1
|
Upadhyay S, Murugu L, Svensson L. Tumor cells escape immunosurveillance by hampering LFA-1. Front Immunol 2025; 16:1519841. [PMID: 39911389 PMCID: PMC11794523 DOI: 10.3389/fimmu.2025.1519841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
During tumor immunosurveillance, leukocytes play a crucial role in the cellular defense system, working collaboratively with other immune components to recognize and eliminate aberrant cells. Integral to this process is the integrin Lymphocyte Function-Associated Antigen 1 (LFA-1). LFA-1 facilitates adhesion during leukocyte migration and helps establish stable cell-to-cell contacts between leukocytes and their targets. Additionally, as a receptor, LFA-1 signaling activates leukocytes, promoting their differentiation and effector functions against cancer. However, tumors can develop mechanisms to evade immune clearance by disrupting LFA-1 functions or hijacking its pathways. In this review, we first detail how leukocytes utilize LFA-1 during immunosurveillance and then explore how tumors counteract this process in the tumor microenvironment (TME) by either altering LFA-1 functions or exploiting it to drive tumorigenesis. Moreover, we discuss therapeutic strategies targeting LFA-1, including inhibitors tested in laboratory studies and animal models, highlighting their potential as anticancer interventions and the need for further research to evaluate their clinical utility.
Collapse
Affiliation(s)
| | - Lewis Murugu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Lena Svensson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Mello-Vieira J, Bopp T, Dikic I. Ubiquitination and cell-autonomous immunity. Curr Opin Immunol 2023; 84:102368. [PMID: 37451128 DOI: 10.1016/j.coi.2023.102368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Cell-autonomous immunity is the first line of defense by which cells recognize and contribute to eliminating invasive pathogens. It is composed of immune signaling networks that sense microbial pathogens, promote pathogen restriction, and stimulate their elimination, including host cell death. Ubiquitination is a pivotal orchestrator of these pathways, by changing the activity of signal transducers and effector proteins in an efficient way. In this review, we will focus on how ubiquitin connects the pathways that sense pathogens to the cellular responses to invaders and shed light on how ubiquitination impacts the microenvironment around the infected cell, stimulating the appropriate immune response. Finally, we discuss therapeutic options directed at favoring cell-autonomous immune responses to infection.
Collapse
Affiliation(s)
- João Mello-Vieira
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute for Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
4
|
Perez VL, Mah FS, Willcox M, Pflugfelder S. Anti-Inflammatories in the Treatment of Dry Eye Disease: A Review. J Ocul Pharmacol Ther 2023; 39:89-101. [PMID: 36796014 DOI: 10.1089/jop.2022.0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Inflammation is an important driver of dry eye disease (DED) pathogenesis. An initial insult that results in the loss of tear film homeostasis can initiate a nonspecific innate immune response that leads to a chronic and self-sustaining inflammation of the ocular surface, which results in classic symptoms of dry eye. This initial response is followed by a more prolonged adaptive immune response, which can perpetuate and aggravate inflammation and result in a vicious cycle of chronic inflammatory DED. Effective anti-inflammatory therapies can help patients exit this cycle, and effective diagnosis of inflammatory DED and selection of the most appropriate treatment are therefore key to successful DED management and treatment. This review explores the cellular and molecular mechanisms of the immune and inflammatory components of DED, and examines the evidence base for the use of currently available topical treatment options. These agents include topical steroid therapy, calcineurin inhibitors, T cell integrin antagonists, antibiotics, autologous serum/plasma therapy, and omega-3 fatty acid dietary supplements.
Collapse
Affiliation(s)
- Victor L Perez
- Department of Ophthalmology, Foster Center for Ocular Immunology at Duke Eye Center, Duke University School of Medicine, Durham, North Carolina. USA
| | - Francis S Mah
- Scripps Clinic Torrey Pines, La Jolla, California, USA
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - Stephen Pflugfelder
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Tamburini BAJ. Contributions of PD-L1 reverse signaling to dendritic cell trafficking. FEBS J 2022; 289:6256-6266. [PMID: 34146376 PMCID: PMC8684559 DOI: 10.1111/febs.16084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) interactions are critical for dampening the immune response to both self and foreign antigens. The signaling of PD-L1 via its cytoplasmic domain, rather than through its interactions with PD-1 via the extracellular domain, has been termed PD-L1 reverse signaling. While this signaling is beneficial for cancer progression, little is understood about the consequences of PD-L1 reverse signaling in immune cells that express PD-L1 at steady state or in response to infection. Loss of PD-L1 during infection leads to unchecked T-cell proliferation and increased autoimmune T-cell responses. While the T-cell intrinsic role of PD-1 for inhibiting T-cell responses has been well explored, little to no effort has been directed at investigating the consequences of PD-L1 reverse signaling on the DCs interacting with PD-1+ T cells. We recently reported a defect in dendritic cell (DC) trafficking from the skin to the draining lymph node (LN) following immunization or infection in the absence of PD-L1. We demonstrated that a region within the cytoplasmic tail was responsible for the defect in DC trafficking. Here, we review the processes involved in DC trafficking and highlight what we know about PD-L1 expression, PD-L1 post-translational modifications, PD-L1 intracellular interactions, and PD-L1 extracellular interactions.
Collapse
Affiliation(s)
- Beth Ann Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
6
|
Sunil V, Teoh JH, Mohan BC, Mozhi A, Wang CH. Bioengineered immunomodulatory organelle targeted nanozymes for photodynamic immunometabolic therapy. J Control Release 2022; 350:215-227. [PMID: 35987351 DOI: 10.1016/j.jconrel.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Intelligent nanomedicines integrated with stimuli-responsive components enable on-demand customizable treatment options which would improve therapeutic outcome and reduce systemic toxicity. In this work, we explore the synergistic therapeutic potential of photodynamic therapy and immunometabolic modulation to achieve tumour regression and to trigger an adaptive immunity to prevent tumour recurrence. The therapeutic potential of the fabricated Bioengineered Immunomodulatory Organelle targeted Nanozymes (BIONs) was tested on 3D printed mini-brains which could effectively recapitulate the biologically relevant interactions between glioblastoma cells and macrophages. In the presence of glioblastoma organotypic brain slices, activated BIONs upregulated the cell surface expression of CD86, a costimulatory molecule and CD83, maturation marker, on monocyte derived dendritic cells, suggesting its ability to elicit a strong immune response. Furthermore, the antigen pulsed dendritic cells by chemotaxis and transendothelial migration readily relocate into the draining lymph node where they present the antigenic cargo to enable the proliferation of T lymphocytes. The stealth and tunable catalytic activity of BIONs prevent ROS mediated diseases such as acute kidney injury by providing environment dependent protection without compromising on its promising anti-cancer activity.
Collapse
Affiliation(s)
- Vishnu Sunil
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Babu Cadiam Mohan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
7
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
8
|
Zhou J, Ventura CJ, Fang RH, Zhang L. Nanodelivery of STING agonists against cancer and infectious diseases. Mol Aspects Med 2022; 83:101007. [PMID: 34353637 PMCID: PMC8792206 DOI: 10.1016/j.mam.2021.101007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
Vaccination is a modality that has been widely explored for the treatment of various diseases. To increase the potency of vaccine formulations, immunostimulatory adjuvants have been regularly exploited, and the stimulator of interferon genes (STING) signaling pathway has recently emerged as a remarkable therapeutic target. STING is an endogenous protein on the endoplasmic reticulum that is a downstream sensor to cytosolic DNA. Upon activation, STING initiates a series of intracellular signaling cascades that ultimately generate potent type I interferon-mediated immune responses. Both natural and synthetic agonists have been used to stimulate the STING pathway, but they are usually administered locally due to low bioavailability, instability, and difficulty in bypassing the plasma membrane. With excellent pharmacokinetic profiles and versatility, nanocarriers can address many of these challenges and broaden the application of STING vaccines. Along these lines, STING-inducing nanovaccines are being developed to address a wide range of diseases. In this review, we discuss the recent advances in STING nanovaccines for anticancer, antiviral, and antibacterial applications.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christian J Ventura
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Ling J, Chan BCL, Tsang MSM, Gao X, Leung PC, Lam CWK, Hu JM, Wong CK. Current Advances in Mechanisms and Treatment of Dry Eye Disease: Toward Anti-inflammatory and Immunomodulatory Therapy and Traditional Chinese Medicine. Front Med (Lausanne) 2022; 8:815075. [PMID: 35111787 PMCID: PMC8801439 DOI: 10.3389/fmed.2021.815075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dry eye is currently one of the most common ocular surface disease. It can lead to ocular discomfort and even cause visual impairment, which greatly affects the work and quality of life of patients. With the increasing incidence of dry eye disease (DED) in recent years, the disease is receiving more and more attention, and has become one of the hot research fields in ophthalmology research. Recently, with the in-depth research on the etiology, pathogenesis and treatment of DED, it has been shown that defects in immune regulation is one of the main pathological mechanisms of DED. Since the non-specific and specific immune response of the ocular surface are jointly regulated, a variety of immune cells and inflammatory factors are involved in the development of DED. The conventional treatment of DED is the application of artificial tears for lubricating the ocular surface. However, for moderate-to-severe DED, treatment with anti-inflammatory drugs is necessary. In this review, the immunomodulatory mechanisms of DED and the latest research progress of its related treatments including Chinese medicine will be discussed.
Collapse
Affiliation(s)
- Jiawei Ling
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xun Gao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ping Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Frattolin J, Watson DJ, Bonneuil WV, Russell MJ, Fasanella Masci F, Bandara M, Brook BS, Nibbs RJB, Moore JE. The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays. Cells 2021; 10:3439. [PMID: 34943947 PMCID: PMC8700135 DOI: 10.3390/cells10123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Intravital microscopy and other direct-imaging techniques have allowed for a characterisation of leukocyte migration that has revolutionised the field of immunology, resulting in an unprecedented understanding of the mechanisms of immune response and adaptive immunity. However, there is an assumption within the field that modern imaging techniques permit imaging parameters where the resulting cell track accurately captures a cell's motion. This notion is almost entirely untested, and the relationship between what could be observed at a given scale and the underlying cell behaviour is undefined. Insufficient spatial and temporal resolutions within migration assays can result in misrepresentation of important physiologic processes or cause subtle changes in critical cell behaviour to be missed. In this review, we contextualise how scale can affect the perceived migratory behaviour of cells, summarise the limited approaches to mitigate this effect, and establish the need for a widely implemented framework to account for scale and correct observations of cell motion. We then extend the concept of scale to new approaches that seek to bridge the current "black box" between single-cell behaviour and systemic response.
Collapse
Affiliation(s)
- Jennifer Frattolin
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Daniel J. Watson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Willy V. Bonneuil
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Matthew J. Russell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Francesca Fasanella Masci
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Mikaila Bandara
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Bindi S. Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Robert J. B. Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| |
Collapse
|
11
|
Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q, Li X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021; 10:1929005. [PMID: 34262796 PMCID: PMC8253121 DOI: 10.1080/2162402x.2021.1929005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are a large family of pleiotropic cytokines that regulate both innate and adaptive immunity and show anti-cancer effects in various cancer types. Moreover, it was revealed that IFN signaling plays critical roles in the success of cancer therapy strategies, thereby enhancing their therapeutic effects. However, IFNs have minimal or even adverse effects on cancer eradication, and mediate cancer immune escape in some instances. Thus, IFNs have a double-edged effect on the cancer immune response. Recent studies suggest that IFNs regulate each step of the cancer immunity-cycle, consisting of cancer antigen release, presentation of antigens and activation of T cells, trafficking and infiltration of effector T cells into the tumor microenvironment, and recognition and killing of cancer cells, which contributes to our understanding of the mechanisms of IFNs in regulating cancer immunity. In this review, we focus on IFNs and cancer immunity and elaborate on the roles of IFNs in regulating the cancer-immunity cycle.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Zhengbin Yan
- Department of Stomatology, the PeopIe's Hospital of Longhua, Shenzhen, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobo Li
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Haring E, Zeiser R, Apostolova P. Interfering With Inflammation: Heterogeneous Effects of Interferons in Graft- Versus-Host Disease of the Gastrointestinal Tract and Inflammatory Bowel Disease. Front Immunol 2021; 12:705342. [PMID: 34249014 PMCID: PMC8264264 DOI: 10.3389/fimmu.2021.705342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The intestine can be the target of several immunologically mediated diseases, including graft-versus-host disease (GVHD) and inflammatory bowel disease (IBD). GVHD is a life-threatening complication that occurs after allogeneic hematopoietic stem cell transplantation. Involvement of the gastrointestinal tract is associated with a particularly high mortality. GVHD development starts with the recognition of allo-antigens in the recipient by the donor immune system, which elicits immune-mediated damage of otherwise healthy tissues. IBD describes a group of immunologically mediated chronic inflammatory diseases of the intestine. Several aspects, including genetic predisposition and immune dysregulation, are responsible for the development of IBD, with Crohn’s disease and ulcerative colitis being the two most common variants. GVHD and IBD share multiple key features of their onset and development, including intestinal tissue damage and loss of intestinal barrier function. A further common feature in the pathophysiology of both diseases is the involvement of cytokines such as type I and II interferons (IFNs), amongst others. IFNs are a family of protein mediators produced as a part of the inflammatory response, typically to pathogens or malignant cells. Diverse, and partially paradoxical, effects have been described for IFNs in GVHD and IBD. This review summarizes current knowledge on the role of type I, II and III IFNs, including basic concepts and controversies about their functions in the context of GVHD and IBD. In addition, therapeutic options, research developments and remaining open questions are addressed.
Collapse
Affiliation(s)
- Eileen Haring
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petya Apostolova
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3 +/Pod +/CD11b + Cells) in Patient with Preeclampsia. Int J Mol Sci 2021; 22:ijms22084237. [PMID: 33921847 PMCID: PMC8073258 DOI: 10.3390/ijms22084237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The abnormal development or disruption of the lymphatic vasculature has been implicated in metabolic and hypertensive diseases. Recent evidence suggests that the offspring exposed to preeclampsia (PE) in utero are at higher risk of long-term health problems, such as cardiovascular and metabolic diseases in adulthood, owing to in utero fetal programming. We aimed to investigate lymphangiogenic activities in the lymphatic endothelial progenitor cells (LEPCs) of the offspring of PE. Human umbilical cord blood LEPCs from pregnant women with severe PE (n = 10) and gestationally matched normal pregnancies (n = 10) were purified with anti-vascular endothelial growth factor receptor 3 (VEGFR3)/podoplanin/CD11b microbeads using a magnetic cell sorter device. LEPCs from PE displayed significantly delayed differentiation and reduced formation of lymphatic endothelial cell (LEC) colonies compared with the LEPCs from normal pregnancies. LECs differentiated from PE-derived LEPCs exhibited decreased tube formation, migration, proliferation, adhesion, wound healing, and 3D-sprouting activities as well as increased lymphatic permeability through the disorganization of VE-cadherin junctions, compared with the normal pregnancy-derived LECs. In vivo, LEPCs from PE showed significantly reduced lymphatic vessel formation compared to the LEPCs of the normal pregnancy. Gene expression analysis revealed that compared to the normal pregnancy-derived LECs, the PE-derived LECs showed a significant decrease in the expression of pro-lymphangiogenic genes (GREM1, EPHB3, VEGFA, AMOT, THSD7A, ANGPTL4, SEMA5A, FGF2, and GBX2). Collectively, our findings demonstrate, for the first time, that LEPCs from PE have reduced lymphangiogenic activities in vitro and in vivo and show the decreased expression of pro-lymphangiogenic genes. This study opens a new avenue for investigation of the molecular mechanism of LEPC differentiation and lymphangiogenesis in the offspring of PE and subsequently may impact the treatment of long-term health problems such as cardiovascular and metabolic disorders of offspring with abnormal development of lymphatic vasculature.
Collapse
|
14
|
Rich HE, Antos D, Melton NR, Alcorn JF, Manni ML. Insights Into Type I and III Interferons in Asthma and Exacerbations. Front Immunol 2020; 11:574027. [PMID: 33101299 PMCID: PMC7546400 DOI: 10.3389/fimmu.2020.574027] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Asthma is a highly prevalent, chronic respiratory disease that impacts millions of people worldwide and causes thousands of deaths every year. Asthmatics display different phenotypes with distinct genetic components, environmental causes, and immunopathologic signatures, and are broadly characterized into type 2-high or type 2-low (non-type 2) endotypes by linking clinical characteristics, steroid responsiveness, and molecular pathways. Regardless of asthma severity and adequate disease management, patients may experience acute exacerbations of symptoms and a loss of disease control, often triggered by respiratory infections. The interferon (IFN) family represents a group of cytokines that play a central role in the protection against and exacerbation of various infections and pathologies, including asthma. Type I and III IFNs in particular play an indispensable role in the host immune system to fight off pathogens, which seems to be altered in both pediatric and adult asthmatics. Impaired IFN production leaves asthmatics susceptible to infection and with uncontrolled type 2 immunity, promotes airway hyperresponsiveness (AHR), and inflammation which can lead to asthma exacerbations. However, IFN deficiency is not observed in all asthmatics, and alterations in IFN expression may be independent of type 2 immunity. In this review, we discuss the link between type I and III IFNs and asthma both in general and in specific contexts, including during viral infection, co-infection, and bacterial/fungal infection. We also highlight several studies which examine the potential role for type I and III IFNs as asthma-related therapies.
Collapse
Affiliation(s)
- Helen E Rich
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Natalie R Melton
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Michelle L Manni
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Periman LM, Perez VL, Saban DR, Lin MC, Neri P. The Immunological Basis of Dry Eye Disease and Current Topical Treatment Options. J Ocul Pharmacol Ther 2020; 36:137-146. [PMID: 32175799 PMCID: PMC7175622 DOI: 10.1089/jop.2019.0060] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Homeostasis of the lacrimal functional unit is needed to ensure a well-regulated ocular immune response comprising innate and adaptive phases. When the ocular immune system is excessively stimulated and/or immunoregulatory mechanisms are disrupted, the balance between innate and adaptive phases is dysregulated and chronic ocular surface inflammation can result, leading to chronic dry eye disease (DED). According to the Tear Film and Ocular Surface Society Dry Eye Workshop II definition, DED is a multifactorial disorder of the ocular surface characterized by impairment and loss of tear homeostasis (hyperosmolarity), ocular discomfort or pain, and neurosensory abnormalities. Dysregulated ocular immune responses result in ocular surface damage, which is a further contributing factor to DED pathology. Several therapeutics are available to break the vicious circle of DED and prevent chronic disease and progression, including immunosuppressive agents (steroids) and immunomodulators (cyclosporine and lifitegrast). Given the chronic inflammatory nature of DED, each of these agents is commonly used in clinical practice. In this study, we review the immunopathology of DED and the molecular and cellular actions of current topical DED therapeutics to inform clinical decision making.
Collapse
Affiliation(s)
| | - Victor L. Perez
- Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| | - Daniel R. Saban
- Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| | - Meng C. Lin
- School of Optometry, Clinical Research Center, University of California, Berkeley, California
| | - Piergiorgio Neri
- The Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Park M, Cho KA, Kim YH, Lee KH, Woo SY. Lymphatic endothelial cells promote T lymphocyte migration into lymph nodes under hyperlipidemic conditions. Biochem Biophys Res Commun 2020; 525:786-792. [PMID: 32147097 DOI: 10.1016/j.bbrc.2020.02.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 11/26/2022]
Abstract
Lymphatic vessels serve as conduits through which immune cells traffic. Because lymphatic vessels are also involved in lipid transport, their function is vulnerable to abnormal metabolic conditions such as obesity and hyperlipidemia. Exactly how these conditions impact immune cell trafficking, however, is not well understood. Here, we found higher numbers of LYVE-1-positive lymphatic endothelial cells and CD3-positive T cells in the lymph nodes of mice fed high-cholesterol or high-fat diets compared with those of mice fed a normal chow diet. To confirm the effect of fat content on immune cell trafficking, the lymphatic endothelial SVEC4-10 cell line was treated with palmitic acid at a 100 μM concentration. After 24 h, palmitic acid-treated cells exhibited increased expression of podoplanin and vascular growth-associated molecules (VEGFC, VEGFD, VEGFR3, and NRP2) and enhanced tube formation. Microarray analysis showed an increase in pro-inflammatory cytokine and chemokine transcription after palmitic acid treatment. Finally, transwell migration assay confirmed that T cell line moved toward medium previously cultured with palmitic acid-treated SVEC4-10 cells. Together, our results suggest that hyperlipidemia drives lymphatic vessel remodeling and T cell migration toward lymphatic endothelial cells.
Collapse
Affiliation(s)
- Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Kyung Ho Lee
- Department of Dermatology, Bucheon St. Mary's Hospital, The Catholic University of Korea, 14647, South Korea.
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
17
|
von der Weid PY, Day AS. Pediatric Lymphatic Development and Intestinal Lymphangiectasia. ENCYCLOPEDIA OF GASTROENTEROLOGY 2020:158-169. [DOI: 10.1016/b978-0-12-801238-3.66051-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells 2019; 8:cells8090963. [PMID: 31450787 PMCID: PMC6769759 DOI: 10.3390/cells8090963] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hong-Tai Tzeng
- Institute for translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33375, Taiwan.
| |
Collapse
|
19
|
Jackson DG. Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences. Front Immunol 2019; 10:471. [PMID: 30923528 PMCID: PMC6426755 DOI: 10.3389/fimmu.2019.00471] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
The lymphatics fulfill a vital physiological function as the conduits through which leucocytes traffic between the tissues and draining lymph nodes for the initiation and modulation of immune responses. However, until recently many of the molecular mechanisms controlling such migration have been unclear. As a result of careful research, it is now apparent that the process is regulated at multiple stages from initial leucocyte entry and intraluminal crawling in peripheral tissue lymphatics, through to leucocyte exit in draining lymph nodes where the migrating cells either participate in immune responses or return to the circulation via efferent lymph. Furthermore, it is increasingly evident that most if not all leucocyte populations migrate in lymph and that such migration is not only important for immune modulation, but also for the timely repair and resolution of tissue inflammation. In this article, I review the latest research findings in these areas, arising from new insights into the distinctive ultrastructure of lymphatic capillaries and lymph node sinuses. Accordingly, I highlight the emerging importance of the leucocyte glycocalyx and its novel interactions with the endothelial receptor LYVE-1, the intricacies of endothelial chemokine secretion and sequestration that direct leucocyte trafficking and the significance of the process for normal immune function and pathology.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Blanchard EL, Loomis KH, Bhosle SM, Vanover D, Baumhof P, Pitard B, Zurla C, Santangelo PJ. Proximity Ligation Assays for In Situ Detection of Innate Immune Activation: Focus on In Vitro-Transcribed mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:52-66. [PMID: 30579042 PMCID: PMC6304375 DOI: 10.1016/j.omtn.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
Abstract
The characterization of innate immune activation is crucial for vaccine and therapeutic development, including RNA-based vaccines, a promising approach. Current measurement methods quantify type I interferon and inflammatory cytokine production, but they do not allow for the isolation of individual pathways, do not provide kinetic activation or spatial information within tissues, and cannot be translated into clinical studies. Here we demonstrated the use of proximity ligation assays (PLAs) to detect pattern recognition receptor (PRR) activation in cells and in tissue samples. First, we validated PLA's sensitivity and specificity using well-characterized soluble agonists. Next, we characterized PRR activation from in vitro-transcribed (IVT) mRNAs, as well as the effect of sequence and base modifications in vitro. Finally, we established the measurement of PRR activation in tissue sections via PLA upon IVT mRNA intramuscular (i.m.) injection in mice. Overall, our results indicate that PLA is a valuable, versatile, and sensitive tool to monitor PRR activation for vaccine, adjuvant, and therapeutic screening.
Collapse
Affiliation(s)
- Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | | | - Bruno Pitard
- In-Cell-Art, 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA.
| |
Collapse
|
21
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Abstract
Dry eye (DE) is a chronic ocular condition with high prevalence and morbidity. It has a complex pathophysiology and is multifactorial in nature. Chronic ocular surface inflammation has emerged as a key component of DE that is capable of perpetuating ocular surface damage and leading to symptoms of ocular pain, discomfort, and visual phenomena. It begins with stress to the ocular surface leading to the production of proinflammatory mediators that induce maturation of resident antigen-presenting cells which then migrate to the lymph nodes to activate CD4 T cells. The specific antigen(s) targeted by these pathogenic CD4+ T cells remains unknown. Two emerging theories include self-antigens by autoreactive CD4 T cells or harmless exogenous antigens in the setting of mucosal immunotolerance loss. These CD4 T cells migrate to the ocular surface causing additional inflammation and damage. Lifitegrast is the second topical anti-inflammatory agent to be approved by the US Food and Drug Administration for the treatment of DE and the first to show improvement in DE symptoms. Lifitegrast works by blocking the interaction between intercellular adhesion molecule-1 and lymphocyte functional associated antigen-1, which has been shown to be critical for the migration of antigen-presenting cells to the lymph nodes as well as CD4+ T cell activation and migration to the ocular surface. In four large multicenter, randomized controlled trials, lifitegrast has proven to be effective in controlling both the signs and symptoms of DE with minimal side effects. Further research should include comparative and combination studies with other anti-inflammatory therapies used for DE.
Collapse
Affiliation(s)
| | - Anat Galor
- Ophthalmology Department, Miami Veterans Administration Medical Center, Miami, FL.,Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
23
|
Oyarce C, Cruz-Gomez S, Galvez-Cancino F, Vargas P, Moreau HD, Diaz-Valdivia N, Diaz J, Salazar-Onfray FA, Pacheco R, Lennon-Dumenil AM, Quest AFG, Lladser A. Caveolin-1 Expression Increases upon Maturation in Dendritic Cells and Promotes Their Migration to Lymph Nodes Thereby Favoring the Induction of CD8 + T Cell Responses. Front Immunol 2017; 8:1794. [PMID: 29326695 PMCID: PMC5733362 DOI: 10.3389/fimmu.2017.01794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cell (DC) trafficking from peripheral tissues to lymph nodes (LNs) is a key step required to initiate T cell responses against pathogens as well as tumors. In this context, cellular membrane protrusions and the actin cytoskeleton are essential to guide DC migration towards chemotactic signals. Caveolin-1 (CAV1) is a scaffolding protein that modulates signaling pathways leading to remodeling of the actin cytoskeleton and enhanced migration of cancer cells. However, whether CAV1 is relevant for DC function and specifically for DC migration to LNs is unknown. Here, we show that CAV1 expression is upregulated in DCs upon LPS- and TNF-α-induced maturation. CAV1 deficiency did not affect differentiation, maturation, or the ability of DCs to activate CD8+ T cells in vitro. However, CAV1-deficient (CAV1-/-) DCs displayed reduced in vivo trafficking to draining LNs in control and inflammatory conditions. In vitro, CAV1-/- DCs showed reduced directional migration in CCL21 gradients in transwell assays without affecting migration velocity in confined microchannels or three-dimensional collagen matrices. In addition, CAV1-/- DCs displayed reduced activation of the small GTPase Rac1, a regulator of actin cytoskeletal remodeling, and lower numbers of F-actin-forming protrusions. Furthermore, mice adoptively transferred with peptide-pulsed CAV1-/- DCs showed reduced CD8+ T cell responses and antitumor protection. Our results suggest that CAV1 promotes the activation of Rac1 and the formation of membrane protrusions that favor DC chemotactic trafficking toward LNs where they can initiate cytotoxic T cell responses.
Collapse
Affiliation(s)
- Cesar Oyarce
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile.,Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Sebastián Cruz-Gomez
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile.,Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | | | - Pablo Vargas
- Institut National de la Santé et de la Recherche Médicale Unité 144, Institut Curie/CNRS, Paris, France
| | - Hélène D Moreau
- Institut National de la Santé et de la Recherche Médicale Unité 932, Institut Curie/CNRS, Paris, France
| | - Natalia Diaz-Valdivia
- Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Jorge Diaz
- Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Flavio Andres Salazar-Onfray
- Program in Immunology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Ana Maria Lennon-Dumenil
- Institut National de la Santé et de la Recherche Médicale Unité 932, Institut Curie/CNRS, Paris, France
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
24
|
Gonzalez-Salinas R, Hernández-Zimbrón LF, Gulias-Cañizo R, Sánchez-Vela MA, Ochoa-De La Paz L, Zamora R, Quiroz-Mercado H. Current Anti-Integrin Therapy for Ocular Disease. Semin Ophthalmol 2017; 33:634-642. [DOI: 10.1080/08820538.2017.1388411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Rosario Gulias-Cañizo
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Cell Biology Department, Advanced Research Center, I.P.N. (CINVESTAV), Mexico City, Mexico
| | | | - Lenin Ochoa-De La Paz
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Biochemistry Department, Universidad Nacional Autónoma de Mexico, School of Medicine, Mexico City, Mexico
| | - Ruben Zamora
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
| | - Hugo Quiroz-Mercado
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Department of Ophthalmology, University of Colorado, Denver, CO, USA
| |
Collapse
|
25
|
Webb LM, Lundie RJ, Borger JG, Brown SL, Connor LM, Cartwright AN, Dougall AM, Wilbers RH, Cook PC, Jackson-Jones LH, Phythian-Adams AT, Johansson C, Davis DM, Dewals BG, Ronchese F, MacDonald AS. Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J 2017; 36:2404-2418. [PMID: 28716804 PMCID: PMC5556270 DOI: 10.15252/embj.201695345] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1−/− mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.
Collapse
Affiliation(s)
- Lauren M Webb
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Rachel J Lundie
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Jessica G Borger
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Sheila L Brown
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Adam Nr Cartwright
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Annette M Dougall
- Fundamental and Applied Research in Animals and Health, Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Ruud Hp Wilbers
- Plant Sciences Department, Laboratory of Nematology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Peter C Cook
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Lucy H Jackson-Jones
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | - Cecilia Johansson
- Respiratory Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health, Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|
27
|
Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol 2017; 8:259. [PMID: 28344581 PMCID: PMC5344902 DOI: 10.3389/fimmu.2017.00259] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Immune responses to lung infections must be tightly regulated in order to permit pathogen eradication while maintaining organ function. Exuberant or dysregulated inflammation can impair gas exchange and underlies many instances of lung disease. An important driver of inflammation in the lung is the interferon (IFN) response. Type I IFNs are antiviral cytokines that induce a large range of proteins that impair viral replication in infected cells. This cell-intrinsic action plays a crucial role in protecting the lungs from spread of respiratory viruses. However, type I IFNs have also recently been found to be central to the initiation of lung inflammatory responses, by inducing recruitment and activation of immune cells. This helps control virus burden but can cause detrimental immunopathology and contribute to disease severity. Furthermore, there is now increasing evidence that type I IFNs are not only induced after viral infections but also after infection with bacteria and fungi. The pro-inflammatory function of type I IFNs in the lung opens up the possibility of immune modulation directed against this antiviral cytokine family. In this review, the initiation and signaling of type I IFNs as well as their role in driving and maintaining lung inflammation will be discussed.
Collapse
Affiliation(s)
- Spyridon Makris
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Michelle Paulsen
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| |
Collapse
|
28
|
Newby BN, Mathews CE. Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment. Front Endocrinol (Lausanne) 2017; 8:232. [PMID: 28959234 PMCID: PMC5604085 DOI: 10.3389/fendo.2017.00232] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
A detailed understanding of the molecular pathways and cellular interactions that result in islet beta cell (β cell) destruction is essential for the development and implementation of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events that define the pathogenesis of human T1D have remained elusive. This gap in our knowledge results from the complex interaction between genetics, the immune system, and environmental factors that precipitate T1D in humans. A link between genetics, the immune system, and environmental factors are type 1 interferons (T1-IFNs). These cytokines are well known for inducing antiviral factors that limit infection by regulating innate and adaptive immune responses. Further, several T1D genetic risk loci are within genes that link innate and adaptive immune cell responses to T1-IFN. An additional clue that links T1-IFN to T1D is that these cytokines are a known constituent of the autoinflammatory milieu within the pancreas of patients with T1D. The presence of IFNα/β is correlated with characteristic MHC class I (MHC-I) hyperexpression found in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic β cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in the islet microenvironment.
Collapse
Affiliation(s)
- Brittney N. Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Clayton E. Mathews,
| |
Collapse
|
29
|
Lubaki NM, Younan P, Santos RI, Meyer M, Iampietro M, Koup RA, Bukreyev A. The Ebola Interferon Inhibiting Domains Attenuate and Dysregulate Cell-Mediated Immune Responses. PLoS Pathog 2016; 12:e1006031. [PMID: 27930745 PMCID: PMC5145241 DOI: 10.1371/journal.ppat.1006031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by deficient T-lymphocyte responses, T-lymphocyte apoptosis and lymphopenia. We previously showed that disabling of interferon-inhibiting domains (IIDs) in the VP24 and VP35 proteins effectively unblocks maturation of dendritic cells (DCs) and increases the secretion of cytokines and chemokines. Here, we investigated the role of IIDs in adaptive and innate cell-mediated responses using recombinant viruses carrying point mutations, which disabled IIDs in VP24 (EBOV/VP24m), VP35 (EBOV/VP35m) or both (EBOV/VP35m/VP24m). Peripheral blood mononuclear cells (PBMCs) from cytomegalovirus (CMV)-seropositive donors were inoculated with the panel of viruses and stimulated with CMV pp65 peptides. Disabling of the VP35 IID resulted in increased proliferation and higher percentages of CD4+ T cells secreting IFNγ and/or TNFα. To address the role of aberrant DC maturation in the IID-mediated suppression of T cell responses, CMV-stimulated DCs were infected with the panel of viruses and co-cultured with autologous T-lymphocytes. Infection with EBOV/VP35m infection resulted in a significant increase, as compared to wt EBOV, in proliferating CD4+ cells secreting IFNγ, TNFα and IL-2. Experiments with expanded CMV-specific T cells demonstrated their increased activation following co-cultivation with CMV-pulsed DCs pre-infected with EBOV/VP24m, EBOV/VP35m and EBOV/VP35m/VP24m, as compared to wt EBOV. Both IIDs were found to block phosphorylation of TCR complex-associated adaptors and downstream signaling molecules. Next, we examined the effects of IIDs on the function of B cells in infected PBMC. Infection with EBOV/VP35m and EBOV/VP35m/VP24m resulted in significant increases in the percentages of phenotypically distinct B-cell subsets and plasma cells, as compared to wt EBOV, suggesting inhibition of B cell function and differentiation by VP35 IID. Finally, infection with EBOV/VP35m increased activation of NK cells, as compared to wt EBOV. These results demonstrate a global suppression of cell-mediated responses by EBOV IIDs and identify the role of DCs in suppression of T-cell responses.
Collapse
Affiliation(s)
- Ndongala Michel Lubaki
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Younan
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle Meyer
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathieu Iampietro
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Bukreyev
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
30
|
Pflugfelder SC, Stern M, Zhang S, Shojaei A. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease. J Ocul Pharmacol Ther 2016; 33:5-12. [PMID: 27906544 PMCID: PMC5240001 DOI: 10.1089/jop.2016.0105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dry eye disease (DED) is a common ocular disorder associated with inflammation of the lacrimal gland and ocular surface. The interaction of the integrin lymphocyte function-associated antigen-1 (LFA-1) with its cognate ligand intercellular adhesion molecule-1 (ICAM-1) is known to have important roles in the interaction of a variety of cells involved in immune responses and inflammation, including those prominent in ocular surface inflammation. Lifitegrast, an LFA-1 antagonist that blocks binding of ICAM-1 to LFA-1, has recently been approved in the United States for the treatment of signs and symptoms of DED. In this review, we evaluate research findings to explore the potential role of LFA-1/ICAM-1 interaction in the pathophysiology of DED, and the evidence supporting LFA-1/ICAM-1 interaction as a rational therapeutic target in DED. The results of our review suggest that LFA-1/ICAM-1 interaction may play important roles in the cell-mediated immune response and inflammation associated with DED, including facilitating the homing of dendritic cells to the lymph nodes, interaction of dendritic cells with T cells and subsequent T cell activation/differentiation, migration of activated CD4+ T cells from the lymph nodes to the ocular surface, reactivation of T cells by resident antigen-presenting cells at the ocular surface, and recruitment and retention of LFA-1-expressing T cells in the conjunctival epithelium. Based on the available evidence, inhibition of LFA-1/ICAM-1 interaction represents a rational targeted approach in treating DED. Notably, inhibition of LFA-1/ICAM-1 binding with lifitegrast offers a novel approach to reducing ocular surface inflammation in this condition.
Collapse
|
31
|
Rodriguez-Ruiz ME, Garasa S, Rodriguez I, Solorzano JL, Barbes B, Yanguas A, Teijeira A, Etxeberria I, Aristu JJ, Halin C, Melero I, Rouzaut A. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium. Int J Radiat Oncol Biol Phys 2016; 97:389-400. [PMID: 28068246 DOI: 10.1016/j.ijrobp.2016.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE/OBJECTIVES The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. MATERIALS/METHODS Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. RESULTS We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. CONCLUSION Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy.
Collapse
Affiliation(s)
- María E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Radiation Oncology, University Clinic, University of Navarra, Pamplona, Spain.
| | - Saray Garasa
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Inmaculada Rodriguez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jose Luis Solorzano
- Radiation Oncology, University Clinic, University of Navarra, Pamplona, Spain
| | - Benigno Barbes
- Radiation Oncology, University Clinic, University of Navarra, Pamplona, Spain
| | - Alba Yanguas
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - José Javier Aristu
- Radiation Oncology, University Clinic, University of Navarra, Pamplona, Spain
| | - Cornelia Halin
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Radiation Oncology, University Clinic, University of Navarra, Pamplona, Spain
| | - Ana Rouzaut
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| |
Collapse
|
32
|
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease? Neuron 2016; 91:957-973. [PMID: 27608759 PMCID: PMC5019121 DOI: 10.1016/j.neuron.2016.08.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lymphatic vasculature drains interstitial fluids, which contain the tissue's waste products, and ensures immune surveillance of the tissues, allowing immune cell recirculation. Until recently, the CNS was considered to be devoid of a conventional lymphatic vasculature. The recent discovery in the meninges of a lymphatic network that drains the CNS calls into question classic models for the drainage of macromolecules and immune cells from the CNS. In the context of neurological disorders, the presence of a lymphatic system draining the CNS potentially offers a new player and a new avenue for therapy. In this review, we will attempt to integrate the known primary functions of the tissue lymphatic vasculature that exists in peripheral organs with the proposed function of meningeal lymphatic vessels in neurological disorders, specifically multiple sclerosis and Alzheimer's disease. We propose that these (and potentially other) neurological afflictions can be viewed as diseases with a neuro-lympho-vascular component and should be therapeutically targeted as such.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sandro Da Mesquita
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
33
|
Bedsaul JR, Zaritsky LA, Zoon KC. Type I Interferon-Mediated Induction of Antiviral Genes and Proteins Fails to Protect Cells from the Cytopathic Effects of Sendai Virus Infection. J Interferon Cytokine Res 2016; 36:652-665. [PMID: 27508859 DOI: 10.1089/jir.2016.0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sendai virus (SeV), a murine paramyxovirus, has been used to study the induction of type I interferon (IFN) subtypes in robust quantities. Few studies have measured whether the IFN that SeV induces actually fulfills its intended purpose of interfering with virus-mediated effects in the cells in which it is produced. We determined the effects of IFN on SeV-mediated cytopathic effects (CPE) and the ability of IFN to protect against virus infection. SeV-induced biologically active IFN resulted in Jak/STAT activation and the production of a number of interferon-stimulated genes (ISGs). However, these responses did not inhibit SeV replication or CPE. This observation was not due to SeV effects on canonical IFN signaling. Furthermore, pretreating cells with type I IFN and establishing an antiviral state before infection did not mediate SeV effects. Therefore, the induction of canonical IFN signaling pathways and ISGs does not always confer protection against the IFN-inducing virus. Because type I IFNs are approved to treat various infections, our findings suggest that typical markers of IFN activity may not be indicative of a protective antiviral response and should not be used alone to determine whether an antiviral state against a particular virus is achieved.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Cytokine Biology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Luna A Zaritsky
- Cytokine Biology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Kathryn C Zoon
- Cytokine Biology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
34
|
McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103. [PMID: 25614319 DOI: 10.1038/nri3787] [Citation(s) in RCA: 1880] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) have diverse effects on innate and adaptive immune cells during infection with viruses, bacteria, parasites and fungi, directly and/or indirectly through the induction of other mediators. Type I IFNs are important for host defence against viruses. However, recently, they have been shown to cause immunopathology in some acute viral infections, such as influenza virus infection. Conversely, they can lead to immunosuppression during chronic viral infections, such as lymphocytic choriomeningitis virus infection. During bacterial infections, low levels of type I IFNs may be required at an early stage, to initiate cell-mediated immune responses. High concentrations of type I IFNs may block B cell responses or lead to the production of immunosuppressive molecules, and such concentrations also reduce the responsiveness of macrophages to activation by IFNγ, as has been shown for infections with Listeria monocytogenes and Mycobacterium tuberculosis. Recent studies in experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Collapse
Affiliation(s)
- Finlay McNab
- 1] Allergic Inflammation Discovery Performance Unit, Respiratory Disease Respiratory Research and Development, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK. [2] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Andreas Wack
- Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Anne O'Garra
- 1] Division of Immunoregulation, Medical Research Council (MRC) National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. [2] National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
35
|
|
36
|
Type I interferons as regulators of human antigen presenting cell functions. Toxins (Basel) 2014; 6:1696-723. [PMID: 24866026 PMCID: PMC4073125 DOI: 10.3390/toxins6061696] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Type I interferons (IFNs) are pleiotropic cytokines, initially described for their antiviral activity. These cytokines exhibit a long record of clinical use in patients with some types of cancer, viral infections and chronic inflammatory diseases. It is now well established that IFN action mostly relies on their ability to modulate host innate and adaptive immune responses. Work in recent years has begun to elucidate the mechanisms by which type I IFNs modify the immune response, and this is now recognized to be due to effects on multiple cell types, including monocytes, dendritic cells (DCs), NK cells, T and B lymphocytes. An ensemble of results from both animal models and in vitro studies emphasized the key role of type I IFNs in the development and function of DCs, suggesting the existence of a natural alliance between these cytokines and DCs in linking innate to adaptive immunity. The identification of IFN signatures in DCs and their dysregulation under pathological conditions will therefore be pivotal to decipher the complexity of this DC-IFN interaction and to better exploit the therapeutic potential of these cells.
Collapse
|
37
|
Salvo E, Garasa S, Dotor J, Morales X, Peláez R, Altevogt P, Rouzaut A. Combined targeting of TGF-β1 and integrin β3 impairs lymph node metastasis in a mouse model of non-small-cell lung cancer. Mol Cancer 2014; 13:112. [PMID: 24884715 PMCID: PMC4049383 DOI: 10.1186/1476-4598-13-112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Background Transforming Growth Factor beta (TGF-β) acts as a tumor suppressor early in carcinogenesis but turns into tumor promoter in later disease stages. In fact, TGF-β is a known inducer of integrin expression by tumor cells which contributes to cancer metastatic spread and TGF-β inhibition has been shown to attenuate metastasis in mouse models. However, carcinoma cells often become refractory to TGF-β-mediated growth inhibition. Therefore identifying patients that may benefit from anti-TGF-β therapy requires careful selection. Methods We performed in vitro analysis of the effects of exposure to TGF-β in NSCLC cell chemotaxis and adhesion to lymphatic endothelial cells. We also studied in an orthotopic model of NSCLC the incidence of metastases to the lymph nodes after inhibition of TGF-β signaling, β3 integrin expression or both. Results We offer evidences of increased β3-integrin dependent NSCLC adhesion to lymphatic endothelium after TGF-β exposure. In vivo experiments show that targeting of TGF-β and β3 integrin significantly reduces the incidence of lymph node metastasis. Even more, blockade of β3 integrin expression in tumors that did not respond to TGF-β inhibition severely impaired the ability of the tumor to metastasize towards the lymph nodes. Conclusion These findings suggest that lung cancer tumors refractory to TGF-β monotherapy can be effectively treated using dual therapy that combines the inhibition of tumor cell adhesion to lymphatic vessels with stromal TGF-β inhibition.
Collapse
|
38
|
Card CM, Yu SS, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest 2014; 124:943-52. [PMID: 24590280 DOI: 10.1172/jci73316] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Emerging research on the roles of stromal cells in modulating adaptive immune responses has included a new focus on lymphatic endothelial cells (LECs). LECs are presumably the first cells that come into direct contact with peripheral antigens, cytokines, danger signals, and immune cells travelling from peripheral tissues to lymph nodes. LECs can modulate dendritic cell function, present antigens to T cells on MHC class I and MHC class II molecules, and express immunomodulatory cytokines and receptors, which suggests that their roles in adaptive immunity are far more extensive than previously realized. This Review summarizes the emergent evidence that LECs are important in maintaining peripheral tolerance, limiting and resolving effector T cell responses, and modulating leukocyte function.
Collapse
|
39
|
Yin X, Johns SC, Kim D, Mikulski Z, Salanga CL, Handel TM, Macal M, Zúñiga EI, Fuster MM. Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node. THE JOURNAL OF IMMUNOLOGY 2014; 192:2133-42. [PMID: 24493818 DOI: 10.4049/jimmunol.1301286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are potent APCs essential for initiating adaptive immunity. Following pathogen exposure, trafficking of DCs to lymph nodes (LNs) through afferent lymphatic vessels constitutes a crucial step in the execution of their functions. The mechanisms regulating this process are poorly understood, although the involvement of certain chemokines in this process has recently been reported. In this study, we demonstrate that genetically altering the fine structure (N-sulfation) of heparan sulfate (HS) specifically in mouse lymphatic endothelium significantly reduces DC trafficking to regional LNs in vivo. Moreover, this alteration had the unique functional consequence of reducing CD8(+) T cell proliferative responses in draining LNs in an ovalbumin immunization model. Mechanistic studies suggested that lymphatic endothelial HS regulates multiple steps during DC trafficking, including optimal presentation of chemokines on the surface of DCs, thus acting as a co-receptor that may function "in trans" to mediate chemokine receptor binding. This study not only identifies novel glycan-mediated mechanisms that regulate lymphatic DC trafficking, but it also validates the fine structure of lymphatic vascular-specific HS as a novel molecular target for strategies aiming to modulate DC behavior and/or alter pathologic T cell responses in lymph nodes.
Collapse
Affiliation(s)
- Xin Yin
- Marine Drug Research Institute, Huaihai Institute of Technology, Lianyungang 222005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin Immunopathol 2014; 36:261-74. [PMID: 24402708 DOI: 10.1007/s00281-013-0410-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
In contrast to leukocyte migration through blood vessels, trafficking via lymphatic vessels (LVs) is much less well characterized. An important cell type migrating via this route is antigen-presenting dendritic cells (DCs), which are key for the induction of protective immunity as well as for the maintenance of immunological tolerance. In this review, we will summarize and discuss current knowledge of the cellular and molecular events that control DC migration from the skin towards, into, and within LVs, followed by DC arrival and migration in draining lymph nodes. Finally, we will discuss potential strategies to therapeutically target this migratory step to modulate immune responses.
Collapse
|
41
|
Teijeira A, Rouzaut A, Melero I. Initial afferent lymphatic vessels controlling outbound leukocyte traffic from skin to lymph nodes. Front Immunol 2013; 4:433. [PMID: 24368908 PMCID: PMC3856852 DOI: 10.3389/fimmu.2013.00433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/21/2013] [Indexed: 01/09/2023] Open
Abstract
Tissue drains fluid and macromolecules through lymphatic vessels (LVs), which are lined by a specialized endothelium that expresses peculiar differentiation proteins, not found in blood vessels (i.e., LYVE-1, Podoplanin, PROX-1, and VEGFR-3). Lymphatic capillaries are characteristically devoid of a continuous basal membrane and are anchored to the ECM by elastic fibers that act as pulling ropes which open the vessel to avoid edema if tissue volume increases, as it occurs upon inflammation. LVs are also crucial for the transit of T lymphocytes and antigen presenting cells from tissue to draining lymph nodes (LN). Importantly, cell traffic control across lymphatic endothelium is differently regulated under resting and inflammatory conditions. Under steady-state non-inflammatory conditions, leukocytes enter into the lymphatic capillaries through basal membrane gaps (portals). This entrance is integrin-independent and seems to be mainly guided by CCL21 chemokine gradients acting on leukocytes expressing CCR7. In contrast, inflammatory processes in lymphatic capillaries involve a plethora of cytokines, chemokines, leukocyte integrins, and other adhesion molecules. Importantly, under inflammation a role for integrins and their ligands becomes apparent and, as a consequence, the number of leukocytes entering the lymphatic capillaries multiplies several-fold. Enhancing transmigration of dendritic cells en route to LN is conceivably useful for vaccination and cancer immunotherapy, whereas interference with such key mechanisms may ameliorate autoimmunity or excessive inflammation. Recent findings illustrate how, transient cell-to-cell interactions between lymphatic endothelial cells and leukocytes contribute to shape the subsequent behavior of leukocytes and condition the LV for subsequent trans-migratory events.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Centro de Investigación Médica Aplicada, Universidad de Navarra , Pamplona , Spain
| | - Ana Rouzaut
- Centro de Investigación Médica Aplicada, Universidad de Navarra , Pamplona , Spain
| | - Ignacio Melero
- Clínica Universitaria, Universidad de Navarra , Pamplona , Spain
| |
Collapse
|
42
|
Teijeira A, Garasa S, Peláez R, Azpilikueta A, Ochoa C, Marré D, Rodrigues M, Alfaro C, Aubá C, Valitutti S, Melero I, Rouzaut A. Lymphatic endothelium forms integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels. J Invest Dermatol 2013; 133:2276-85. [PMID: 23528818 DOI: 10.1038/jid.2013.152] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/18/2013] [Accepted: 03/08/2013] [Indexed: 11/09/2022]
Abstract
Dendritic cell (DC) transmigration across the lymphatic endothelium is critical for the initiation and sustenance of immune responses. Under noninflammatory conditions, DC transit across the lymphatic endothelial cell (LEC) has been shown to be integrin independent. In contrast, there is increasing evidence for the participation of integrins and their ligands in DC transit across lymphatic endothelium under inflammation. In this sense, we describe the formation of ICAM-1 (CD54)-enriched three-dimensional structures on LEC/DC contacts, as these DCs adhere to inflamed skin lymphatic vessels and transmigrate into them. In vitro imaging revealed that under inflammation ICAM-1 accumulated on microvilli projections surrounding 60% of adhered DCs. In contrast, these structures were scarcely formed in noninflammatory conditions. Furthermore, ICAM-1-enriched microvilli were important in promoting DC transendothelial migration and DC crawling over the LEC surface. Microvilli formation was dependent on the presence of β-integrins on the DC side and on integrin conformational affinity to ligand. Finally, we observed that LEC microvilli structures appeared in close vicinity of CCL21 depots and that their assembly was partially inhibited by CCL21-neutralizing antibodies. Therefore, under inflammatory conditions, integrin ligands form three-dimensional membrane projections around DCs. These structures offer docking sites for DC transit from the tissue toward the lymphatic vessel lumen.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Department of Oncology, Center for Applied Medical Research, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Teijeira Á, Palazón A, Garasa S, Marré D, Aubá C, Rogel A, Murillo O, Martínez‐Forero I, Lang F, Melero I, Rouzaut A. CD137 on inflamed lymphatic endothelial cells enhances CCL21‐guided migration of dendritic cells. FASEB J 2012; 26:3380-92. [DOI: 10.1096/fj.11-201061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Álvaro Teijeira
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Asís Palazón
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Saray Garasa
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Diego Marré
- Department of Plastic Surgery, Clínica Universidad de NavarraUniversity of Navarra Pío XII Pamplona Spain
| | - Cristina Aubá
- Department of Plastic Surgery, Clínica Universidad de NavarraUniversity of Navarra Pío XII Pamplona Spain
| | - Anne Rogel
- Institut de Recherche Thérapeutique de l'Université de Nantes Nantes France
| | - Ohiana Murillo
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Iván Martínez‐Forero
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - François Lang
- Institut de Recherche Thérapeutique de l'Université de Nantes Nantes France
| | - Ignacio Melero
- Hepathology and Gene Therapy Unit, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| | - Ana Rouzaut
- Department of Oncology, Centre for Applied Medical ResearchUniversity of Navarra Pío XII Pamplona Spain
| |
Collapse
|
44
|
Alfaro C, Suarez N, Oñate C, Perez-Gracia JL, Martinez-Forero I, Hervas-Stubbs S, Rodriguez I, Perez G, Bolaños E, Palazon A, de Sanmamed MF, Morales-Kastresana A, Gonzalez A, Melero I. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS One 2011; 6:e29300. [PMID: 22206007 PMCID: PMC3243708 DOI: 10.1371/journal.pone.0029300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2(d)) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2(d) PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2(b) DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2(d)) are coinjected in the footpad of mice with autologous DC (H-2(b)). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC.
Collapse
Affiliation(s)
- Carlos Alfaro
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Natalia Suarez
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Carmen Oñate
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Jose L. Perez-Gracia
- Medical Oncology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | | | | | | | - Guiomar Perez
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Asis Palazon
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Miguel Fernandez de Sanmamed
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | | | - Alvaro Gonzalez
- Biochemistry Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Gene Therapy Unit, CIMA, Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
45
|
Rizza P, Capone I, Moretti F, Proietti E, Belardelli F. IFN-α as a vaccine adjuvant: recent insights into the mechanisms and perspectives for its clinical use. Expert Rev Vaccines 2011; 10:487-98. [PMID: 21506646 DOI: 10.1586/erv.11.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The IFN-α family are pleiotropic cytokines with the longest record of clinical use. Over the last decade, new biological effects of IFN-α on immune cells, including dendritic cells, have been described, supporting the concept that these cytokines can act as effective vaccine adjuvants. Recently, an important advance in our understanding of the mechanisms of interferon adjuvant activity has been achieved. Some clinical studies have been performed to assess the adjuvant activity in individuals immunized with preventive vaccines, showing variable results depending on interferon/vaccine formulation and vaccinated subjects. In spite of many data in animal models, little information is available on the possible advantage of utilizing IFN-α as an adjuvant for cancer vaccines in humans. Further clinical trials specifically designed to explore vaccine adjuvant activity are needed in order to define the best conditions for using IFN-α or IFN-α-conditioned dendritic cells for the development of therapeutic vaccines.
Collapse
Affiliation(s)
- Paola Rizza
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 2011; 17:2619-27. [PMID: 21372217 DOI: 10.1158/1078-0432.ccr-10-1114] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type I interferons (IFN-I) are well-known inducers of tumor cell apoptosis and antiangiogenesis via signaling through a common receptor interferon alpha receptor (IFNAR). IFNAR induces the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway in most cells, along with other biochemical pathways that may differentially operate, depending on the responding cell subset, and jointly control a large collection of genes. IFNs-I were found to systemically activate natural killer (NK) cell activity. Recently, mouse experiments have shown that IFNs-I directly activate other cells of the immune system, such as antigen-presenting dendritic cells (DC) and CD4 and CD8 T cells. Signaling through the IFNAR in T cells is critical for the acquisition of effector functions. Cross-talk between IFNAR and the pathways turned on by other surface lymphocyte receptors has been described. Importantly, IFNs-I also increase antigen presentation of the tumor cells to be recognized by T lymphocytes. These IFN-driven immunostimulatory pathways offer opportunities to devise combinatorial immunotherapy strategies.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Gene Therapy and Hepatology, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Blei F. Literature Watch. Lymphat Res Biol 2011. [DOI: 10.1089/lrb.2011.9103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|