1
|
Ciesielska-Figlon K, Lisowska KA. The Role of the CD28 Family Receptors in T-Cell Immunomodulation. Int J Mol Sci 2024; 25:1274. [PMID: 38279272 PMCID: PMC10816057 DOI: 10.3390/ijms25021274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The CD28 family receptors include the CD28, ICOS (inducible co-stimulator), CTLA-4 (cytotoxic T-lymphocyte antigen-4), PD-1 (programmed cell death protein 1), and BTLA (B- and T-lymphocyte attenuator) molecules. They characterize a group of molecules similar to immunoglobulins that control the immune response through modulating T-cell activity. Among the family members, CD28 and ICOS act as enhancers of T-cell activity, while three others-BTLA, CTLA-4, and PD-1-function as suppressors. The receptors of the CD28 family interact with the B7 family of ligands. The cooperation between these molecules is essential for controlling the course of the adaptive response, but it also significantly impacts the development of immune-related diseases. This review introduces the reader to the molecular basis of the functioning of CD28 family receptors and their impact on T-cell activity.
Collapse
|
2
|
Perez C, Plaza-Rojas L, Boucher JC, Nagy MZ, Kostenko E, Prajapati K, Burke B, Reyes MD, Austin AL, Zhang S, Le PT, Guevara-Patino JA. NKG2D receptor signaling shapes T cell thymic education. J Leukoc Biol 2024; 115:306-321. [PMID: 37949818 DOI: 10.1093/jleuko/qiad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023] Open
Abstract
The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vβ chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Lourdes Plaza-Rojas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Justin C Boucher
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Mate Z Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Kushal Prajapati
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Brianna Burke
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Michael Delos Reyes
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Anna L Austin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Shubin Zhang
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Phong T Le
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - José A Guevara-Patino
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
3
|
Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun 2020; 11:6264. [PMID: 33293517 PMCID: PMC7722925 DOI: 10.1038/s41467-020-20070-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms mediating thymic central tolerance and prevention of autoimmunity are not fully understood. Here we show that B7-CD28 co-stimulation and B7 expression by specific antigen-presenting cell (APC) types are required for clonal deletion and for regulatory T (Treg) cell generation from endogenous tissue-restricted antigen (TRA)-specific thymocytes. While B7-CD28 interaction is required for both clonal deletion and Treg induction, these two processes differ in their CD28 signaling requirements and in their dependence on B7-expressing dendritic cells, B cells, and thymic epithelial cells. Meanwhile, defective thymic clonal deletion due to altered B7-CD28 signaling results in the accumulation of mature, peripheral TRA-specific T cells capable of mediating destructive autoimmunity. Our findings thus reveal a function of B7-CD28 co-stimulation in shaping the T cell repertoire and limiting autoimmunity through both thymic clonal deletion and Treg cell generation.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/metabolism
- Autoimmunity/physiology
- B7-1 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation/immunology
- Central Tolerance
- Clonal Deletion
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Flow Cytometry
- Gene Knock-In Techniques
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Breen
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Pérez AR, de Meis J, Rodriguez-Galan MC, Savino W. The Thymus in Chagas Disease: Molecular Interactions Involved in Abnormal T-Cell Migration and Differentiation. Front Immunol 2020; 11:1838. [PMID: 32983098 PMCID: PMC7492291 DOI: 10.3389/fimmu.2020.01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chagas disease, caused by the protozoan parasite T. cruzi, is a prevalent parasitic disease in Latin America. Presently, it is spreading around the world by human migration, thus representing a new global health issue. Chronically infected individuals reveal a dissimilar disease progression: while nearly 60% remain without apparent disease for life, 30% develop life-threatening pathologies, such as chronic chagasic cardiomyopathy (CCC) or megaviscerae. Inflammation driven by parasite persistence seems to be involved in the pathophysiology of the disease. However, there is also evidence of the occurrence of autoimmune events, mainly caused by molecular mimicry and bystander activation. In experimental models of disease, is well-established that T. cruzi infects the thymus and causes locally profound structural and functional alterations. The hallmark is a massive loss of CD4+CD8+ double positive (DP) thymocytes, mainly triggered by increased levels of glucocorticoids, although other mechanisms seem to act simultaneously. Thymic epithelial cells (TEC) exhibited an increase in extracellular matrix deposition, which are related to thymocyte migratory alterations. Moreover, medullary TEC showed a decreased expression of AIRE and altered expression of microRNAs, which might be linked to a disrupted negative selection of the T-cell repertoire. Also, almost all stages of thymocyte development are altered, including an abnormal output of CD4−CD8− double negative (DN) and DP immature and mature cells, many of them carrying prohibited TCR-Vβ segments. Evidence has shown that DN and DP cells with an activated phenotype can be tracked in the blood of humans with chronic Chagas disease and also in the secondary lymphoid organs and heart of infected mice, raising new questions about the relevance of these populations in the pathogenesis of Chagas disease and their possible link with thymic alterations and an immunoendocrine imbalance. Here, we discuss diverse molecular mechanisms underlying thymic abnormalities occurring during T. cruzi infection and their link with CCC, which may contribute to the design of innovative strategies to control Chagas disease pathology.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-Universidad Nacional de Rosario, Rosario, Argentina.,Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, Berglund E, Berglund D. CD2 Immunobiology. Front Immunol 2020; 11:1090. [PMID: 32582179 PMCID: PMC7295915 DOI: 10.3389/fimmu.2020.01090] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
The glycoprotein CD2 is a costimulatory receptor expressed mainly on T and NK cells that binds to LFA3, a cell surface protein expressed on e.g., antigen-presenting cells. CD2 has an important role in the formation and organization of the immunological synapse that is formed between T cells and antigen-presenting cells upon cell-cell conjugation and associated intracellular signaling. CD2 expression is upregulated on memory T cells as well as activated T cells and plays an important role in activation of memory T cells despite the coexistence of several other costimulatory pathways. Anti-CD2 monoclonal antibodies have been shown to induce immune modulatory effects in vitro and clinical studies have proven the safety and efficacy of CD2-targeting biologics. Investigators have highlighted that the lack of attention to the CD2/LFA3 costimulatory pathway is a missed opportunity. Overall, CD2 is an attractive target for monoclonal antibodies intended for treatment of pathologies characterized by undesired T cell activation and offers an avenue to more selectively target memory T cells while favoring immune regulation.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Horacio Paternina Visbal
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - David H Sachs
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Division of Transplantation Surgery, CLINTEC, Karolinska Institute, and Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
6
|
Breed ER, Watanabe M, Hogquist KA. Measuring Thymic Clonal Deletion at the Population Level. THE JOURNAL OF IMMUNOLOGY 2019; 202:3226-3233. [PMID: 31010850 DOI: 10.4049/jimmunol.1900191] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Clonal deletion of T cells specific for self-antigens in the thymus has been widely studied, primarily by approaches that focus on a single receptor (using TCR transgenes) or a single specificity (using peptide-MHC tetramers). However, less is known about clonal deletion at the population level. In this article, we report an assay that measures cleaved caspase 3 to define clonal deletion at the population level. This assay distinguishes clonal deletion from apoptotic events caused by neglect and approximates the anatomic site of deletion using CCR7. This approach showed that 78% of clonal deletion events occur in the cortex in mice. Medullary deletion events were detected at both the semimature and mature stages, although mature events were associated with failed regulatory T cell induction. Using this assay, we showed that bone marrow-derived APC drive approximately half of deletion events at both stages. We also found that both cortical and medullary deletion rely heavily on CD28 costimulation. These findings demonstrate a useful strategy for studying clonal deletion within the polyclonal repertoire.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
7
|
Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer 2018; 25:R331-R349. [PMID: 29618577 DOI: 10.1530/erc-18-0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/03/2023]
Abstract
Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor's classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.
Collapse
Affiliation(s)
- B Cioni
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W Zwart
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode InstituteThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A M Bergman
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Uri A, Werner S, Lühder F, Hünig T, Kerkau T, Beyersdorf N. Protection of Mice from Acute Graft-versus-Host Disease Requires CD28 Co-stimulation on Donor CD4 + Foxp3 + Regulatory T Cells. Front Immunol 2017; 8:721. [PMID: 28690612 PMCID: PMC5481316 DOI: 10.3389/fimmu.2017.00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell plus T cell transplantation (allo-HSCT). In this study, we investigated the requirement for CD28 co-stimulation of donor CD4+ conventional (CD4+CD25-Foxp3-, Tconv) and regulatory (CD4+CD25+Foxp3+, Treg) T cells in aGvHD using tamoxifen-inducible CD28 knockout (iCD28KO) or wild-type (wt) littermates as donors of CD4+ Tconv and Treg. In the highly inflammatory C57BL/6 into BALB/c allo-HSCT transplantation model, CD28 depletion on donor CD4+ Tconv reduced clinical signs of aGvHD, but did not significantly prolong survival of the recipient mice. Selective depletion of CD28 on donor Treg did not abrogate protection of recipient mice from aGvHD until about day 20 after allo-HSCT. Later, however, the pool of CD28-depleted Treg drastically declined as compared to wt Treg. Consequently, only wt, but not CD28-deficient, Treg were able to continuously suppress aGvHD and induce long-term survival of the recipient mice. To our knowledge, this is the first study that specifically evaluates the impact of CD28 expression on donor Treg in aGvHD. Moreover, the delayed kinetics of aGvHD lethality after transplantation of iCD28KO Treg provides a novel animal model for similar disease courses found in patients after allo-HSCT.
Collapse
Affiliation(s)
- Anna Uri
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sandra Werner
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fred Lühder
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice. PLoS One 2015; 10:e0138770. [PMID: 26439498 PMCID: PMC4595071 DOI: 10.1371/journal.pone.0138770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection.
Collapse
|
10
|
Ville S, Poirier N, Blancho G, Vanhove B. Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells? Front Immunol 2015; 6:411. [PMID: 26322044 PMCID: PMC4532816 DOI: 10.3389/fimmu.2015.00411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022] Open
Abstract
CD28 and CTLA-4 are prototypal co-stimulatory and co-inhibitory cell surface signaling molecules interacting with CD80/86, known to be critical for immune response initiation and regulation, respectively. Initial “bench-to-beside” translation, two decades ago, resulted in the development of CTLA4-Ig, a biologic that targets CD80/86 and prevents T-cell costimulation. In spite of its proven effectiveness in inhibiting allo-immune responses, particularly in murine models, clinical experience in kidney transplantation with belatacept (high-affinity CTLA4-Ig molecule) reveals a high incidence of acute, cell-mediated rejection. Originally, the etiology of belatacept-resistant graft rejection was thought to be heterologous immunity, i.e., the cross-reactivity of the pool of memory T cells from pathogen-specific immune responses with alloantigens. Recently, the standard view that memory T cells arise from effector cells after clonal contraction has been challenged by a “developmental” model, in which less differentiated memory T cells generate effector cells. This review delineates how this shift in paradigm, given the differences in co-stimulatory and co-inhibitory signal depending on the maturation stage, could profoundly affect our understanding of the CD28/CD80-86/CTLA-4 blockade and highlights the potential advantages of selectively targeting CD28, instead of CD80/86, to control post-transplant immune responses.
Collapse
Affiliation(s)
- Simon Ville
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Nicolas Poirier
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| | - Gilles Blancho
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France
| | - Bernard Vanhove
- Unité Mixte de Recherche, UMR_S 1064, Institut National de la Santé et de la Recherche Médicale , Nantes , France ; Institut de Transplantation Urologie Néphrologie (ITUN), Université de Nantes , Nantes , France ; Effimune SAS , Nantes , France
| |
Collapse
|
11
|
Abstract
T cell activation is a key event in the adaptive immune response and vital to the generation of both cellular and humoral immunity. Activation is required not only for effective CD4 T cell responses but also to provide help for B cells and the generation of cytotoxic T cell responses. Unsurprisingly, impaired T cell activation results in infectious pathology, whereas dysregulated activation can result in autoimmunity. The decision to activate is therefore tightly regulated and the CD28/CTLA-4 pathway represents this apical decision point at the molecular level. In particular, CTLA-4 (CD152) is an essential checkpoint control for autoimmunity; however, the molecular mechanism(s) by which CTLA-4 achieves its regulatory function are not well understood, especially how it functionally intersects with the CD28 pathway. In this chapter, we review the established molecular and cellular concepts relating to CD28 and CTLA-4 biology, and attempt to integrate these by discussing the transendocytosis of ligands as a new model of CTLA-4 function.
Collapse
Affiliation(s)
- Blagoje Soskic
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Tiezheng Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
12
|
Williams JA, Zhang J, Jeon H, Nitta T, Ohigashi I, Klug D, Kruhlak MJ, Choudhury B, Sharrow SO, Granger L, Adams A, Eckhaus MA, Jenkinson SR, Richie ER, Gress RE, Takahama Y, Hodes RJ. Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways. THE JOURNAL OF IMMUNOLOGY 2013; 192:630-40. [PMID: 24337745 DOI: 10.4049/jimmunol.1302550] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A critical process during thymic development of the T cell repertoire is the induction of self-tolerance. Tolerance in developing T cells is highly dependent on medullary thymic epithelial cells (mTEC), and mTEC development in turn requires signals from mature single-positive thymocytes, a bidirectional relationship termed thymus crosstalk. We show that CD28-CD80/86 and CD40-CD40L costimulatory interactions, which mediate negative selection and self-tolerance, upregulate expression of LTα, LTβ, and receptor activator for NF-κB in the thymus and are necessary for medullary development. Combined absence of CD28-CD80/86 and CD40-CD40L results in profound deficiency in mTEC development comparable to that observed in the absence of single-positive thymocytes. This requirement for costimulatory signaling is maintained even in a TCR transgenic model of high-affinity TCR-ligand interactions. CD4 thymocytes maturing in the altered thymic epithelial environment of CD40/CD80/86 knockout mice are highly autoreactive in vitro and are lethal in congenic adoptive transfer in vivo, demonstrating a critical role for these costimulatory pathways in self-tolerance as well as thymic epithelial development. These findings demonstrate that cooperativity between CD28-CD80/86 and CD40-CD40L pathways is required for normal medullary epithelium and for maintenance of self-tolerance in thymocyte development.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zeng XL, Nagavalli A, Smith CJ, Howard JF, Su MA. Divergent effects of T cell costimulation and inflammatory cytokine production on autoimmune peripheral neuropathy provoked by Aire deficiency. THE JOURNAL OF IMMUNOLOGY 2013; 190:3895-904. [PMID: 23487421 DOI: 10.4049/jimmunol.1203001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy results from autoimmune destruction of the peripheral nervous system and is a component of the multiorgan autoimmunity syndrome that results from Aire gene mutations in humans. In parallel, peripheral nervous system autoimmunity resembling chronic inflammatory demyelinating polyneuropathy develops spontaneously in NOD mice with a partial loss of Aire function (NOD.Aire(GW/+) mice) and is a T cell-mediated disease. In this study, we analyze how key aspects of T cell activation and function modulate disease development in Aire-deficient mice. We show that genetic ablation of the Th1 cytokine IFN-γ completely prevents clinical and electrophysiological evidence of neuropathy in NOD.Aire(GW/+) mice. IFN-γ deficiency is associated with absence of immune infiltration and decreased expression of the T cell chemoattractant IP-10 in sciatic nerves. Thus, IFN-γ is absolutely required for the development of autoimmune peripheral neuropathy in NOD.Aire(GW/+) mice. Because IFN-γ secretion is enhanced by B7-CD28 costimulation of T cells, we sought to determine the effects of these costimulatory molecules on neuropathy development. Surprisingly, B7-2 deficiency accelerated neuropathy development in NOD.Aire(GW/+) mice, and Ab blockade of both B7-1 and B7-2 resulted in fulminant, early-onset neuropathy. Thus, in contrast to IFN-γ, B7-2 alone and B7-1/B7-2 in combination function to ameliorate neuropathy development in NOD.Aire(GW/+) mice. Together, these findings reveal distinct and opposing effects of the T cell costimulatory pathway and IFN-γ production on the pathogenesis of autoimmune peripheral neuropathy.
Collapse
Affiliation(s)
- Xiaopei L Zeng
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
14
|
Lai KP, Lai JJ, Chang P, Altuwaijri S, Hsu JW, Chuang KH, Shyr CR, Yeh S, Chang C. Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol Endocrinol 2012; 27:25-37. [PMID: 23250486 DOI: 10.1210/me.2012-1244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although thymic involution has been linked to the increased testosterone in males after puberty, its detailed mechanism and clinical application related to T-cell reconstitution in bone marrow transplantation (BMT) remain unclear. By performing studies with reciprocal BMT and cell-specific androgen receptor (AR) knockout mice, we found that AR in thymic epithelial cells, but not thymocytes or fibroblasts, played a more critical role to determine thymic cellularity. Further dissecting the mechanism using cell-specific thymic epithelial cell-AR knockout mice bearing T-cell receptor transgene revealed that elevating thymocyte survival was due to the enhancement of positive selection resulting in increased positively selected T-cells in both male and female mice. Targeting AR, instead of androgens, either via genetic knockout of thymic epithelial AR or using an AR-degradation enhancer (ASC-J9®), led to increased BMT grafting efficacy, which may provide a new therapeutic approach to boost T-cell reconstitution in the future.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- George H Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lai JJ, Lai KP, Zeng W, Chuang KH, Altuwaijri S, Chang C. Androgen receptor influences on body defense system via modulation of innate and adaptive immune systems: lessons from conditional AR knockout mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1504-12. [PMID: 22959669 DOI: 10.1016/j.ajpath.2012.07.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/09/2012] [Accepted: 07/18/2012] [Indexed: 12/18/2022]
Abstract
Upon insult, such as infection or tissue injury, the innate and adaptive immune systems initiate a series of responses to defend the body. Recent studies from immune cell-specific androgen receptor (AR) knockout mice demonstrated that androgen and its receptor (androgen/AR) play significant roles in both immune regulations. In the innate immunity, androgen/AR is required for generation and proper function of neutrophils; androgen/AR also regulates wound healing processes through macrophage recruitment and proinflammatory cytokine production. In adaptive immunity, androgen/AR exerts suppressive effects on development and activation of T and B cells. Removal of such suppression causes thymic enlargement and excessive export of immature B cells. Altogether, androgen/AR plays distinct roles in individual immune cells, and targeting androgen/AR may help in treatment and management of immune-related diseases.
Collapse
Affiliation(s)
- Jiann-Jyh Lai
- George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
16
|
Seah SGK, Carrington EM, Ng WC, Belz GT, Brady JL, Sutherland RM, Hancock MS, La Gruta NL, Brown LE, Turner SJ, Zhan Y, Lew AM. Unlike CD4+ T-cell help, CD28 costimulation is necessary for effective primary CD8+ T-cell influenza-specific immunity. Eur J Immunol 2012; 42:1744-54. [PMID: 22585421 DOI: 10.1002/eji.201142211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/30/2012] [Accepted: 03/23/2012] [Indexed: 11/06/2022]
Abstract
The importance of costimulation on CD4(+) T cells has been well documented. However, primary CTLs against many infections including influenza can be generated in the absence of CD4(+) T-cell help. The role of costimulation under such "helpless" circumstances is not fully elucidated. Here, we investigated such a role for CD28 using CTLA4Ig transgenic (Tg) mice. To ensure valid comparison across the genotypes, we showed that all mice had similar naïve precursor frequencies and similar peak viral loads. In the absence of help, viral clearance was significantly reduced in CTLA4Ig Tg mice compared with WT mice. CD44(+) BrdU(+) influenza-specific CD8(+) T cells were diminished in CTLA4Ig Tg mice at days 5 and 8 postinfection. Adoptive transfer of ovalbumin-specific transgenic CD8(+) T cells (OT-I)-I cells into WT or CTLA4Ig Tg mice revealed that loss of CD28 costimulation resulted in impairment in OT-I cell division. As shown previously, neither viral clearance nor the generation of influenza-specific CD8(+) T cells was affected by the absence of CD4(+) T cells alone. In contrast, both were markedly impaired by CD28 blockade of "helpless" CD8(+) T cells. We suggest that direct CD28 costimulation of CD8(+) T cells is more critical in their priming during primary influenza infection than previously appreciated.
Collapse
Affiliation(s)
- Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dalheimer SL, Zeng L, Draves KE, Hassaballa A, Jiwa NN, Parrish TD, Clark EA, Yankee TM. Gads-deficient thymocytes are blocked at the transitional single positive CD4+ stage. Eur J Immunol 2009; 39:1395-404. [PMID: 19337995 DOI: 10.1002/eji.200838692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Positive selection of T-cell precursors is the process by which a diverse T-cell repertoire is established. Positive selection begins at the CD4(+)CD8(+) double positive (DP) stage of development and involves at least two steps. First, DP thymocytes down-regulate CD8 to become transitional single positive (TSP) CD4(+) thymocytes. Then, cells are selected to become either mature single positive CD4(+) or mature single positive CD8(+) thymocytes. We sought to define the function of Gads during the two steps of positive selection by analyzing a Gads-deficient mouse line. In Gads(+/+) mice, most TSP CD4(+) thymocytes are TCR(hi)Bcl-2(hi)CD69(+), suggesting that essential steps in positive selection occurred in the DP stage. Despite that Gads(-/-) mice could readily generate TSP CD4(+) thymocytes, many Gads(-/-) TSP CD4(+) cells were TCR(lo)Bcl-2(lo)CD69(-), suggesting that Gads(-/-) cells proceeded to the TSP CD4(+) stage prior to being positively selected. These data suggest that positive selection is not a prerequisite for the differentiation of DP thymocytes into TSP CD4(+) thymocytes. We propose a model in which positive selection and differentiation into the TSP CD4(+) stage are separable events and Gads is only required for positive selection.
Collapse
Affiliation(s)
- Stacy L Dalheimer
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Williams JA, Lumsden JM, Yu X, Feigenbaum L, Zhang J, Steinberg SM, Hodes RJ. Regulation of thymic NKT cell development by the B7-CD28 costimulatory pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:907-17. [PMID: 18606642 DOI: 10.4049/jimmunol.181.2.907] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Invariant NKT (iNKT) cells are a population of TCRalphabeta-expressing cells that are unique in several respects. In contrast to conventional T cells, iNKT cells are selected in the thymus for recognition of CD1, rather than conventional MHC class I or II, and are selected by CD1-expressing double-positive thymocytes, rather than by the thymic stromal cells responsible for positive selection of conventional T cells. We have probed further the requirements for thymic iNKT cell development and find that these cells are highly sensitive to B7-CD28 costimulatory interactions, as evidenced by the substantially decreased numbers of thymic iNKT cells in CD28 and in B7 knockout mice. In contrast to the requirement for CD1, B7-CD28 signaling does not affect early iNKT cell lineage commitment, but exerts its influence on the subsequent intrathymic expansion and differentiation of iNKT cells. CD28 wild-type/CD28-deficient mixed bone marrow chimeras provided evidence of both cell-autonomous and non-cell-autonomous roles for CD28 during iNKT cell development. Paradoxically, transgenic mice in which thymic expression of B7 is elevated have essentially no measurable thymic iNKT cells. Taken together, these results demonstrate that the unique pathway involved in iNKT cell development is marked by a critical role of B7-CD28 interactions and that disruption or augmentation of this costimulatory interaction has substantial effects on iNKT cell development in the thymus.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Horai R, Mueller KL, Handon RA, Cannons JL, Anderson SM, Kirby MR, Schwartzberg PL. Requirements for selection of conventional and innate T lymphocyte lineages. Immunity 2008; 27:775-85. [PMID: 18031697 DOI: 10.1016/j.immuni.2007.09.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 01/05/2023]
Abstract
Mice deficient in the Tec kinase Itk develop a large population of CD8(+) T cells with properties, including expression of memory markers, rapid production of cytokines, and dependence on Interleukin-15, resembling NKT and other innate T cell lineages. Like NKT cells, these CD8(+) T cells can be selected on hematopoietic cells. We demonstrate that these CD8(+) T cell phenotypes resulted from selection on hematopoietic cells-forcing selection on the thymic stroma reduced the number and innate phenotypes of mature Itk-deficient CD8(+) T cells. We further show that, similar to NKT cells, selection of innate-type CD8(+) T cells in Itk(-/-) mice required the adaptor SAP. Acquisition of their innate characteristics, however, required CD28. Our results suggest that SAP and Itk reciprocally regulate selection of innate and conventional CD8(+) T cells on hematopoietic cells and thymic epithelium, respectively, whereas CD28 regulates development of innate phenotypes resulting from selection on hematopoietic cells.
Collapse
Affiliation(s)
- Reiko Horai
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, Altman JD, Jennings SR, Katsikis PD. Memory CD8+ T cells require CD28 costimulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:6494-503. [PMID: 17982038 DOI: 10.4049/jimmunol.179.10.6494] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8(+) T cells require CD28 costimulation, whereas memory CD8(+) T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8(+) T cells. In the absence of CD28 costimulation, secondary CD8(+) T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8(+) T cells to expand in the absence of CD28 costimulation is CD4(+) T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8(+) T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8(+) T cell-based vaccines against such pathogens and tumors.
Collapse
Affiliation(s)
- Annie B Borowski
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dolfi DV, Katsikis PD. CD28 and Cd27 Costimulation of Cd8+ T Cells: A Story of Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 590:149-70. [PMID: 17191384 DOI: 10.1007/978-0-387-34814-8_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the requirement of CD28 and CD27 costimulation has been clearly demonstrated during primary CD8+ T cell responses and this costimulation acts by providing proliferation and survival cues to naive CD8+ T cells, a number of questions also arise from these studies. Is the requirement for CD28 and CD27 costimulation restricted to the initiation of the immune response in the lymph nodes, where presumably the initial contact between naive CD8+ T cell and DC occurs? What is the purpose of the dramatic influx of DC to sites of inflammation such as the lung during influenza virus infection and the formation of inflammatory BALT (iBALT)?(104) Are such DC at the site of inflammation and at later stages of the immune response providing cytokines or costimulation to effector CD8+ T cells? If DC are required for optimal secondary responses (100), is CD28 costimulation the missing signal or is it other members of the B7:CD28 family or TNF family? Given that a number of investigators are actively addressing these questions, the answers we expect will be soon to come and open exciting new opportunities for immune enhancement or dampening strategies and vaccine adjuvants.
Collapse
Affiliation(s)
- Douglas V Dolfi
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | |
Collapse
|
22
|
Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 2007; 25:649-79. [PMID: 17291187 DOI: 10.1146/annurev.immunol.23.021704.115715] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All hematopoietic cells, including T lymphocytes, originate from stem cells that reside in the bone marrow. Most hematopoietic lineages also mature in the bone marrow, but in this respect, T lymphocytes differ. Under normal circumstances, most T lymphocytes are produced in the thymus from marrow-derived progenitors that circulate in the blood. Cells that home to the thymus from the marrow possess the potential to generate multiple T and non-T lineages. However, there is little evidence to suggest that, once inside the thymus, they give rise to anything other than T cells. Thus, signals unique to the thymic microenvironment compel multipotent progenitors to commit to the T lineage, at the expense of other potential lineages. Summarizing what is known about the signals the thymus delivers to uncommitted progenitors, or to immature T-committed progenitors, to produce functional T cells is the focus of this review.
Collapse
Affiliation(s)
- Howard T Petrie
- Scripps Florida Research Institute, Jupiter, Florida 33458, USA.
| | | |
Collapse
|
23
|
Vacchio MS, Olaru A, Livak F, Hodes RJ. ATM deficiency impairs thymocyte maturation because of defective resolution of T cell receptor alpha locus coding end breaks. Proc Natl Acad Sci U S A 2007; 104:6323-8. [PMID: 17405860 PMCID: PMC1851038 DOI: 10.1073/pnas.0611222104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATM (ataxia telangiectasia mutated) protein plays a central role in sensing and responding to DNA double-strand breaks. Lymphoid cells are unique in undergoing physiologic double-strand breaks in the processes of Ig class switch recombination and T or B cell receptor V(D)J recombination, and a role for ATM in these processes has been suggested by clinical observations in ataxia telangiectasia patients as well as in engineered mice with mutations in the Atm gene. We demonstrate here a defect in thymocyte maturation in ATM-deficient mice that is associated with decreased efficiency in V-J rearrangement of the endogenous T cell receptor (TCR)alpha locus, accompanied by increased frequency of unresolved TCR Jalpha coding end breaks. We also demonstrate that a functionally rearranged TCRalphabeta transgene is sufficient to restore thymocyte maturation, whereas increased thymocyte survival by bcl-2 cannot improve TCRalpha recombination and T cell development. These data indicate a direct role for ATM in TCR gene recombination in vivo that is critical for surface TCR expression in CD4(+)CD8(+) cells and for efficient thymocyte selection. We propose a unified model for the two major clinical characteristics of ATM deficiency, defective T cell maturation and increased genomic instability, frequently affecting the TCRalpha locus. In the absence of ATM, delayed TCRalpha coding joint formation results both in a reduction of alphabeta TCR-expressing immature cells, leading to inefficient thymocyte selection, and in accumulation of unstable open chromosomal DNA breaks, predisposing to TCRalpha locus-associated chromosomal abnormalities.
Collapse
Affiliation(s)
- Melanie S. Vacchio
- *Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexandru Olaru
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ferenc Livak
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Richard J. Hodes
- *Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4B36, Bethesda, MD 20892. E-mail:
| |
Collapse
|
24
|
Chuang WY, Ströbel P, Gold R, Nix W, Schalke B, Kiefer R, Opitz A, Klinker E, Müller-Hermelink HK, Marx A. A CTLA4high genotype is associated with myasthenia gravis in thymoma patients. Ann Neurol 2005; 58:644-8. [PMID: 16178018 DOI: 10.1002/ana.20577] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myasthenia gravis (MG) in thymoma patients depends critically on intratumorous generation and export of mature autoreactive CD4+ T cells. Why non-MG thymomas fail to produce CD4+ T cells is unknown. We studied three single-nucleotide polymorphisms of the cytotoxic T-lymphocyte-associated antigen 4(CTLA4) gene in thymoma patients, nonthymoma early-onset MG patients, and control subjects. Surprisingly, the CTLA4high genotype +49A/A, which is protective against several autoimmune diseases, exerted a prominent predisposing effect to paraneoplastic MG in thymoma patients. The unusual disease association with a CTLA4high genotype implies a unique pathogenesis of paraneoplastic MG, with high CTLA4 levels possibly supporting the nontolerogenic selection of CD4+ T cells in MG-associated thymomas.
Collapse
Affiliation(s)
- Wen-Yu Chuang
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Qiu YH, Sun ZW, Shi Q, Su CH, Chen YJ, Shi YJ, Tao R, Ge Y, Zhang XG. Apoptosis of multiple myeloma cells induced by agonist monoclonal antibody against human CD28. Cell Immunol 2005; 236:154-60. [PMID: 16188246 DOI: 10.1016/j.cellimm.2005.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
CD28 is expressed abnormally on human multiple myeloma (MM) cells but the significance had not been identified until now. In this paper, we are suggesting that abnormal expression of CD28 might be a marker of tumour progression. We therefore took the approach of generating a hybridoma cell line capable of secreting agonist monoclonal antibody directed against human CD28 (agonist anti-CD28 mAb) and then determined the expression of CD28 molecules on the MM cell lines U266 and XG1. The biological effects of agonist anti-CD28 mAb on cell growth and proliferation of U266 and XG1 cell lines were then analysed. Our results showed that the expression of CD28 on U266 and XG1 was significantly higher than that of PBTC or Jurkat cells. We found that by adding the agonist anti-CD28 mAb to cultures of U266 and XG1 cells their rate of growth and proliferation was obviously inhibited. Further morphological and molecular analyses found that U266 and XG1 incubated with agonist anti-CD28 mAb showed signs of nuclear condensation, chromatin marginal changes, cells membrane breaking, and cytoplasmic shrinkage. Vacuoles and apoptotic bodies were also observed using a transmission electron microscope and the development of typical DNA laddering patterns were found by the use of electrophoresis assays, suggesting that U266 and XG1 cells were undergoing apoptosis induced by agonist anti-CD28 mAb in vitro.
Collapse
Affiliation(s)
- Yu-hua Qiu
- Biotechnology Research Institute, Suzhou University, Suzhou 215007, China
| | | | | | | | | | | | | | | | | |
Collapse
|