in mice. Hum Immunol 2012; 74:297-301. [PMID: 23220434 DOI: 10.1016/j.humimm.2012.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/14/2012] [Accepted: 11/27/2012] [Indexed: 01/05/2023]
Abstract
Cumulative evidence suggest that B-lymphocytes play a role in the development of systemic lupus erythematosus (SLE). Thus, the therapeutic approach targeting specific B cells provides a promising way to treat SLE. Blimp-1 (B lymphocyte induced maturation protein), a transcriptional factor, controls the terminal differentiation of mature B cells to plasma cells. To explore the potential of Blimp-1 in the SLE development, we constructed the adenovirus encoding Blimp-1 siRNA, and injected it into BWF1 lupus mice. The results demonstrated that Blimp-1 siRNA decreased the Blimp-1 expression of B cells by regulating XBP-1 (X Box binding protein-1), BCMA (B-cell maturation antigen) expression through c-myc pathway. In addition, Blimp-1 siRNA eliminated anti-dsDNA antibody-producing plsma cells, reduced serum anti-dsDNA antibody levels and impeded the development of lupus. Therefore, our data provide the insight into the mechanism of Blimp-1 in SLE development and might represent a promising therapeutic strategy for autoantibody-mediated diseases.
Collapse
|
16
|
Vrzalikova K, Woodman CBJ, Murray PG. BLIMP1α, the master regulator of plasma cell differentiation is a tumor supressor gene in B cell lymphomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:1-6. [PMID: 22580854 DOI: 10.5507/bp.2012.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIMS The aim of this review was to summarize recent knowledge of the structure and function of a transcriptional repressor, B lymphocyte induced maturation protein 1 (BLIMP1) and its participation in the pathogenesis of B lymphomas. METHODS AND RESULTS This review summarizes the structure and function of BLIMP1, its major target genes and its role as a tumour suppressor in B cell lymphomas. We review our recent data implicating the loss of BLIMP1α as an important step in the pathogenesis of the Epstein-Barr virus (EBV) associated B cell lymphomas. CONCLUSIONS BLIMP1 is a transcriptional repressor essential for the differentiation of germinal centre (GC) B cells to plasma cells. The loss of BLIMP1 in GC B cells could contribute to the pathogenesis of EBV-associated lymphomas by preventing plasma cell differentiation and viral replication.
Collapse
Affiliation(s)
- Katerina Vrzalikova
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom.
| | | | | |
Collapse
|
17
|
Morito N, Yoh K, Maeda A, Nakano T, Fujita A, Kusakabe M, Hamada M, Kudo T, Yamagata K, Takahashi S. A Novel Transgenic Mouse Model of the Human Multiple Myeloma Chromosomal Translocation t(14;16)(q32;q23). Cancer Res 2011; 71:339-48. [DOI: 10.1158/0008-5472.can-10-1057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Multiple myeloma (MM) is a currently incurable neoplasm of terminally differentiated B cells. The translocation and/or overexpression of c-MAF have been observed in human MM. Although c-MAF might function as an oncogene in human MM, there has been no report thus far describing the direct induction of MM by c-MAF overexpression in vivo. In this study, we have generated transgenic (TG) mice that express c-Maf specifically in the B-cell compartment. Aged c-Maf TG mice developed B-cell lymphomas with some clinical features that resembled those of MM, namely, plasma cell expansion and hyperglobulinemia. Quantitative RT-PCR analysis demonstrated that Ccnd2 and Itgb7, which are known target genes of c-Maf, were highly expressed in the lymphoma cells. This novel TG mouse model of the human MM t(14;16)(q32;q23) chromosomal translocation should serve to provide new insight into the role of c-MAF in tumorigenesis. Cancer Res; 71(2); 339–48. ©2011 AACR.
Collapse
Affiliation(s)
- Naoki Morito
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keigyou Yoh
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuko Maeda
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takako Nakano
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiko Fujita
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Kusakabe
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michito Hamada
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Authors' Affiliations: Departments of 1Nephrology and 2Anatomy and Embryology, Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Capoccia BJ, Lennerz JKM, Bredemeyer AJ, Klco JM, Frater JL, Mills JC. Transcription factor MIST1 in terminal differentiation of mouse and human plasma cells. Physiol Genomics 2010; 43:174-86. [PMID: 21098683 DOI: 10.1152/physiolgenomics.00084.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite their divergent developmental ancestry, plasma cells and gastric zymogenic (chief) cells share a common function: high-capacity secretion of protein. Here we show that both cell lineages share increased expression of a cassette of 269 genes, most of which regulate endoplasmic reticulum (ER) and Golgi function, and they both induce expression of the transcription factors X-box binding protein 1 (Xbp1) and Mist1 during terminal differentiation. XBP1 is known to augment plasma cell function by establishing rough ER, and MIST1 regulates secretory vesicle trafficking in zymogenic cells. We examined morphology and function of plasma cells in wild-type and Mist1(-/-) mice and found subtle differences in ER structure but no overall defect in plasma cell function, suggesting that Mist1 may function redundantly in plasma cells. We next reasoned that MIST1 might be useful as a novel and reliable marker of plasma cells. We found that MIST1 specifically labeled normal plasma cells in mouse and human tissues, and, moreover, its expression was also characteristic of plasma cell differentiation in a cohort of 12 human plasma cell neoplasms. Overall, our results show that MIST1 is enriched upon plasma cell differentiation as a part of a genetic program facilitating secretory cell function and also that MIST1 is a novel marker of normal and neoplastic plasma cells in mouse and human tissues.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sulentic CEW, Kaminski NE. The long winding road toward understanding the molecular mechanisms for B-cell suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 120 Suppl 1:S171-91. [PMID: 20952503 DOI: 10.1093/toxsci/kfq324] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was first reported in the mid-1970s. Since this initial observation, much effort has been devoted by many laboratories toward elucidation of the cellular and molecular mechanisms responsible for the profound impairment of humoral immune responses by TCDD, which is characterized by decreased B cell to plasma cell differentiation and suppression of immunoglobulin production. These efforts have led to a significant body of research demonstrating a direct effect of TCDD on B-cell maturation and function as well as a requisite but as yet undefined role of the aryl hydrocarbon receptor (AhR) in these effects. Likewise, a number of molecular targets putatively involved in mediating B-cell dysfunction by TCDD, and other AhR ligands, have been identified. However, our current understanding has primarily relied on findings from mouse models, and the translation of this knowledge to effects on human B cells and humoral immunity in humans is less clear. Therefore, a current challenge is to determine how TCDD and the AhR affect human B cells. Efforts have been made in this direction but continued progress in developing adequate human models is needed. An in-depth discussion of these advances and limitations in elucidating the cellular and molecular mechanisms putatively involved in the suppression of B-cell function by TCDD as well as the implications on human diseases associated in epidemiological studies with exposure to TCDD and dioxin-like compounds is the primary focus of this review.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- Kathryn Calame
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
21
|
Abstract
IFN-regulatory factor 5 (IRF-5), a member of the IRF family, is a transcription factor that has a key role in the induction of the antiviral and inflammatory response. When compared with C57BL/6 mice, Irf5(-/-) mice show higher susceptibility to viral infection and decreased serum levels of type I IFN and the inflammatory cytokines IL-6 and TNF-alpha. Here, we demonstrate that IRF-5 is involved in B-cell maturation and the stimulation of Blimp-1 expression. The Irf5(-/-) mice develop an age-related splenomegaly, associated with a dramatic accumulation of CD19(+)B220(-) B cells and a disruption of normal splenic architecture. Splenic B cells from Irf5(-/-) mice also exhibited a decreased level of plasma cells. The CD19(+) Irf5(-/-) B cells show a defect in Toll-like receptor (TLR) 7- and TLR9-induced IL-6 production, and the aged Irf5(-/-) mice have decreased serum levels of natural antibodies; however, the antigen-specific IgG1 primary response was already dependent in IRF-5 in young mice, although the IgM response was not. Analysis of the profile of transcription factors associated with plasma cell differentiation shows down-regulation of Blimp-1 expression, a master regulator of plasma cell differentiation, which can be reconstituted with ectopic IRF-5. IRF-5 stimulates transcription of the Prdm1 gene encoding Blimp-1 and binds to the IRF site in the Prdm1 promoter. Collectively, these results reveal that the age-related splenomegaly in Irf5(-/-) mice is associated with an accumulation of CD19(+)B220(-) B cells with impaired functions and show the role of IRF-5 in the direct regulation of the plasma cell commitment factor Blimp-1 and in B-cell terminal differentiation.
Collapse
|
22
|
Bhattacharya S, Conolly RB, Kaminski NE, Thomas RS, Andersen ME, Zhang Q. A bistable switch underlying B-cell differentiation and its disruption by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 115:51-65. [PMID: 20123757 DOI: 10.1093/toxsci/kfq035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The differentiation of B cells into antibody-secreting plasma cells upon antigen stimulation, a crucial step in the humoral immune response, is disrupted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Several key regulatory proteins in the B-cell transcriptional network have been identified, with two coupled mutually repressive feedback loops among the three transcription factors B-cell lymphoma 6 (Bcl-6), B lymphocyte-induced maturation protein 1(Blimp-1), and paired box 5 (Pax5) forming the core of the network. However, the precise mechanisms underlying B-cell differentiation and its disruption by TCDD are not fully understood. Here we show with a computational systems biology model that coupling of the two feedback loops at the Blimp-1 node, through parallel inhibition of Blimp-1 gene activation by Bcl-6 and repression of Blimp-1 gene deactivation by Pax5, can generate a bistable switch capable of directing B cells to differentiate into plasma cells. We also use bifurcation analysis to propose that TCDD may suppress the B-cell to plasma cell differentiation process by raising the threshold dose of antigens such as lipopolysaccharide required to trigger the bistable switch. Our model further predicts that high doses of TCDD may render the switch reversible, thus causing plasma cells to lose immune function and dedifferentiate to a B cell-like state. The immunotoxic implications of these predictions are twofold. First, TCDD and related compounds would disrupt the initiation of the humoral immune response by reducing the proportion of B cells that respond to antigen and differentiate into antibody-secreting plasma cells. Second, TCDD may also disrupt the maintenance of the immune response by depleting the pool of available plasma cells through dedifferentiation.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Henn AD, Rebhahn J, Brown MA, Murphy AJ, Coca MN, Hyrien O, Pellegrin T, Mosmann T, Zand MS. Modulation of single-cell IgG secretion frequency and rates in human memory B cells by CpG DNA, CD40L, IL-21, and cell division. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:3177-87. [PMID: 19675172 PMCID: PMC2765874 DOI: 10.4049/jimmunol.0804233] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the recall response by CD27(+) IgG class-switched human memory B cells, total IgG secreted is a function of the following: 1) the number of IgG-secreting cells (IgG-SC), and 2) the secretion rate of each cell. In this study, we report the quantitative ELISPOT method for simultaneous estimation of single-cell IgG secretion rates and secreting cell frequencies in human B cell populations. We found that CD27(+) IgM(-) memory B cells activated with CpG and cytokines had considerable heterogeneity in the IgG secretion rates, with two major secretion rate subpopulations. BCR cross-linking reduced the frequency of cells with high per-cell IgG secretion rates, with a parallel decrease in CD27(high) B cell blasts. Increased cell death may account for the BCR-stimulated reduction in high-rate IgG-SC CD27(high) B cell blasts. In contrast, the addition of IL-21 to CD40L plus IL-4-activated human memory B cells induced a high-rate IgG-SC population in B cells with otherwise low per-cell IgG secretion rates. The profiles of human B cell IgG secretion rates followed the same biphasic distribution and range irrespective of division class. This, along with the presence of non-IgG-producing, dividing B cells in CpG plus cytokine-activated B memory B cell populations, is suggestive of an on/off switch regulating IgG secretion. Finally, these data support a mixture model of IgG secretion in which IgG secreted over time is modulated by the frequency of IgG-SC and the distribution of their IgG secretion rates.
Collapse
Affiliation(s)
- Alicia D. Henn
- Division of Nephrology
- Center for Biodefense Immune Modeling
| | | | | | | | - Mircea N. Coca
- Division of Nephrology
- Center for Biodefense Immune Modeling
| | - Ollivier Hyrien
- Department of Biostatistics and Computational Biology
- Center for Biodefense Immune Modeling
| | - Tina Pellegrin
- Division of Nephrology
- Center for Biodefense Immune Modeling
| | - Tim Mosmann
- Center for Vaccine Biology and Immunology
- Center for Biodefense Immune Modeling
- Department of Microbiology and Immunology
| | - Martin S. Zand
- Division of Nephrology
- Center for Biodefense Immune Modeling
- Department of Microbiology and Immunology
| |
Collapse
|
24
|
Lord CA, Savitsky D, Sitcheran R, Calame K, Wright JR, Ting JPY, Williams KL. Blimp-1/PRDM1 mediates transcriptional suppression of the NLR gene NLRP12/Monarch-1. THE JOURNAL OF IMMUNOLOGY 2009; 182:2948-58. [PMID: 19234190 DOI: 10.4049/jimmunol.0801692] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NLR (nucleotide-binding domain, leucine-rich repeat) proteins are intracellular regulators of host defense and immunity. One NLR gene, NLRP12 (NLR family, pyrin domain containing 12)/Monarch-1, has emerged as an important inhibitor of inflammatory gene expression in human myeloid cells. This is supported by genetic analysis linking the loss of a functional NLRP12 protein to hereditary periodic fever. NLRP12 transcription is diminished by specific TLR stimulation and myeloid cell maturation, consistent with its role as a negative regulator of inflammation. The NLRP12 promoter contains a novel Blimp-1 (B lymphocyte-induced maturation protein-1)/PRDM1 (PR domain-containing 1, with ZNF domain) binding site, and Blimp-1 reduces NLRP12 promoter activity, expression, and histone 3 acetylation. Blimp-1 associates with the endogenous NLRP12 promoter in a TLR-inducible manner and mediates the down-regulation of NLRP12 expression by TLR agonists. As expected, the expression of NLRP12 and Blimp-1 is inversely correlated. Analysis of Blimp-1(-/-) murine myeloid cells provides physiologic evidence that Blimp-1 reduces NLRP12 gene expression during cell differentiation. This demonstrates a novel role for Blimp-1 in the regulation of an NLR gene.
Collapse
Affiliation(s)
- Christopher A Lord
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1), discovered 16 years ago as a transcriptional repressor of the IFNbeta promoter, plays fundamentally important roles in many cell lineages and in early development. This review focuses on Blimp-1 in lymphocytes. In the B cell lineage, Blimp-1 is required for development of immunoglobulin-secreting cells and for maintenance of long-lived plasma cells (LLPCs). Direct targets of Blimp-1 and the transcriptional cascades Blimp-1 initiates to trigger plasmacytic differentiation are described. Blimp-1 also affects the homeostasis and function of CD4(+), CD8(+), and regulatory CD4(+) T cells, and Blimp-1 levels are highest in antigen-experienced T cells. Blimp-1 attenuates T cell proliferation and survival and modulates differentiation. Roles for Blimp-1 in Th1/Th2 specification, regulatory T cell function, and CD8 differentiation and function are under investigation. Signals that induce Blimp-1 in B cells include Toll-like receptor ligands and cytokines; in T cells, T cell receptors and cytokines induce Blimp-1. In spite of some commonalities, different targets and regulators of Blimp-1 in B and T cells suggest intriguing evolutionary divergence of this regulatory machinery.
Collapse
Affiliation(s)
- Gislâine Martins
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
26
|
Nutt SL, Fairfax KA, Kallies A. BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol 2007; 7:923-7. [PMID: 17965637 DOI: 10.1038/nri2204] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
B-lymphocyte-induced maturation protein 1 (BLIMP1) is a transcriptional repressor, and its importance in controlling the terminal differentiation of antibody-secreting cells (ASCs) is well established. However, as we discuss in this Progress article, it has now become evident that the ASC programme consists of a discrete BLIMP1-independent initiation phase, followed by a second step in which BLIMP1 is absolutely required for the differentiation of fully mature ASCs. In addition, an important role for BLIMP1 in maintaining the homeostasis of effector T cells is emerging, suggesting intriguing parallels between the control of effector-cell fates in both B and T cells.
Collapse
Affiliation(s)
- Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville Victoria, 3050, Australia.
| | | | | |
Collapse
|
27
|
John SA, Clements JL, Russell LM, Garrett-Sinha LA. Ets-1 regulates plasma cell differentiation by interfering with the activity of the transcription factor Blimp-1. J Biol Chem 2007; 283:951-62. [PMID: 17977828 DOI: 10.1074/jbc.m705262200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Development of immunoglobulin-secreting plasma cells from B cells is a tightly regulated process controlled by the action of a number of transcription factors. In particular, the transcription factor Blimp-1 is a key positive regulator of plasmacytic differentiation via its ability to suppress expression of genes involved in the mature B cell program. The transcription factor Ets-1 is a negative regulator of plasmacytic differentiation, as indicated by the development of increased numbers of IgM-secreting plasma cells in Ets-1 knock-out mice. We have previously shown that Ets-1-deficient B cells undergo enhanced differentiation into IgM-secreting plasma cells in response to Toll-like receptor 9 (TLR9) signaling. We now explore the mechanism by which Ets-1 limits differentiation downstream of TLR9. Our results indicate that Ets-1 physically interacts with Blimp-1, which leads to a block in Blimp-1 DNA binding activity and a reduction in the ability of Blimp-1 to repress target genes without interfering with Blimp-1 protein levels. In addition, we show that Ets-1 induces the expression of several target genes that are repressed by Blimp-1, including Pax-5. These results reveal a previously unknown mechanism for the control of Blimp-1 activity by Ets-1 and suggest that expression of Ets-1 must be down-regulated before plasmacytic differentiation can occur.
Collapse
Affiliation(s)
- Shinu A John
- Department of Biochemistry, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
28
|
Peterson ML. Mechanisms controlling production of membrane and secreted immunoglobulin during B cell development. Immunol Res 2007; 37:33-46. [PMID: 17496345 DOI: 10.1007/bf02686094] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
Abstract
The immunoglobulin gene which encodes both membrane-associated and secreted proteins through alternative RNA processing reactions has been a model system used for over 25 yr to better understand the regulatory mechanisms governing alternative RNA processing. This gene contains competing cleavage-polyadenylation and RNA splicing reactions and the relative use of the two pathways is differentially regulated between B cells and plasma cells. General cleavage-polyadenylation and RNA splicing reactions are both altered during B cell maturation to affect immunoglobulin expression. However, the specific factors involved in this regulation have yet to be identified clearly. As transcriptional regulators stimulate the developmental RNA processing switch, microarray analysis is a promising approach to identify candidate regulators of this complex RNA processing mechanism.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
29
|
Shaffer AL, Wright G, Yang L, Powell J, Ngo V, Lamy L, Lam LT, Davis RE, Staudt LM. A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol Rev 2007; 210:67-85. [PMID: 16623765 DOI: 10.1111/j.0105-2896.2006.00373.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genomics has provided a lever to pry open lymphoid cells and examine their regulatory biology. The large body of available gene expression data has also allowed us to define the of coordinately expressed genes, termed gene expression signatures, which characterize the states of cellular physiology that reflect cellular differentiation, activation of signaling pathways, and the action of transcription factors. Gene expression signatures that reflect the action of individual transcription factors can be defined by perturbing transcription factor function using RNA interference (RNAi), small-molecule inhibition, and dominant-negative approaches. We have used this methodology to define gene expression signatures of various transcription factors controlling B-cell differentiation and activation, including BCL-6, B lymphocyte-induced maturation protein-1 (Blimp-1), X-box binding protein-1 (XBP1), nuclear factor-kappaB (NF-kappaB), and c-myc. We have also curated a wide variety of gene expression signatures from the literature and assembled these into a signature database. Statistical methods can define whether any signature in this database is differentially expressed in independent biological samples, an approach we have used to gain mechanistic insights into the origin and clinical behavior of B-cell lymphomas. We also discuss the use of genomic-scale RNAi libraries to identify genes and pathways that may serve as therapeutic targets in B-cell malignancies.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Savitsky D, Cimmino L, Kuo T, Martins GA, Calame K. Multiple roles for Blimp-1 in B and T lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:9-30. [PMID: 17338172 DOI: 10.1007/0-387-46530-8_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David Savitsky
- Department of Biological Sciences, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
31
|
Kallies A, Nutt SL. Terminal differentiation of lymphocytes depends on Blimp-1. Curr Opin Immunol 2007; 19:156-62. [PMID: 17291741 DOI: 10.1016/j.coi.2007.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 01/31/2007] [Indexed: 01/05/2023]
Abstract
B lymphocyte induced maturation protein 1 (Blimp-1) has long been considered a master regulator of the terminal differentiation of B cells into antibody-secreting plasma cells. Gene-targeting experiments have now demonstrated that quantitative changes in Blimp-1 expression define plasma cell ontogeny--a process that requires the continual function of Blimp-1. Recently, new roles for Blimp-1 have been revealed, as a suppressor of diffuse large B cell lymphoma and as a key regulator of T-cell differentiation. Blimp-1 is expressed in differentiated effector T cells and controls their homeostasis. These new findings suggest that Blimp-1 has a conserved function in the final differentiation of both the cellular and the humoral arm of the adaptive immune response.
Collapse
Affiliation(s)
- Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia
| | | |
Collapse
|
32
|
Abstract
At least three types of B lymphocytes are important for providing memory in a humoral immune response: 'classical' memory cells that do not secrete immunoglobulin (Ig), long-lived plasma cells (LLPCs) in the bone marrow, and 'innate-like' B-1 cells. In this review, our work on B-lymphocyte-induced maturation protein-1 (Blimp-1), a critical regulator of terminal B-cell differentiation, is discussed in the context of current knowledge of all transcriptional controls that regulate these three types of B cells. Blimp-1 is not required for formation of memory cells, but it is required for them to progress toward becoming plasma cells. Blimp-1 is required for Ig secretion in plasma cells and in B-1 cells. Induction of the activator X-box-binding protein-1 and formation of mu-secreted mRNA depend on Blimp-1 in both cell types. Finally, even after their formation, LLPCs in the bone marrow continue to require Blimp-1 for their maintenance.
Collapse
Affiliation(s)
- Kathryn Calame
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
33
|
Ochiai K, Katoh Y, Ikura T, Hoshikawa Y, Noda T, Karasuyama H, Tashiro S, Muto A, Igarashi K. Plasmacytic transcription factor Blimp-1 is repressed by Bach2 in B cells. J Biol Chem 2006; 281:38226-34. [PMID: 17046816 DOI: 10.1074/jbc.m607592200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bach2 is a B cell-specific transcription repressor whose deficiency in mice causes a reduced class switch recombination and a reduced somatic hypermutation of immunoglobulin genes. Little is known about the direct target genes of Bach2 in B cells. By analyzing various B cell and plasma cell lines, we showed that the expression patterns of Bach2 and Blimp-1 (B lymphocyte-induced maturation protein 1), a master regulator of plasma cell differentiation, are mutually exclusive. The reporter gene of the Blimp-1 gene (Prdm1) was repressed by the overexpression of Bach2 in B cell lines. The heterodimer of Bach2/MafK bound to the Maf recognition element located upstream of the Prdm1 promoter in an electrophoretic mobility shift assay. The binding of MafK in B cells to the Prdm1 Maf recognition element was confirmed by chromatin immunoprecipitation assays. When MafK was purified from the BAL17 B cell line, a significant portion of it was present as a heterodimer with Bach2, with no apparent formation of MafK homodimer. These results strongly suggest that Bach2 represses the expression of Blimp-1 together with MafK in B cells prior to plasma cell differentiation. Accordingly, the knockdown of Bach2 mRNA using short hairpin RNA in BAL17 cells resulted in higher levels of Prdm1 expression after the stimulation of B cell receptor by surface IgM cross-linking. Induction of Prdm1 was more robust and faster in primary Bach2-deficient B cells than in wild-type control B cells upon lipopolysaccharide stimulation. Therefore, the Prdm1 regulation in B cells involves the repression by Bach2, which may be cancelled upon terminal plasma cell differentiation.
Collapse
Affiliation(s)
- Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rui L, Healy JI, Blasioli J, Goodnow CC. ERK Signaling Is a Molecular Switch Integrating Opposing Inputs from B Cell Receptor and T Cell Cytokines to Control TLR4-Driven Plasma Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2006; 177:5337-46. [PMID: 17015719 DOI: 10.4049/jimmunol.177.8.5337] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of B cells into plasma cells represents a critical immunoregulatory checkpoint where neutralizing Abs against infectious agents must be selected whereas self-reactive Abs are suppressed. Bacterial LPS is a uniquely potent bacterial immunogen that can bypass self-tolerance within the T cell repertoire. We show here that during LPS-induced plasma cell differentiation, the ERK intracellular signaling pathway serves as a pivotal switch integrating opposing inputs from Ag via BCR and from the two best characterized B cell differentiation factors made by T cells, IL-2 and IL-5. Continuous Ag receptor signaling through the RAS/MEK/ERK pathway, as occurs in self-reactive B cells, inhibits LPS induction of Blimp-1 and the plasma cell differentiation program. Differentiation resumes after a transient pulse of Ag-ERK signaling, or upon inactivation of ERK by IL-2 and IL-5 through induction of dual-specificity phosphatase 5 (Dusp5). The architecture of this molecular switch provides a framework for understanding the specificity of antibacterial Ab responses and resistance to bacterially induced autoimmune diseases such as Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Lixin Rui
- Australian Cancer Research Foundation Genetics Laboratory and Medical Genome Centre, John Curtin School of Medical Research, Australian Phenomics Facility, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
35
|
Santner-Nanan B, Berberich-Siebelt F, Xiao Z, Poser N, Sennefelder H, Rauthe S, Vallabhapurapu DS, Berberich I, Schimpl A, Kreth HW, Nanan R. Blimp-1 is expressed in human and mouse T cell subsets and leads to loss of IL-2 production and to defective proliferation. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Nera KP, Kohonen P, Narvi E, Peippo A, Mustonen L, Terho P, Koskela K, Buerstedde JM, Lassila O. Loss of Pax5 promotes plasma cell differentiation. Immunity 2006; 24:283-93. [PMID: 16546097 DOI: 10.1016/j.immuni.2006.02.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 01/26/2006] [Accepted: 02/01/2006] [Indexed: 01/06/2023]
Abstract
Pax5 is indispensable for the commitment of early lymphoid progenitors to the B cell lineage as well as for the development of B cells. To better understand the functional importance of Pax5 at the later stages of B cell differentiation, we established a Pax5-deficient DT40 B cell line. The Pax5(-/-) cells exhibited slower growth, decreased surface IgM expression, and total loss of B cell receptor signaling. Moreover, the expression of the plasma cell-characteristic transcription factors Blimp-1 and XBP-1 were significantly upregulated and the expression of Bcl-6 diminished in the Pax5(-/-) cells, and this alteration was normalized by restored Pax5 expression. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results indicate that downregulation of Pax5 function promotes the plasma cell differentiation of B cells.
Collapse
Affiliation(s)
- Kalle-Pekka Nera
- Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Herold MJ, Zeitz J, Pelzer C, Kraus C, Peters A, Wohlleben G, Berberich I. The stability and anti-apoptotic function of A1 are controlled by its C terminus. J Biol Chem 2006; 281:13663-13671. [PMID: 16551634 DOI: 10.1074/jbc.m600266200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Most Bcl-2 family members can localize to intracellular membranes via hydrophobic sequences within their C-terminal portion. We found that the C terminus of the anti-apoptotic family member A1 did not function as a membrane anchor. Instead, this stretch of the protein rendered A1 highly unstable by mediating its polyubiquitination and rapid proteasomal degradation. Moreover, the domain did not only function independently of its position within the A1 protein but when transferred could even destabilize unrelated proteins like enhanced green fluorescent protein and caspase-3. A1 was, however, much more stable in the presence of the Bcl-2 homology-only protein BimEL, suggesting that direct interaction of A1 with pro-apoptotic members of the Bcl-2 family strongly reduces its rate of turnover. We further show that the C-terminal end of A1 also contributes to the anti-apoptotic capacity of the protein. In conclusion, our data demonstrate that the C terminus serves a dual function by controlling the stability of A1 and by amplifying the capacity of the protein to protect cells against apoptosis.
Collapse
Affiliation(s)
- Marco J Herold
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Jonas Zeitz
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Christiane Pelzer
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Christa Kraus
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Andrea Peters
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Gisela Wohlleben
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany.
| |
Collapse
|
38
|
Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006; 107:4090-100. [PMID: 16424392 DOI: 10.1182/blood-2005-09-3778] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR (PRDI-BF1-RIZ) domain zinc finger protein 1 (PRDM1) is a transcription repressor with a pivotal role in plasma-cell differentiation. We identified clonal inactivating mutations in PRDM1 in the diffuse large B-cell lymphoma (DLBCL) cell line OCI-Ly3 and in 8 of 35 de novo clinical DLBCL samples. The mutational spectrum consists predominantly (7 cases) of single-nucleotide mutations affecting consensus splice donor sites, some of which are recurrent, that lead to splicing aberrations and premature translation termination. In 2 of these cases, point mutations appear to be caused by RNA editing with G-to-A and U-to-G conversions. Other mutations include frame-shift deletion and chromosomal inversion. Except for one mutant, which may act as a dominant-negative, all mutations are associated with either deletion or silencing of the paired PRDM1 allele. This study identifies PRDM1 inactivation as a recurrent genetic defect in DLBCL cells and establishes PRDM1 as a potential tumor suppressor gene in DLBCL. Moreover, it implies inhibition of terminal differentiation as a pathogenetic pathway in DLBCL, particularly for the activated B-cell-like DLBCL. It also demonstrates for the first time the potential role of RNA editing in lymphomagenesis.
Collapse
Affiliation(s)
- Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, K502A, 525 East 68th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature 2005; 438:364-8. [PMID: 16292312 DOI: 10.1038/nature04267] [Citation(s) in RCA: 576] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 09/29/2005] [Indexed: 01/22/2023]
Abstract
Toll-like receptors (TLRs) detect microbial infection and have an essential role in the induction of immune responses. TLRs can directly induce innate host defence responses, but the mechanisms of TLR-mediated control of adaptive immunity are not fully understood. Although TLR-induced dendritic cell maturation is required for activation of T-helper (T(H)) cells, the role of TLRs in B-cell activation and antibody production in vivo is not yet known. Here we show that activation and differentiation of T(H) cells is not sufficient for the induction of T-dependent B-cell responses. We find that, in addition to CD4+ T-cell help, generation of T-dependent antigen-specific antibody responses requires activation of TLRs in B cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens/immunology
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation
- Genetic Complementation Test
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- Toll-Like Receptors/deficiency
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Chandrashekhar Pasare
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, 300 Cedar Street New Haven, Connecticut 06510, USA
| | | |
Collapse
|
40
|
Abstract
The developmental program that commits a hematopoietic stem cell to the B lymphocyte lineage employs transcriptional regulators to enable the assembly of an antigen receptor complex with a useful specificity and with signalling competence. Once a naive IgM+ B cell is generated, it must correctly integrate signals from the antigen receptor with those from cytokine receptors and co-receptors delivering T cell help. The B cell responds through the regulated expression of genes that implement specific cell expansion and differentiation, secretion of high levels of high-affinity antibody, and generation of long-term memory. The transcriptional regulators highlighted in this chapter are those for which genetic evidence of function in IgM+ B cells in vivo has been provided, often in the form of mutant mice generated by conventional or conditional gene targeting. A critical developmental step is the maturation of bone marrow emigrant "transitional" B cells into the mature, long-lived cells of the periphery, and a number of the transcription factors discussed here impact on this process, yielding B cells with poor mitogenic responses in vitro. For mature B cells, it is clear that not only the nature, but the duration and amplitude of an activating signal are major determinants of the transcription factor activities enlisted, and so the ultimate outcome. The current challenge is the identification of the target genes that are activated to implement the correct response, so that we may more precisely and safely manipulate B cell behavior to predictably and positively influence humoral immune responses.
Collapse
Affiliation(s)
- L M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| |
Collapse
|
41
|
Lotz C, Mutallib SA, Oehlrich N, Liewer U, Ferreira EA, Moos M, Hundemer M, Schneider S, Strand S, Huber C, Goldschmidt H, Theobald M. Targeting Positive Regulatory Domain I-Binding Factor 1 and X Box-Binding Protein 1 Transcription Factors by Multiple Myeloma-Reactive CTL. THE JOURNAL OF IMMUNOLOGY 2005; 175:1301-9. [PMID: 16002735 DOI: 10.4049/jimmunol.175.2.1301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Growing evidence indicates that multiple myeloma (MM) and other malignancies are susceptible to CTL-based immune interventions. We studied whether transcription factors inherently involved in the terminal differentiation of mature B lymphocytes into malignant and nonmalignant plasma cells provide MM-associated CTL epitopes. HLA-A*0201 (A2.1) transgenic mice were used to identify A2.1-presented peptide Ag derived from the plasma cell-associated transcriptional regulators, positive regulatory domain I-binding factor 1 (PRDI-BF1) and X box-binding protein 1 (XBP-1). A2.1-restricted CTL specific for PRDI-BF1 and XBP-1 epitopes efficiently killed a variety of MM targets. PRDI-BF1- and XBP-1-reactive CTL were able to recognize primary MM cells from A2.1(+) patients. Consistent with the expression pattern of both transcription factors beyond malignant and nonmalignant plasma cells, PRDI-BF1- and XBP-1-specific CTL activity was not entirely limited to MM targets, but was also associated with lysis of certain other malignancies and, in defined instances, with low-to-intermediate level recognition of a few types of normal cells. Our results also indicate that the A2.1-restricted, PRDI-BF1- and XBP-1-specific human CD8(+) T cell repertoire is affected by partial self tolerance and may thus require the transfer of high-affinity TCR to break tolerance. We conclude that transcription factors governing terminal cellular differentiation may provide MM- and tumor-associated CTL epitopes.
Collapse
Affiliation(s)
- Carina Lotz
- Department of Hematology and Oncology , Johannes Gutenberg-University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Plasma cells are the terminally differentiated, non-dividing effector cells of the B-cell lineage. They are cellular factories devoted to the task of synthesizing and secreting thousands of molecules of clonospecific antibody each second. To respond to microbial pathogens with the necessary specificity and rapidity, B cells are exquisitely regulated with respect to both development in the bone marrow and activation in the periphery. This review focuses on the terminal differentiation of B cells into plasma cells, including the different subsets of B cells that become plasma cells, the mechanism of regulation of this transition, the transcription factors that control each developmental stage and the characteristics of long-lived plasma cells.
Collapse
Affiliation(s)
- Miriam Shapiro-Shelef
- Departments of Microbiology, and Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
43
|
Johnson K, Shapiro-Shelef M, Tunyaplin C, Calame K. Regulatory events in early and late B-cell differentiation. Mol Immunol 2005; 42:749-61. [PMID: 15829263 DOI: 10.1016/j.molimm.2004.06.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 06/18/2004] [Indexed: 01/29/2023]
Abstract
We are studying transcriptional control of critical developmental decision points in B lymphocytes. Commitment to the B-lymphocyte lineage is dependent on the transcriptional regulator Pax5 and committed B lymphocytes represent the first developmental stage when V(H)-to-DJ recombination occurs in the immunoglobulin (Ig) heavy chain locus. We summarize our recent studies showing that methylation of histone H3 lysine 9, a heterochromatic chromatin modification, is present in the Ig V(H) region in hematopoietic progenitors and in non-B lineage hematopoietic cells. Pax5 is both necessary and sufficient to remove this heterochromatic mark in B cells. Using genetically altered mice, we have shown that terminal differentiation of B cells to memory and Ig-secreting plasma cells depends on the transcriptional repressor Blimp-1. Recent studies demonstrating a requirement for Blimp-1 in the formation of pre-plasma memory B cells, Ig-secreting plasma cells as well as preliminary data suggesting a requirement for Blimp-1 in the maintenance of long-lived plasma cells are summarized. We also summarize our recent studies on the regulation of Blimp-1, showing direct repression by Bcl-6 and providing evidence for activation by NF-kappaB following toll-like receptor signaling.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
44
|
Sciammas R, Davis MM. Blimp-1; immunoglobulin secretion and the switch to plasma cells. Curr Top Microbiol Immunol 2005; 290:201-24. [PMID: 16480044 DOI: 10.1007/3-540-26363-2_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The transcription factor Blimp-1 governs the generation of plasma cells and immunoglobulin secretion. Recent microarray experiments indicate that Blimp-1 regulates a large set of genes that constitute a significant part of the plasma cell expression signature. The variety of differentially expressed genes indicates that Blimp-1 affects numerous aspects of plasma cell maturation, ranging from migration, adhesion, and homeostasis, to antibody secretion. In addition, Blimp-1 regulates immunoglobulin secretion by affecting the nuclear processing of the mRNA transcript and by affecting protein trafficking by regulating genes that impact on the activity of the endoplasmic reticulum. Interestingly, the differentiation events that Blimp-1 regulates appear to be modulated depending on the activation state of the B cell. This modulation may be due at least in part to distinct regions of Blimp-1 that regulate unique sets of genes independently of each other. These data hint at the complexity of Blimp-1 and the genetic program that it initiates to produce a pool of plasma cells necessary for specific immunity.
Collapse
Affiliation(s)
- R Sciammas
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
45
|
Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM, Hodgkin PD, Nutt SL. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. ACTA ACUST UNITED AC 2004; 200:967-77. [PMID: 15492122 PMCID: PMC2211847 DOI: 10.1084/jem.20040973] [Citation(s) in RCA: 420] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma cells comprise a population of terminally differentiated B cells that are dependent on the transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their development. We have introduced a gfp reporter into the Blimp-1 locus and shown that heterozygous mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglobulin secretion rate, and Blimp-1 expression levels. Importantly, analysis of in vivo ASCs induced by immunization reveals a developmental pathway in which increasing levels of Blimp-1 expression define developmental stages of plasma cell differentiation that have many phenotypic and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in bone marrow is predicated on quantitative increases in Blimp-1 expression.
Collapse
Affiliation(s)
- Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Kuo TC, Calame KL. B Lymphocyte-Induced Maturation Protein (Blimp)-1, IFN Regulatory Factor (IRF)-1, and IRF-2 Can Bind to the Same Regulatory Sites. THE JOURNAL OF IMMUNOLOGY 2004; 173:5556-63. [PMID: 15494505 DOI: 10.4049/jimmunol.173.9.5556] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcriptional repressor B lymphocyte-induced maturation protein-1 (Blimp-1) is expressed in some differentiated cells and is required for terminal differentiation of B cells. To facilitate identification of Blimp-1 target genes, we have determined the optimal DNA recognition sequence for Blimp-1. The consensus is very similar to a subset of sites recognized by IFN regulatory factors (IRFs) that contain the sequence GAAAG. By binding competition and determination of equilibrium dissociation constants, we show that Blimp-1, IRF-1, and IRF-2 have similar binding affinities for functionally important regulatory sites containing this sequence. However, Blimp-1 does not bind to all IRF sites, and specifically does not recognize IRF-4/PU.1 or IRF-8 sites lacking the GAAAG sequence. Chromatin immunoprecipitation studies showed that Blimp-1, IRF-1, and IRF-2 all bind the IFN-beta promoter in vivo, as predicted by the in vitro binding parameters, and in cotransfections Blimp-1 inhibits IRF-1-dependent activation of the IFN-beta promoter. Thus, our data suggest that Blimp-1 competes in vivo with a subset of IRF proteins and help predict the sites and IRF family members that may be affected.
Collapse
Affiliation(s)
- Tracy C Kuo
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
47
|
Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A, Hurt EM, Petroulakis E, Sonenberg N, Yewdell JW, Calame K, Glimcher LH, Staudt LM. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 2004; 21:81-93. [PMID: 15345222 DOI: 10.1016/j.immuni.2004.06.010] [Citation(s) in RCA: 783] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/23/2004] [Accepted: 05/19/2004] [Indexed: 11/27/2022]
Abstract
The differentiation of B cells into immunoglobulin-secreting plasma cells is controlled by two transcription factors, Blimp-1 and XBP1. By gene expression profiling, we defined a set of genes whose induction during mouse plasmacytic differentiation is dependent on Blimp-1 and/or XBP1. Blimp-1-deficient B cells failed to upregulate most plasma cell-specific genes, including xbp1. Differentiating xbp1-deficient B cells induced Blimp-1 normally but failed to upregulate genes encoding many secretory pathway components. Conversely, ectopic expression of XBP1 induced a wide spectrum of secretory pathway genes and physically expanded the endoplasmic reticulum. In addition, XBP1 increased cell size, lysosome content, mitochondrial mass and function, ribosome numbers, and total protein synthesis. Thus, XBP1 coordinates diverse changes in cellular structure and function resulting in the characteristic phenotype of professional secretory cells.
Collapse
Affiliation(s)
- A L Shaffer
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL. Direct Repression ofprdm1by Bcl-6 Inhibits Plasmacytic Differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 173:1158-65. [PMID: 15240705 DOI: 10.4049/jimmunol.173.2.1158] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified two intronic regions of mouse prdm1, the gene encoding B lymphocyte-induced maturation protein-1 (Blimp-1), which confer transcriptional repression in response to Bcl-6. The Bcl-6 response element in intron 5, which is conserved between mice and humans, was studied in detail. It binds Bcl-6 in vitro and was shown by chromatin immunoprecipitation to be occupied by Bcl-6 in vivo. Neither Bcl-6 response element functions as a STAT3-response element, showing that STAT3 does not compete with Bcl-6 at these sites. Bcl-6(-/-) mice confirm the biological importance of Bcl-6-dependent repression of prdm1. These mice have elevated Ab response, increased Ig-secreting cells, and increased Blimp-1(+) cells in spleen following immunization and their splenic B cells show accelerated plasmacytic development in vitro.
Collapse
Affiliation(s)
- Chainarong Tunyaplin
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
49
|
Tarte K, Jourdan M, Veyrune JL, Berberich I, Fiol G, Redal N, Shaughnessy J, Klein B. The Bcl-2 family member Bfl-1/A1 is strongly repressed in normal and malignant plasma cells but is a potent anti-apoptotic factor for myeloma cells. Br J Haematol 2004; 125:373-82. [PMID: 15086420 PMCID: PMC2685897 DOI: 10.1111/j.1365-2141.2004.04908.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Terminal B-cell differentiation is a multi-step process, from short-lived plasmablasts to mature long-lived plasma cells (PC). The anti-apoptotic Bcl-2 family member Bfl-1/A1 plays a critical role in the survival of mature B cells. However, its potential involvement at the later stages of B-cell development remains highly controversial. Our aim was thus to clarify the place of Bfl-1/A1 in the biology of normal PC and in the pathogenesis of multiple myeloma (MM), the major PC dyscrasia. Using gene expression profiling and quantifiable reverse transcription polymerase chain reaction experiments, we found a similar down-regulation of Bfl-1/A1 in both normal immature plasmablasts and mature PC when compared with B cells. In myeloma cells, the level of Bfl-1/A1 was low and Bfl-1/A1 was not a nuclear factor kappaB-inducible gene. Collectively, these data demonstrate that Bfl-1/A1 is not involved in the prolonged survival of normal mature PC, and that Bfl-1/A1 deregulation is not a common oncogenic event in MM. However, overexpression of Bfl-1/A1 by retroviral transduction promoted autonomous survival of an interleukin-6-dependent myeloma cell line and rendered it less sensitive to dexamethasone. Thus, Bfl-1/A1 transduction could be an interesting tool to obtain myeloma cell lines from primary samples and to favour the in vitro generation of antibody-secreting, long-lived normal PC.
Collapse
Affiliation(s)
- Karin Tarte
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Michel Jourdan
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierIRB - CHRU Saint-Eloi
80 Avenue Augustin Fliche
34295 MONTPELLIER Cedex 5
,FR
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
| | - Jean Luc Veyrune
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Unité de Thérapie Cellulaire
CHRU MontpellierHôpital Saint-Eloi80, avenue Augustin FLICHE
34295 MONTPELLIER cedex 5,FR
| | - Ingolf Berberich
- Institute for Virology and Immunology
University of WürzburgVersbacherstraße, Würzburg,,DE
| | - Geneviève Fiol
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Unité de Thérapie Cellulaire
CHRU MontpellierHôpital Saint-Eloi80, avenue Augustin FLICHE
34295 MONTPELLIER cedex 5,FR
| | - Nicole Redal
- Unité de Thérapie Cellulaire
CHRU MontpellierHôpital Saint-Eloi80, avenue Augustin FLICHE
34295 MONTPELLIER cedex 5,FR
| | - John Shaughnessy
- Donna and Donald Lambert Laboratory of Myeloma Genetics
Myeloma Institute for Research and TherapyUniversity of Arkansas for Medical SciencesLittle Rock, AR,US
| | - Bernard Klein
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierIRB - CHRU Saint-Eloi
80 Avenue Augustin Fliche
34295 MONTPELLIER Cedex 5
,FR
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Unité de Thérapie Cellulaire
CHRU MontpellierHôpital Saint-Eloi80, avenue Augustin FLICHE
34295 MONTPELLIER cedex 5,FR
- * Correspondence should be adressed to: Bernard Klein
| |
Collapse
|
50
|
Sciammas R, Davis MM. Modular Nature of Blimp-1 in the Regulation of Gene Expression during B Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2004; 172:5427-40. [PMID: 15100284 DOI: 10.4049/jimmunol.172.9.5427] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor Blimp-1 induces the maturation of B cells into Ab-secreting plasma cells. DNA microarrays were used to analyze the transcription profiles of both Blimp-1-transduced murine B cell lines and the inducible B cell line BCL(1). Hundreds of genes were differentially regulated, showing how Blimp-1 both restricts affinity maturation and promotes Ab secretion, homeostasis, migration, and differentiation. Strikingly, when different modes of plasma cell induction are used, very different genetic programs are used, suggesting that the transition from a B cell to plasma cell can occur in multiple ways, perhaps accounting for the different types of Ab-secreting cells observed in vivo. Furthermore, mutagenesis of Blimp-1 reveals multiple effector domains, which regulate distinct genes. This indicates that Blimp-1 subdivides the maturation program into select and tunable pathways.
Collapse
Affiliation(s)
- Roger Sciammas
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|