1
|
Theodorou SDP, Ntostoglou K, Nikas IP, Goutas D, Georgoulias V, Kittas C, Pateras IS. Double-Multiplex Immunostainings for Immune Profiling of Invasive Breast Carcinoma: Emerging Novel Immune-Based Biomarkers. Int J Mol Sci 2025; 26:2838. [PMID: 40243442 PMCID: PMC11988469 DOI: 10.3390/ijms26072838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The role of tumor microenvironment in invasive breast cancer prognosis and treatment is highly appreciated. With the advent of immunotherapy, immunophenotypic characterization in primary tumors is gaining attention as it can improve patient stratification. Here, we discuss the benefits of spatial analysis employing double and multiplex immunostaining, allowing the simultaneous detection of more than one protein on the same tissue section, which in turn helps us provide functional insight into infiltrating immune cells within tumors. We focus on studies demonstrating the prognostic and predictive impact of distinct tumor-infiltrating lymphocyte subpopulations including different CD8(+) T subsets as well as CD4(+) T cells and tumor-associated macrophages in invasive breast carcinoma. The clinical value of immune cell topography is also appreciated. We further refer to how the integration of digital pathology and artificial intelligence in routine practice could enhance the accuracy of multiplex immunostainings evaluation within the tumor microenvironment, maximizing our perception of host immune response, improving in turn decision-making towards more precise immune-associated therapies.
Collapse
Affiliation(s)
- Sofia D. P. Theodorou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.P.T.); (K.N.); (C.K.)
| | - Konstantinos Ntostoglou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.P.T.); (K.N.); (C.K.)
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus;
| | - Dimitrios Goutas
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | | | - Christos Kittas
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.D.P.T.); (K.N.); (C.K.)
| | - Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
2
|
Kälble F, Leonhard J, Zeier M, Zivanovic O, Schaier M, Steinborn A. Exhaustion of CD8 pos central memory regulatory T cell differentiation is involved in renal allograft rejection. Front Immunol 2025; 16:1532086. [PMID: 39925813 PMCID: PMC11802571 DOI: 10.3389/fimmu.2025.1532086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Background The role of regulatory CD8pos T cells (CD8pos Tregs) and cytotoxic CD8pos responder T cells (CD8pos Tresps) in maintaining stable graft function in kidney transplant recipients (KTR) remains largely unclear. The pathogenesis of graft deterioration in case of rejection involves the exhaustive differentiation of both CD8pos T cell subsets, but the causal mechanisms have not yet been identified. Methods In this study, we separately investigated the differentiation of CD8posTregs/Tresps in 134 stable KTR with no evidence of renal graft rejection, in 41 KTR diagnosed with biopsy-confirmed rejection at enrolment and in 5 patients who were unremarkable at enrolment, but developed rejection within three years of enrolment. We were investigating whether changed differentiation of CCR7posCD45RAposCD31pos recent thymic emigrant (RTE) cells via CD45RAnegCD31pos memory (CD31pos memory) cells (pathway 1), via direct proliferation (pathway 2), or via CCR7posCD45RA+CD31neg resting mature naïve (MN) cells (pathway 3) into CD45RAnegCD31neg memory (CD31neg memory) cells affects the CD8pos Treg/Tresp ratio or identifies a CD8pos Treg/Tresp subset that predicts or confirms renal allograft rejection. Results We found that RTE Treg differentiation via pathway 1 was age-independently increased in KTR, who developed graft rejection during the follow-up period, leading to abundant MN Treg and central memory Treg (CM Treg) production and favoring a strongly increased CD8pos Treg/Tresp ratio. In KTR with biopsy-confirmed rejection at the time of enrolment, an increased differentiation of RTE Tregs into CCR7negCD45RAposCD31neg terminally differentiated effector memory (CD31neg TEMRA Tregs) and CD31pos memory Tregs was observed. CD31neg memory Treg production was maintained by alternative differentiation of resting MN Tregs, resulting in increased effector memory Treg (EM Treg) production, while the CD8pos Treg/Treg ratio was unaffected. An altered differentiation of CD8pos Tresps was not observed, shifting the Treg/Tresp ratio in favor of Tregs. Conclusions Our results show that exhaustive CD8pos Treg differentiation into CM Tregs may lead to future rejection, with a shift towards EM Treg production and an accumulation of CD31neg TEMRA Tregs in KTR with current rejection.
Collapse
Affiliation(s)
- Florian Kälble
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Jonas Leonhard
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Oliver Zivanovic
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Steinborn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Reyes JGA, Ni D, Santner-Nanan B, Pinget GV, Kraftova L, Ashhurst TM, Marsh-Wakefield F, Wishart CL, Tan J, Hsu P, King NJC, Macia L, Nanan R. A unique human cord blood CD8 +CD45RA +CD27 +CD161 + T-cell subset identified by flow cytometric data analysis using Seurat. Immunology 2024; 173:106-124. [PMID: 38798051 DOI: 10.1111/imm.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.
Collapse
Affiliation(s)
- Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Brigitte Santner-Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriela Veronica Pinget
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucie Kraftova
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Thomas Myles Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Leana Wishart
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Bézie S, Sérazin C, Autrusseau E, Vimond N, Giral M, Anegon I, Guillonneau C. Renal graft function in transplanted patients correlates with CD45RC T cell phenotypic signature. PLoS One 2024; 19:e0300032. [PMID: 38512889 PMCID: PMC10956768 DOI: 10.1371/journal.pone.0300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Biomarkers that could predict the evolution of the graft in transplanted patients and that could allow to adapt the care of the patients would be an invaluable tool. Additionally, certain biomarkers can be target of treatments and help to stratify patients. Potential effective biomarkers have been identified but still need to be confirmed. CD45RC, one of the splicing variants of the CD45 molecule, a tyrosine phosphatase that is critical in negatively or positively regulating the TCR and the BCR signaling, is one marker already described. The frequency of CD8+ T cells expressing high levels of CD45RC before transplantation is increased in patients with an increased risk of acute rejection. However, single biomarkers have limited predictive reliability and the correlation of the expression levels of CD45RC with other cell markers was not reported. In this study, we performed a fluorescent-based high dimensional immunophenotyping of T cells on a cohort of 69 kidney transplant patients either with stable graft function or having experienced acute transplant rejection during the first year after transplantation or at the time of rejection. We identified combinations of markers and cell subsets associated with activation/inflammation or Tregs/tolerance (HLA-DR, PD-1, IFNγ, CD28) as significant biomarkers associated to transplant outcome, and showed the importance of cell segregation based on the CD45RC marker to identify the signature of a stable graft function. Our study highlights potential reliable biomarkers in transplantation to predict and/or monitor easily graft-directed immune responses and adapt immunosuppression treatments to mitigate adverse effects.
Collapse
Affiliation(s)
- Séverine Bézie
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Céline Sérazin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Elodie Autrusseau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Nadège Vimond
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Magali Giral
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
- Department of Nephrology, CHU Nantes, Nantes Université, ITUN, Nantes, France
| | - Ignacio Anegon
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| | - Carole Guillonneau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, UMR 1064, F-44000, Nantes, France
| |
Collapse
|
5
|
Gutierrez F, Murphy QM, Swartwout BK, Read KA, Edwards MR, Abdelhamid L, Cabana-Puig X, Testerman JC, Xu T, Lu R, Amin P, Cecere TE, Reilly CM, Oestreich KJ, Ciupe SM, Luo XM. TCDD and CH223191 Alter T Cell Balance but Fail to Induce Anti-Inflammatory Response in Adult Lupus Mice. Immunohorizons 2024; 8:172-181. [PMID: 38353996 PMCID: PMC10916358 DOI: 10.4049/immunohorizons.2300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Fernando Gutierrez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Quiyana M. Murphy
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Brianna K. Swartwout
- Translational Biology Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Kaitlin A. Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Tian Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Pavly Amin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH
| | - Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
6
|
París-Muñoz A, León-Triana O, Pérez-Martínez A, Barber DF. Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells. Int J Mol Sci 2023; 25:452. [PMID: 38203623 PMCID: PMC10778776 DOI: 10.3390/ijms25010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Helios protein (encoded by the IKZF2 gene) is a member of the Ikaros transcription family and it has recently been proposed as a promising biomarker for systemic lupus erythematosus (SLE) disease progression in both mouse models and patients. Helios is beginning to be studied extensively for its influence on the T regulatory (Treg) compartment, both CD4+ Tregs and KIR+/Ly49+ CD8+ Tregs, with alterations to the number and function of these cells correlated to the autoimmune phenomenon. This review analyzes the most recent research on Helios expression in relation to the main immune cell populations and its role in SLE immune homeostasis, specifically focusing on the interaction between T cells and tolerogenic dendritic cells (tolDCs). This information could be potentially useful in the design of new therapies, with a particular focus on transfer therapies using immunosuppressive cells. Finally, we will discuss the possibility of using nanotechnology for magnetic targeting to overcome some of the obstacles related to these therapeutic approaches.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Odelaisy León-Triana
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
7
|
O’Brien Gore C, Billman A, Hunjan S, Colebrook J, Choy D, Li W, Haynes J, Wade J, Hobern E, McDonald L, Papa S, Brugman M, Kordasti S, Montiel-Equihua C. Pre-treatment with systemic agents for advanced NSCLC elicits changes in the phenotype of autologous T cell therapy products. Mol Ther Oncolytics 2023; 31:100749. [PMID: 38075248 PMCID: PMC10701366 DOI: 10.1016/j.omto.2023.100749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/07/2023] [Indexed: 04/17/2025] Open
Abstract
The antitumor activity of adoptive T cell therapies (ACT) is highly dependent on the expansion, persistence, and continued activity of adoptively transferred cells. Clinical studies using ACTs have revealed that products that possess and maintain less differentiated phenotypes, including memory and precursor T cells, show increased antitumor efficacy and superior patient outcomes owing to their increased expansion, persistence, and ability to differentiate into effector progeny that elicit antitumor responses. Strategies that drive the differentiation into memory or precursor-type T cell subsets with high potential for persistence and self-renewal will enhance adoptively transferred T cell maintenance and promote durable antitumor efficacy. Because of the high costs associated with ACT manufacturing, ACTs are often only offered to patients after multiple rounds of systemic therapy. An essential factor to consider in producing autologous ACT medicinal products is the impact of the patient's initial T cell fitness and subtype composition, which will likely differ with age, disease history, and treatment with prior anti-cancer therapies. This study evaluated the impact of systemic anti-cancer therapy for non-small cell lung cancer treatment on the T cell phenotype of the patient at baseline and the quality and characteristics of the genetically modified autologous T cell therapy product after manufacturing.
Collapse
Affiliation(s)
- Charlotte O’Brien Gore
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Amy Billman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Suchete Hunjan
- Oncology Cell Therapy Unit, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Jayne Colebrook
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Desmond Choy
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Wilson Li
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Jack Haynes
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Jennifer Wade
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Emily Hobern
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Louisa McDonald
- Oncology & Hematology Clinical Trials (OHCT), Guy’s Hospital, 1st Floor Chapel Wing, Great Maze Pond, SE1 9RT London, UK
| | - Sophie Papa
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Martijn Brugman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Claudia Montiel-Equihua
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, SG1 2NY Hertfordshire, UK
| |
Collapse
|
8
|
Dąbrowska I, Grzędzicka J, Niedzielska A, Witkowska-Piłaszewicz O. Impact of Chlorogenic Acid on Peripheral Blood Mononuclear Cell Proliferation, Oxidative Stress, and Inflammatory Responses in Racehorses during Exercise. Antioxidants (Basel) 2023; 12:1924. [PMID: 38001777 PMCID: PMC10669817 DOI: 10.3390/antiox12111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Green coffee extract is currently of great interest to researchers due to its high concentration of chlorogenic acid (CGA) and its potential health benefits. CGA constitutes 6 to 10% of the dry weight of the extract and, due to its anti-inflammatory properties, is a promising natural supplement and agent with therapeutic applications. The purpose of our study was to discover the effects of CGA on peripheral blood mononuclear cell proliferation, and the production of pro- and anti-inflammatory cytokines as well as reactive oxidative species (ROS) in horses during exercise. According to the findings, CGA can affect the proliferation of T helper cells. In addition, at a dose of 50 g/mL, CGA increased the activation of CD4+FoxP3+ and CD8+FoxP3+ regulatory cells. Physical activity decreases ROS production in CD5+ monocytes, but this effect depends on the concentration of CGA, and the effect of exercise on oxidative stress was lower in CD14+ than in CD5+ cells. Regardless of CGA content, CGA significantly increased the release of the anti-inflammatory cytokine IL-10. Moreover, the production of IL-17 was greater in cells treated with 50 g/mL of CGA from beginners compared to the control and advanced groups of horses. Our findings suggest that CGA may have immune-enhancing properties. This opens new avenues of research into the mechanisms of action of CGA and possible applications in prevention and health promotion in sport animals.
Collapse
Affiliation(s)
| | | | | | - Olga Witkowska-Piłaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
9
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
10
|
Habib JG, Liu D, Crepeau RM, Wagener ME, Ford ML. Selective CD28 blockade impacts T cell differentiation during homeostatic reconstitution following lymphodepletion. Front Immunol 2023; 13:1081163. [PMID: 36761170 PMCID: PMC9904166 DOI: 10.3389/fimmu.2022.1081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Costimulation blockade targeting the CD28 pathway provides improved long-term renal allograft survival compared to calcineurin inhibitors but may be limited as CTLA-4-Ig (abatacept, belatacept) blocks both CD28 costimulation and CTLA-4 coinhibition. Directly targeting CD28 while leaving CTLA-4 intact may provide a mechanistic advantage. Fc-silent non-crosslinking CD28 antagonizing domain antibodies (dAb) are currently in clinical trials for renal transplantation. Given the current standard of care in renal transplantation at most US centers, it is likely that lymphodepletion via thymoglobulin induction therapy could be used in patients treated with CD28 antagonists. Thus, we investigated the impact of T cell depletion (TCD) on T cell phenotype following homeostatic reconstitution in a murine model of skin transplantation treated with anti-CD28dAb. Methods Skin from BALB/cJ donors was grafted onto C56BL/6 recipients which were treated with or without 0.2mg anti-CD4 and 10μg anti-CD8 one day prior to transplant and with or without 100μg anti-CD28dAb on days 0, 2, 4, 6, and weekly thereafter. Mice were euthanized six weeks post-transplant and lymphoid cells were analyzed by flow cytometry. Results Anti-CD28dAb reversed lymphopenia-induced differentiation of memory CD4+ T cells in the spleen and lymph node compared to TCD alone. Mice treated with TCD+anti-CD28dAb exhibited significantly improved skin graft survival compared to anti-CD28dAb alone, which was also improved compared to no treatment. In addition, the expression of CD69 was reduced on CD4+ and CD8+ T cells in the spleen and lymph node from mice that received TCD+anti-CD28dAb compared to TCD alone. While a reduced frequency of CD4+FoxP3+ T cells was observed in anti-CD28dAb treated mice relative to untreated controls, this was balanced by an increased frequency of CD8+Foxp3+ T cells that was observed in the blood and kidney of mice given TCD+anti-CD28dAb compared to TCD alone. Discussion These data demonstrate that CD28 signaling impacts the differentiation of both CD4+ and CD8+ T cells during homeostatic reconstitution following lymphodepletion, resulting in a shift towards fewer activated memory T cells and more CD8+FoxP3+ T cells, a profile that may underpin the observed prolongation in allograft survival.
Collapse
|
11
|
Conde E, Casares N, Mancheño U, Elizalde E, Vercher E, Capozzi R, Santamaria E, Rodriguez-Madoz JR, Prosper F, Lasarte JJ, Lozano T, Hervas-Stubbs S. FOXP3 expression diversifies the metabolic capacity and enhances the efficacy of CD8 T cells in adoptive immunotherapy of melanoma. Mol Ther 2023; 31:48-65. [PMID: 36045586 PMCID: PMC9840123 DOI: 10.1016/j.ymthe.2022.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Regulatory T cells overwhelm conventional T cells in the tumor microenvironment (TME) thanks to a FOXP3-driven metabolic program that allows them to engage different metabolic pathways. Using a melanoma model of adoptive T cell therapy (ACT), we show that FOXP3 overexpression in mature CD8 T cells improved their antitumor efficacy, favoring their tumor recruitment, proliferation, and cytotoxicity. FOXP3-overexpressing (Foxp3UP) CD8 T cells exhibited features of tissue-resident memory-like and effector T cells, but not suppressor activity. Transcriptomic analysis of tumor-infiltrating Foxp3UP CD8 T cells showed positive enrichment in a wide variety of metabolic pathways, such as glycolysis, fatty acid (FA) metabolism, and oxidative phosphorylation (OXPHOS). Intratumoral Foxp3UP CD8 T cells exhibited an enhanced capacity for glucose and FA uptake as well as accumulation of intracellular lipids. Interestingly, Foxp3UP CD8 T cells compensated for the loss of mitochondrial respiration-driven ATP production by activating aerobic glycolysis. Moreover, in limiting nutrient conditions these cells engaged FA oxidation to drive OXPHOS for their energy demands. Importantly, their ability to couple glycolysis and OXPHOS allowed them to sustain proliferation under glucose restriction. Our findings demonstrate a hitherto unknown role for FOXP3 in the adaptation of CD8 T cells to TME that may enhance their efficacy in ACT.
Collapse
Affiliation(s)
- Enrique Conde
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Uxua Mancheño
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Edurne Elizalde
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Enric Vercher
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Roberto Capozzi
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Eva Santamaria
- Hepatology Program, CIMA, University of Navarra, Pamplona, 31008 Navarra, Spain; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Hemat-Oncology Program, CIMA Universidad de Navarra, Pamplona, 31008 Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Hemat-Oncology Program, CIMA Universidad de Navarra, Pamplona, 31008 Navarra, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Pamplona, 31008 Navarra, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain.
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avenida Pio XII 55, Pamplona, 31008 Navarra, Spain; CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Kudling TV, Clubb JH, Quixabeira DC, Santos JM, Havunen R, Kononov A, Heiniö C, Cervera-Carrascon V, Pakola S, Basnet S, Grönberg-Vähä-Koskela S, Arias V, Gladwyn-Ng I, Aro K, Bäck L, Räsänen J, Ilonen I, Borenius K, Räsänen M, Hemminki O, Rannikko A, Kanerva A, Tapper J, Hemminki A. Local delivery of interleukin 7 with an oncolytic adenovirus activates tumor-infiltrating lymphocytes and causes tumor regression. Oncoimmunology 2022; 11:2096572. [PMID: 35845722 PMCID: PMC9278414 DOI: 10.1080/2162402x.2022.2096572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytokines have proven to be effective for cancer therapy, however whilst low-dose monotherapy with cytokines provides limited therapeutic benefit, high-dose treatment can lead to a number of adverse events. Interleukin 7 has shown promising results in clinical trials, but anti-cancer effect was limited, in part due to a low concentration of the cytokine within the tumor. We hypothesized that arming an oncolytic adenovirus with Interleukin 7, enabling high expression localized to the tumor microenvironment, would overcome systemic delivery issues and improve therapeutic efficacy. We evaluated the effects of Ad5/3-E2F-d24-hIL7 (TILT-517) on tumor growth, immune cell activation and cytokine profiles in the tumor microenvironment using three clinically relevant animal models and ex vivo tumor cultures. Our data showed that local treatment of tumor bearing animals with Ad5/3- E2F-d24-hIL7 significantly decreased cancer growth and increased frequency of tumor-infiltrating cells. Ad5/3-E2F-d24-hIL7 promoted notable upregulation of pro-inflammatory cytokines, and concomitant activation and migration of CD4+ and CD8 + T cells. Interleukin 7 expression within the tumor was positively correlated with increased number of cytotoxic CD4+ cells and IFNg-producing CD4+ and CD8+ cells. These findings offer an approach to overcome the current limitations of conventional IL7 therapy and could therefore be translated to the clinic.
Collapse
Affiliation(s)
- Tatiana V. Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - James H.A. Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Dafne C.A. Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joao M. Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Alexander Kononov
- Systems Oncology Group, Cancer research UK, Manchester University, Manchester, UK
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Susanna Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Katri Aro
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leif Bäck
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki Head and Neck Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jari Räsänen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Ilonen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristian Borenius
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Räsänen
- Department of Thoracic Surgery, Heart and Lung Center, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Antti Rannikko
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Tapper
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
- Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
13
|
Giri S, Meitei HT, Sonar SA, Shaligram S, Lal G. In vitro-induced Foxp3 + CD8 + regulatory T cells suppress allergic IgE response in the gut. J Leukoc Biol 2022; 112:1497-1507. [PMID: 36000308 DOI: 10.1002/jlb.5a0122-027r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/26/2022] [Indexed: 01/04/2023] Open
Abstract
Several subsets of CD8+ T cells are known to have a suppressive function in different tissues and diseases in mice and humans. Due to the lack of a consensus on the phenotype of regulatory CD8+ T cells and very low frequency in the body, its clinical use as adoptive cellular therapy has not advanced much. In the present work, using DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (Aza), we efficiently and stably differentiated naïve CD8+ T cells (CD8+ CD25- CD44- cells) into the CD8+ Foxp3+ regulatory CD8+ T cells (CD8 Tregs). We also generated OVA peptide257-264 -specific CD8+ Foxp3+ Tregs. Compared with activated CD8 T cells, Aza plus TGF-β-induced CD8+ Foxp3+ Tregs showed significantly increased surface expression of CD39, CD73, CD122, CD62L, and CD103, and secreted TGF-β and suppressed the proliferation of effector CD4+ T cells. Interestingly, CD8+ Foxp3+ Tregs exhibited low expression of perforin and granzyme required for cytotoxic function. Analysis of chemokine receptors showed that TGF-β + Aza induced CD8+ Foxp3+ Tregs expressed gut-tropic chemokine receptors CCR6 and CCR9, and chemokine receptors CCR7 and CXCR3 required for mobilization into the spleen, lymph nodes, and gut-associated lymphoid tissues. Adoptive transfer of induced CD8+ Foxp3+ Tregs restored cholera toxin-induced breakdown of oral tolerance to OVA by regulating OVA-specific IgE and IgG1. Altogether, we showed an efficient method to generate antigen-specific CD8+ Foxp3+ Tregs, and the adoptive transfer of these cells induces oral tolerance by suppressing allergic response and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Shilpi Giri
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | | | - Sandip Ashok Sonar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | - Saumitra Shaligram
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| |
Collapse
|
14
|
Hagos YB, Akarca AU, Ramsay A, Rossi RL, Pomplun S, Ngai V, Moioli A, Gianatti A, Mcnamara C, Rambaldi A, Quezada SA, Linch D, Gritti G, Yuan Y, Marafioti T. High inter-follicular spatial co-localization of CD8+FOXP3+ with CD4+CD8+ cells predicts favorable outcome in follicular lymphoma. Hematol Oncol 2022; 40:541-553. [PMID: 35451108 PMCID: PMC10577604 DOI: 10.1002/hon.3003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022]
Abstract
The spatial architecture of the lymphoid tissue in follicular lymphoma (FL) presents unique challenges to studying its immune microenvironment. We investigated the spatial interplay of T cells, macrophages, myeloid cells and natural killer T cells using multispectral immunofluorescence images of diagnostic biopsies of 32 patients. A deep learning-based image analysis pipeline was tailored to the needs of follicular lymphoma spatial histology research, enabling the identification of different immune cells within and outside neoplastic follicles. We analyzed the density and spatial co-localization of immune cells in the inter-follicular and intra-follicular regions of follicular lymphoma. Low inter-follicular density of CD8+FOXP3+ cells and co-localization of CD8+FOXP3+ with CD4+CD8+ cells were significantly associated with relapse (p = 0.0057 and p = 0.0019, respectively) and shorter time to progression after first-line treatment (Logrank p = 0.0097 and log-rank p = 0.0093, respectively). A low inter-follicular density of CD8+FOXP3+ cells is associated with increased risk of relapse independent of follicular lymphoma international prognostic index (FLIPI) (p = 0.038, Hazard ratio (HR) = 0.42 [0.19, 0.95], but not independent of co-localization of CD8+FOXP3+ with CD4+CD8+ cells (p = 0.43). Co-localization of CD8+FOXP3+ with CD4+CD8+ cells is predictors of time to relapse independent of the FLIPI score and density of CD8+FOXP3+ cells (p = 0.027, HR = 0.0019 [7.19 × 10-6 , 0.49], This suggests a potential role of inter-follicular CD8+FOXP3+ and CD4+CD8+ cells in the disease progression of FL, warranting further validation on larger patient cohorts.
Collapse
Affiliation(s)
- Yeman B. Hagos
- Centre for Evolution and Cancer and Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
| | | | - Alan Ramsay
- Department of HistopathologyUniversity College Hospitals LondonLondonUK
| | | | - Sabine Pomplun
- Department of HistopathologyUniversity College Hospitals LondonLondonUK
| | - Victoria Ngai
- Cancer InstituteUniversity College LondonLondonUK
- Department of HistopathologyUniversity College Hospitals LondonLondonUK
| | | | | | | | - Alessandro Rambaldi
- Hematology UnitOspedale Papa Giovanni XXIIIBergamoItaly
- Department of Oncology and Hematology‐OncologyUniversity of MilanMilanItaly
| | - Sergio A. Quezada
- Cancer Immunology UnitUniversity College London Cancer InstituteUniversity College LondonLondonUK
- Research Department of HaematologyUniversity College London Cancer InstituteUniversity College LondonLondonUK
| | - David Linch
- Research Department of HaematologyUniversity College London Cancer InstituteUniversity College LondonLondonUK
| | | | - Yinyin Yuan
- Centre for Evolution and Cancer and Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
- Centre for Molecular PathologyRoyal Marsden HospitalLondonUK
| | - Teresa Marafioti
- Cancer InstituteUniversity College LondonLondonUK
- Department of HistopathologyUniversity College Hospitals LondonLondonUK
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Aging leads to decline in bone mass and quality starting at age 30 in humans. All mammals undergo a basal age-dependent decline in bone mass. Osteoporosis is characterized by low bone mass and changes in bone microarchitecture that increases the risk of fracture. About a third of men over the age of 50 years are osteoporotic because they have higher than basal bone loss. In women, there is an additional acute decrement in bone mass, atop the basal rate, associated with loss of ovarian function (menopause) causing osteoporosis in about half of the women. Both genetics and environmental factors such as smoking, chronic infections, diet, microbiome, and metabolic disease can modulate basal age-dependent bone loss and eventual osteoporosis. Here, we review recent studies on the etiology of age-dependent decline in bone mass and propose a mechanism that integrates both genetic and environmental factors. RECENT FINDINGS Recent findings support that aging and menopause dysregulate the immune system leading to sterile low-grade inflammation. Both animal models and human studies demonstrate that certain kinds of inflammation, in both men and women, mediate bone loss. Senolytics, meant to block a wide array of age-induced effects by preventing cellular senescence, have been shown to improve bone mass in aged mice. Based on a synthesis of the recent data, we propose that aging activates long-lived tissue resident memory T-cells to become senescent and proinflammatory, leading to bone loss. Targeting this population may represent a promising osteoporosis therapy. Emerging data indicates that there are several mechanisms that lead to sterile low-grade chronic inflammation, inflammaging, that cause age- and estrogen-loss dependent osteoporosis in men and women.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., DRC605, St. Louis, MO, 63104, USA.
| | - Deborah Veis
- Division of Bone and Mineral Diseases and Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
16
|
Park HJ, Lee SW, Park YH, Kim TC, Van Kaer L, Hong S. CD1d-independent NK1.1+ Treg cells are IL2-inducible Foxp3+ T cells co-expressing immunosuppressive and cytotoxic molecules. Front Immunol 2022; 13:951592. [PMID: 36177042 PMCID: PMC9513232 DOI: 10.3389/fimmu.2022.951592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play pivotal roles in maintaining self-tolerance and preventing immunological diseases such as allergy and autoimmunity through their immunosuppressive properties. Although Treg cells are heterogeneous populations with distinct suppressive functions, expression of natural killer (NK) cell receptors (NKR) by these cells remains incompletely explored. Here we identified that a small population of Foxp3+CD4+ Treg cells in mice expresses the NK1.1 NKR. Furthermore, we found that rare NK1.1+ subpopulations among CD4+ Treg cells develop normally in the spleen but not the thymus through CD1d-independent pathways. Compared with NK1.1- conventional Treg cells, these NK1.1+ Treg cells express elevated Treg cell phenotypic hallmarks, pro-inflammatory cytokines, and NK cell-related cytolytic mediators. Our results suggest that NK1.1+ Treg cells are phenotypically hybrid cells sharing functional properties of both NK and Treg cells. Interestingly, NK1.1+ Treg cells preferentially expanded in response to recombinant IL2 stimulation in vitro, consistent with their increased IL2Rαβ expression. Moreover, DO11.10 T cell receptor transgenic NK1.1+ Treg cells were expanded in an ovalbumin antigen-specific manner. In the context of lipopolysaccharide-induced systemic inflammation, NK1.1+ Treg cells downregulated immunosuppressive molecules but upregulated TNFα production, indicating their plastic adaptation towards a more pro-inflammatory rather than regulatory phenotype. Collectively, we propose that NK1.1+ Treg cells might play a unique role in controlling inflammatory immune responses such as infection and autoimmunity.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
17
|
Whyte CE, Singh K, Burton OT, Aloulou M, Kouser L, Veiga RV, Dashwood A, Okkenhaug H, Benadda S, Moudra A, Bricard O, Lienart S, Bielefeld P, Roca CP, Naranjo-Galindo FJ, Lombard-Vadnais F, Junius S, Bending D, Ono M, Hochepied T, Halim TY, Schlenner S, Lesage S, Dooley J, Liston A. Context-dependent effects of IL-2 rewire immunity into distinct cellular circuits. J Exp Med 2022; 219:e20212391. [PMID: 35699942 PMCID: PMC9202720 DOI: 10.1084/jem.20212391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.
Collapse
Affiliation(s)
- Carly E. Whyte
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kailash Singh
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Oliver T. Burton
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Meryem Aloulou
- Immunology Programme, The Babraham Institute, Cambridge, UK
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Centre national de la recherche scientifique U5051, Institut national de la santé et de la recherche médicale U1291, University of Toulouse III, Toulouse, France
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Amy Dashwood
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Samira Benadda
- Immunology Programme, The Babraham Institute, Cambridge, UK
- Centre de Recherche Sur L’inflammation, Centre national de la recherche scientifique ERL8252, Institut national de la santé et de la recherche médicale U1149, Université de Paris, Paris, France
| | - Alena Moudra
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Orian Bricard
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | | | - Carlos P. Roca
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Félix Lombard-Vadnais
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Quebec, Canada
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | | | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Sylvie Lesage
- Centre de Recherche Sur L’inflammation, Centre national de la recherche scientifique ERL8252, Institut national de la santé et de la recherche médicale U1149, Université de Paris, Paris, France
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - James Dooley
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Circulating and Tumor-Infiltrating Immune Checkpoint-Expressing CD8+ Treg/T Cell Subsets and Their Associations with Disease-Free Survival in Colorectal Cancer Patients. Cancers (Basel) 2022; 14:cancers14133194. [PMID: 35804964 PMCID: PMC9265020 DOI: 10.3390/cancers14133194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Colorectal cancer is one of the leading causes of global cancer-related mortality. Tumor-infiltrating effector immune cells play critical roles in tumor control, and their activity can dictate disease outcomes. In this study, we provide evidence of the associations between different CD8+ T cell subpopulations with disease-free survival (DFS) in CRC patients. We report associations between higher levels of certain circulating and tumor-infiltrating CD8+ T cell subsets and improved clinical outcomes in CRC patients. Abstract T cells in the tumor microenvironment (TME) have diverse roles in anti-tumor immunity, including orchestration of immune responses and anti-tumor cytotoxic attack. However, different T cell subsets may have opposing roles in tumor progression, especially in inflammation-related cancers such as colorectal cancer (CRC). In this study, we phenotypically characterized CD3+CD4- (CD8+) T cells in colorectal tumor tissues (TT), normal colon tissues (NT) and in circulation of CRC patients. We investigated the expression levels of key immune checkpoints (ICs) and Treg-related markers in CD8+ T cells. Importantly, we investigated associations between different tumor-infiltrating CD8+ T cell subpopulations and disease-free survival (DFS) in CRC patients. We found that FoxP3 expression and ICs including PD-1, CTLA-4, TIM-3, and LAG-3 were significantly increased in tumor-infiltrating CD8+ T cells compared with NT and peripheral blood. In the TME, we found that TIM-3 expression was significantly increased in patients with early stages and absent lymphovascular invasion (LVI) compared to patients with advanced stages and LVI. Importantly, we report that high levels of certain circulating CD8+ T cell subsets (TIM-3-expressing, FoxP3−Helios−TIM-3+ and FoxP3−Helios+TIM-3+ cells) in CRC patients were associated with better DFS. Moreover, in the TME, we report that elevated levels of CD25+ and TIM-3+ T cells, and FoxP3+Helios−TIM-3+ Tregs were associated with better DFS.
Collapse
|
19
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
20
|
A fresh look at a neglected regulatory lineage: CD8+Foxp3+ Regulatory T Cells. Immunol Lett 2022; 247:22-26. [DOI: 10.1016/j.imlet.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
21
|
TCR-induced FOXP3 expression by CD8 + T cells impairs their anti-tumor activity. Cancer Lett 2022; 528:45-58. [PMID: 34973390 DOI: 10.1016/j.canlet.2021.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022]
Abstract
Adoptive cell transfer therapy using CD8+ T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8+ T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8+ T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8+ T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8+ T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-γ, IFN-α, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8+ T cells with respect to FOXP3-wt CD8+ T cells. Our results suggest that transient expression of FOXP3 by CD8+ T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.
Collapse
|
22
|
Ruedas-Torres I, Gómez-Laguna J, Sánchez-Carvajal JM, Larenas-Muñoz F, Barranco I, Pallarés FJ, Carrasco L, Rodríguez-Gómez IM. Activation of T-bet, FOXP3, and EOMES in Target Organs From Piglets Infected With the Virulent PRRSV-1 Lena Strain. Front Immunol 2021; 12:773146. [PMID: 34956200 PMCID: PMC8697429 DOI: 10.3389/fimmu.2021.773146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Transcription factors (TFs) modulate genes involved in cell-type-specific proliferative and migratory properties, metabolic features, and effector functions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogen agents in the porcine industry; however, TFs have been poorly studied during the course of this disease. Therefore, we aimed to evaluate the expressions of the TFs T-bet, GATA3, FOXP3, and Eomesodermin (EOMES) in target organs (the lung, tracheobronchial lymph node, and thymus) and those of different effector cytokines (IFNG, TNFA, and IL10) and the Fas ligand (FASL) during the early phase of infection with PRRSV-1 strains of different virulence. Target organs from mock-, virulent Lena-, and low virulent 3249-infected animals humanely euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi) were collected to analyze the PRRSV viral load, histopathological lesions, and relative quantification through reverse transcription quantitative PCR (RT-qPCR) of the TFs and cytokines. Animals belonging to both infected groups, but mainly those infected with the virulent Lena strain, showed upregulation of the TFs T-bet, EOMES, and FOXP3, together with an increase of the cytokine IFN-γ in target organs at the end of the study (approximately 2 weeks post-infection). These results are suggestive of a stronger polarization to Th1 cells and regulatory T cells (Tregs), but also CD4+ cytotoxic T lymphocytes (CTLs), effector CD8+ T cells, and γδT cells in virulent PRRSV-1-infected animals; however, their biological functionality should be the object of further studies.
Collapse
|
23
|
Gultekin O, Gonzalez-Molina J, Hardell E, Moyano-Galceran L, Mitsios N, Mulder J, Kokaraki G, Isaksson A, Sarhan D, Lehti K, Carlson JW. FOXP3+ T cells in uterine sarcomas are associated with favorable prognosis, low extracellular matrix expression and reduced YAP activation. NPJ Precis Oncol 2021; 5:97. [PMID: 34799669 PMCID: PMC8604926 DOI: 10.1038/s41698-021-00236-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023] Open
Abstract
Uterine sarcomas are rare but deadly malignancies without effective treatment. Immunotherapy is a promising new approach to treat these tumors but has shown heterogeneous effects in sarcoma patients. With the goal of identifying key factors for improved patient treatment, we characterized the tumor immune landscape in 58 uterine sarcoma cases with full clinicopathological annotation. Immune cell characterization revealed the overall prevalence of FOXP3+ cells and pro-tumor M2-like macrophages. Hierarchical clustering of patients showed four tumor type-independent immune signatures, where infiltration of FOXP3+ cells and M1-like macrophages associated with favorable prognosis. High CD8+/FOXP3+ ratio in UUS and ESS correlated with poor survival, upregulation of immunosuppressive markers, extracellular matrix (ECM)-related genes and proteins, and YAP activation. This study shows that uterine sarcomas present distinct immune signatures with prognostic value, independent of tumor type, and suggests that targeting the ECM could be beneficial for future treatments.
Collapse
Affiliation(s)
- Okan Gultekin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jordi Gonzalez-Molina
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elin Hardell
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Kokaraki
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
25
|
Niederlova V, Tsyklauri O, Chadimova T, Stepanek O. CD8 + Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51:512-530. [PMID: 33501647 DOI: 10.1002/eji.202048614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Chadimova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8 + regulatory T cells in immune tolerance. Immunol Rev 2019; 292:209-224. [PMID: 31593314 PMCID: PMC7027528 DOI: 10.1111/imr.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8+ Tregs have been long described and significant progresses have been made about their phenotype, their functional mechanisms, and their suppressive ability compared to conventional CD4+ Tregs. They are now at the dawn of their clinical use. In this review, we will summarize their phenotypic characteristics, their mechanisms of action, the similarities, differences and synergies between CD8+ and CD4+ Tregs, and we will discuss the biology, development and induction of CD8+ Tregs, their manufacturing for clinical use, considering open questions/uncertainties and future technically accessible improvements notably through genetic modifications.
Collapse
Affiliation(s)
- Léa Flippe
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
27
|
Ryba-Stanisławowska M, Sakowska J, Zieliński M, Ławrynowicz U, Trzonkowski P. Regulatory T cells: the future of autoimmune disease treatment. Expert Rev Clin Immunol 2019; 15:777-789. [PMID: 31104510 DOI: 10.1080/1744666x.2019.1620602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: CD4 + T regulatory cells (Tregs) have been described as the most potent immunosuppressive cells in the human body. They have been found to control autoimmunity, and clinical attempts have been made to apply them to treat autoimmune diseases. Some specific pathways utilized by Tregs in the regulation of immune response or Tregs directly as cellular products are tested in the clinic. Areas covered: Here, we present recent advances in the research on the biology and clinical applications of Tregs in the treatment of autoimmune diseases. Expert opinion: Regulatory T cells seem to be a promising tool for the treatment of autoimmune diseases. The development of both cell-based therapies and modern pharmacotherapies which affect Tregs may strongly improve the treatment of autoimmune disorders. Growing knowledge about Treg biology together with the latest biotechnology tools may give an opportunity for personalized therapies in these conditions.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Justyna Sakowska
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Maciej Zieliński
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| | - Urszula Ławrynowicz
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
| | - Piotr Trzonkowski
- a Department of Medical Immunology , Laboratory of Experimental Immunology, Medical University of Gdańsk , Debinki , Poland
- b Department of Medical Immunology , Medical University of Gdańsk , Debinki , Poland
| |
Collapse
|
28
|
Zeng Y, Li B, Liang Y, Reeves PM, Qu X, Ran C, Liu Q, Callahan MV, Sluder AE, Gelfand JA, Chen H, Poznansky MC. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J 2019; 33:6596-6608. [PMID: 30802149 PMCID: PMC6463916 DOI: 10.1096/fj.201802067rr] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022]
Abstract
Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Yang Zeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Binghao Li
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yingying Liang
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Patrick M. Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xiying Qu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; and
| | - Qiuyan Liu
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, China
| | - Michael V. Callahan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ann E. Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jeffrey A. Gelfand
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
29
|
Abstract
Although cluster of differentiation (CD)8 regulatory T (Treg) cells have been in the last 20 years more studied since evidences of their role in tolerance as been demonstrated in transplantation, autoimmune diseases and cancer, their characteristics are still controversial. In this review, we will focus on recent advances on CD8 Treg cells and description of a role for CD8 Treg cells in tolerance in both solid organ transplantation and graft-versus-host disease and their potential for clinical trials.
Collapse
|
30
|
Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R. Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front Immunol 2018; 9:1884. [PMID: 30158933 PMCID: PMC6104131 DOI: 10.3389/fimmu.2018.01884] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells play key role in providing help to B cells during germinal center (GC) reactions. Generation of protective antibodies against various infections is an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh cell responses has been implicated in various autoimmune disorders, inflammation, and malignancy. Thus, their differentiation and maintenance must be closely regulated to ensure appropriate help to B cells. The generation and function of Tfh cells is regulated by multiple checkpoints including their early priming stage in T zones and throughout the effector stage of differentiation in GCs. Signaling pathways activated downstream of cytokine and costimulatory receptors as well as consequent activation of subset-specific transcriptional factors are essential steps for Tfh cell generation. Thus, understanding the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into spotlight potential targets for novel therapies. In this review, we discuss the recent findings related to the molecular mechanisms of Tfh cell differentiation and their role in normal immune responses and antibody-mediated diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tayab C Waseem
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anupama Sahoo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayahati Bieerkehazhi
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Roza Nurieva
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
31
|
Kaewkangsadan V, Verma C, Eremin JM, Cowley G, Ilyas M, Eremin O. Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (Th1, Th2) to immune-mediated tumour cell death induced by NAC. BMC Cancer 2018; 18:123. [PMID: 29390966 PMCID: PMC5795830 DOI: 10.1186/s12885-018-4044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. Their contribution to a pCR in nodal metastases, however, is poorly studied and was investigated. Methods Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T effector and regulatory cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. IBM SPSS statistical package (21v) was used. Non-parametric (paired and unpaired) statistical analyses were performed. Univariate and multivariate regression analyses were carried out to establish the prediction of a pCR and Spearman’s Correlation Coefficient was used to determine the correlation of immune cell infiltrates in ALN metastatic and primary breast tumours. Results In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs.. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+: FOXP3+ ratio in metastatic ALNs (tumour-free para-cortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-ϒ. Conclusions Our study has provided new data characterising the possible contribution of T effector and regulatory cells and NK cells and T helper1 and 2 cytokines to tumour cell death associated with NAC in ALNs. Trial registration The Trial was retrospectively registered. Study Registration Number is ISRCTN00407556. Electronic supplementary material The online version of this article (10.1186/s12885-018-4044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viriya Kaewkangsadan
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, Faculty of Medicine and Health Sciences, University of Nottingham, E Floor West Block, Queen's Medical Centre, Derby Rd, Nottingham, NG7 2UH, UK. .,Department of Surgery, Phramongkutklao Hospital and College of Medicine, 315 Rajavithi Road, Bangkok, 10400, Thailand.
| | - Chandan Verma
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, Faculty of Medicine and Health Sciences, University of Nottingham, E Floor West Block, Queen's Medical Centre, Derby Rd, Nottingham, NG7 2UH, UK
| | - Jennifer M Eremin
- Research & Development Department, Lincoln Breast Unit, Lincoln County Hospital, Greetwell Road, Lincoln, LN2 5QY, UK
| | - Gerard Cowley
- Department of Pathology, PathLinks, Lincoln County Hospital, Greetwell Road, Lincoln, LN2 5QY, UK
| | - Mohammad Ilyas
- Academic Department of Pathology, Faculty of Medicine and Health Sciences, University of Nottingham, A Floor West Block, Queens Medical Centre, Derby Road, Nottingham, NG7 2UH, UK
| | - Oleg Eremin
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, Faculty of Medicine and Health Sciences, University of Nottingham, E Floor West Block, Queen's Medical Centre, Derby Rd, Nottingham, NG7 2UH, UK.,Research & Development Department, Lincoln Breast Unit, Lincoln County Hospital, Greetwell Road, Lincoln, LN2 5QY, UK
| |
Collapse
|
32
|
Stojić-Vukanić Z, Pilipović I, Djikić J, Vujnović I, Nacka-Aleksić M, Bufan B, Arsenović-Ranin N, Kosec D, Leposavić G. Strain specificities in age-related changes in mechanisms promoting and controlling rat spinal cord damage in experimental autoimmune encephalomyelitis. Exp Gerontol 2017; 101:37-53. [PMID: 29128575 DOI: 10.1016/j.exger.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
The study investigated strain specificities in age-related differences in CD8+ T cell- and microglial cell-mediated mechanisms implicated in induction/perpetuation and/or control of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in Albino Oxford (AO) and Dark Agouti (DA) rats exhibiting age-related changes in the susceptibility to EAE in the opposite direction (increase in relatively resistant AO rats vs decrease in DA rats). In the inductive phase of EAE, the greater number of fully differentiated effector CD8+ T lymphocytes was found in draining lymph nodes (dLNs) from aged rats of both strains than in strain-matched young rats, but this was particularly prominent in AO rats, which exhibited milder EAE of prolonged duration compared with their DA counterparts. Consistently, dLN IFN-γ+ and IL-17+ CD8+ T cell counts were greater in aged AO than in DA rats. Additionally, the magnitudes of myelin basic protein (MBP)-induced rise in the frequency of IFN-γ+ and IL-17+ CD8+ T cells (providing important help to neuroantigen-specific CD4+ T cells in EAE models characterized by clinically mild disease) were greater in dLN cell cultures from aged AO rats. Consistently, the magnitudes of MBP-induced rise in the frequency of both IFN-γ+ and IL-17+ CD8+ T cells were greater in spinal cord mononuclear cell cultures from aged AO rats compared with their DA counterparts. Besides, with aging CD4+CD25+Foxp3+/CD8+CD25+Foxp3+ regulatory T cell ratio changed in spinal cord in the opposite direction. Consequently, in aged AO rats it was shifted towards CD8+CD25+Foxp3+ regulatory T cells (exhibiting lower suppressive capacity) when compared with DA rats. Moreover, the frequency of CX3CR1+ cells among microglia changed with aging and the disease development. In aged rats, in the effector phase of EAE it was lower in AO than in DA rats. This was accompanied by higher frequency of cells expressing IL-1β (whose down-regulation is central for CX3CR1-mediated neuroprotection), but lower that of phagocyting cells among microglia from aged AO compared their DA counterparts. The study indicates the control points linked with strain differences in age-related changes in EAE pathogenesis.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
33
|
Abstract
The proper restraint of the destructive potential of the immune system is essential for maintaining health. Regulatory T (Treg) cells ensure immune homeostasis through their defining ability to suppress the activation and function of other leukocytes. The expression of the transcription factor forkhead box protein P3 (FOXP3) is a well-recognized characteristic of Treg cells, and FOXP3 is centrally involved in the establishment and maintenance of the Treg cell phenotype. In this Review, we summarize how the expression and activity of FOXP3 are regulated across multiple layers by diverse factors. The therapeutic implications of these topics for cancer and autoimmunity are also discussed.
Collapse
|
34
|
Chen L, Hasni MS, Jondal M, Yakimchuk K. Modification of anti-tumor immunity by tolerogenic dendritic cells. Autoimmunity 2017; 50:370-376. [PMID: 28675711 DOI: 10.1080/08916934.2017.1344837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunosuppressive functions of glucocorticoids (GC) can be mediated via various mechanisms, including the modulation of dendritic cells (DC). Our study investigates the effects of tolerogenic GC-treated DCs on NK and T cell anti-tumor responses in OT-1/Rag-/- mice, expressing a transgenic TCR in CD8+ T cells. The effects caused by GC-treated DCs were compared to the responses to immunogenic, CpG-activated DCs. The effects of DCs on anti-tumor immune responses were analyzed using the EG7 tumor model, where the tumor cells express the peptide epitope recognized by OT-1 T cells. We observed that immunization with CpG and peptide-treated DCs protected against tumor growth by activation of NK cell response. Also, immunogenic DCs induced the expansion of cytotoxic CD8+OT-1 cells, expressing activation markers CD44 and CD69 and producing IFNγ. In contrast, the peptide and GC-treated DCs in OT-1 mice increased the numbers of immature Mac-1+CD27- NK cells as well as Foxp3+ and IL-10 secreting CD8+OT-1 cells with suppressive properties. We conclude that the generation of tolerogenic DCs is one of many immunosuppressive mechanisms that can be induced by GC. Our study demonstrated that tolerogenic DCs modify anti-tumor immune response by suppressing NK cell activity and stimulating the formation of IL-10-secreting CD8+ Tregs.
Collapse
Affiliation(s)
- Liying Chen
- a Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockhom , Sweden
| | - Mohammad Sharif Hasni
- b Department of Biosciences and Nutrition , Karolinska Institutet , Novum, Huddinge , Sweden
| | - Mikael Jondal
- a Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , Stockhom , Sweden
| | - Konstantin Yakimchuk
- b Department of Biosciences and Nutrition , Karolinska Institutet , Novum, Huddinge , Sweden
| |
Collapse
|
35
|
Zhang D, Chen Z, Wang DC, Wang X. Regulatory T cells and potential inmmunotherapeutic targets in lung cancer. Cancer Metastasis Rev 2016; 34:277-90. [PMID: 25962964 DOI: 10.1007/s10555-015-9566-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer and metastasis are two of the most lethal diseases globally and seldom have effective therapies. Immunotherapy is considered as one of the powerful alternatives. Regulatory T cells (Tregs) can suppress the activation of the immune system, maintain immune tolerance to self-antigens, and contribute to immunosuppression of antitumor immunity, which is critical for tumor immune evasion in epithelial malignancies, including lung cancer. The present review gives an overview of the biological functions and regulations of Tregs associated with the development of lung cancer and metastasis and explores the potentials of Treg-oriented therapeutic targets. Subsets and features of Tregs mainly include naturally occurring Tregs (nTregs) (CD4(+) nTregs and CD8(+) nTregs) and adaptive/induced Tregs (CD4(+) iTregs and CD8(+) iTregs). Tregs, especially in circulation or regional lymph nodes, play an important role in the progress and metastasis of lung cancer and are considered as therapeutic targets and biomarkers to predict the survival length and recurrence of lung cancer. Increasing understanding of Tregs' functional mechanisms will lead to a number of clinical trials on the discovery and development of Treg-oriented new therapies. Tregs play important roles in lung cancer and metastasis, and the understanding of Tregs becomes more critical for clinical applications and therapies. Thus, Tregs and associated factors can be potential therapeutic targets for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Ding Zhang
- Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | | | | | | |
Collapse
|
36
|
Geisshüsler H, Marti E, Stoffel M, Kühni K, Stojiljkovic A, von Tscharner C, Vidondo B, Gerber V, Koch C. Quantitative analysis of infiltrating immune cells and bovine papillomavirus type 1 E2-positive cells in equine sarcoids. Vet J 2016; 216:45-52. [DOI: 10.1016/j.tvjl.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022]
|
37
|
Miles B, Miller SM, Folkvord JM, Levy DN, Rakasz EG, Skinner PJ, Connick E. Follicular Regulatory CD8 T Cells Impair the Germinal Center Response in SIV and Ex Vivo HIV Infection. PLoS Pathog 2016; 12:e1005924. [PMID: 27716848 PMCID: PMC5055335 DOI: 10.1371/journal.ppat.1005924] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
During chronic HIV infection, viral replication is concentrated in secondary lymphoid follicles. Cytotoxic CD8 T cells control HIV replication in extrafollicular regions, but not in the follicle. Here, we show CXCR5hiCD44hiCD8 T cells are a regulatory subset differing from conventional CD8 T cells, and constitute the majority of CD8 T cells in the follicle. This subset, CD8 follicular regulatory T cells (CD8 TFR), expand in chronic SIV infection, exhibit enhanced expression of Tim-3 and IL-10, and express less perforin compared to conventional CD8 T cells. CD8 TFR modestly limit HIV replication in follicular helper T cells (TFH), impair TFH IL-21 production via Tim-3, and inhibit IgG production by B cells during ex vivo HIV infection. CD8 TFR induce TFH apoptosis through HLA-E, but induce less apoptosis than conventional CD8 T cells. These data demonstrate that a unique regulatory CD8 population exists in follicles that impairs GC function in HIV infection.
Collapse
Affiliation(s)
- Brodie Miles
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado Denver, Colorado, United States of America
| | - Shannon M. Miller
- Department of Immunology and Microbiology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Colorado, United States of America
| | - Joy M. Folkvord
- Division of Infectious Diseases, University of Arizona, Arizona, United States of America
| | - David N. Levy
- Department of Basic Science, New York University College of Dentistry, New York, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minnesota, United States of America
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Arizona, United States of America
| |
Collapse
|
38
|
Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J Immunol Res 2016; 2016:4757405. [PMID: 27777963 PMCID: PMC5061970 DOI: 10.1155/2016/4757405] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
The tumour microenvironment consists of malignant cells, stroma, and immune cells. Prominent tumour-infiltrating lymphocytes (TILs) in breast cancer are associated with a good prognosis and are predictors of a pathological complete response (pCR) with neoadjuvant chemotherapy (NAC). The contribution of different T effector/regulatory cells and cytokines to tumour cell death with NAC requires further characterisation and was investigated in this study. Breast tumours from 33 women with large and locally advanced breast cancers undergoing NAC were immunohistochemically (intratumoural, stromal) assessed for T cell subsets and cytokine expression using labelled antibodies, employing established semiquantitative methods. Prominent levels of TILs and CD4+, CD8+, and CTLA-4+ (stromal) T cells and CD8+ : FOXP3+ ratios were associated with a significant pCR; no association was seen with FOXP3+, CTLA-4+ (intratumoural), and PD-1+ T cells. NAC significantly reduced CD4+, FOXP3+, CTLA-4+ (stromal) (concurrently blood FOXP3+, CTLA-4+ Tregs), and PD-1+ T cells; no reduction was seen with CD8+ and CTLA-4+ (intratumoural) T cells. High post-NAC tumour levels of FOXP3+ T cells, IL-10, and IL-17 were associated with a failed pCR. Our study has characterised further the contribution of T effector/regulatory cells and cytokines to tumour cell death with NAC.
Collapse
|
39
|
Cline-Smith A, Gibbs J, Shashkova E, Buchwald ZS, Novack DV, Aurora R. Pulsed low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis. JCI Insight 2016; 1. [PMID: 27570837 DOI: 10.1172/jci.insight.88839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jesse Gibbs
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Elena Shashkova
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zachary S Buchwald
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Magnano L, Martínez A, Carreras J, Martínez-Trillos A, Giné E, Rovira J, Dlouhy I, Baumann T, Balagué O, Campo E, López-Guillermo A, Villamor N. T-cell subsets in lymph nodes identify a subgroup of follicular lymphoma patients with favorable outcome. Leuk Lymphoma 2016; 58:842-850. [DOI: 10.1080/10428194.2016.1217525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response. J Immunol Res 2016; 2016:8941260. [PMID: 27314056 PMCID: PMC4893440 DOI: 10.1155/2016/8941260] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022] Open
Abstract
The adaptive immune system plays a pivotal role in the host's ability to mount an effective, antigen-specific immune response against tumors. CD8(+) tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host's ability to eradicate the tumor. In addition to effector and memory CD8(+) T cells, populations described as exhausted, anergic, senescent, and regulatory CD8(+) T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8(+) T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8(+) T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8(+) T cell dysfunction.
Collapse
|
42
|
Zhang J, Dunk C, Croy AB, Lye SJ. To serve and to protect: the role of decidual innate immune cells on human pregnancy. Cell Tissue Res 2015; 363:249-265. [PMID: 26572540 DOI: 10.1007/s00441-015-2315-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022]
Abstract
The maternal-fetal interface undergoes dynamic changes that promote successful development of the embryo/fetal allograft during pregnancy. This immune privilege of the conceptus is mediated through local and systemic cellular responses. In species in which endometrial decidualization accompanies pregnancy, unique immune cell niches are found. Many studies have addressed the enigmatic roles of uterine (u)NK cells as killers and helpers because they are frequently found in the uterine lining and decidua of normal and pathological pregnancies. Accumulating evidence indicates that uNK cells are induced and transformed by sensing signals within their microenvironment to both protect the mother from the fetal allograft and support the fetus during its development. Here, we review the mechanisms that modulate these functions of uNK cells during pregnancy. We suggest that uNK cells must be tightly regulated in order to serve these two roles and support a healthy pregnancy.
Collapse
Affiliation(s)
- Jianhong Zhang
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde St., Toronto, ON, M5T 3H7, Canada.
| | - Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde St., Toronto, ON, M5T 3H7, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Anne B Croy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde St., Toronto, ON, M5T 3H7, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Buchwald ZS, Yang C, Nellore S, Shashkova EV, Davis JL, Cline A, Ko J, Novack DV, DiPaolo R, Aurora R. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res 2015; 30:1508-22. [PMID: 25656537 PMCID: PMC4506715 DOI: 10.1002/jbmr.2472] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
TNF-α and IL-17 secreted by proinflammatory T cells (T(EFF)) promote bone erosion by activating osteoclasts. We previously demonstrated that in addition to bone resorption, osteoclasts act as antigen-presenting cells to induce FoxP3 in CD8 T cells (Tc(REG)). The osteoclast-induced regulatory CD8 T cells limit bone resorption in ovariectomized mice (a murine model of postmenopausal osteoporosis). Here we show that although low-dose receptor activator of NF-κB ligand (RANKL) maximally induces Tc(REG) via Notch signaling pathway to limit bone resorption, high-dose RANKL promotes bone resorption. In vitro, both TNF-α and IL-17, cytokines that are abundant in ovariectomized animals, suppress Tc(REG) induction by osteoclasts by repressing Notch ligand expression in osteoclasts, but this effect can be counteracted by addition of RANKL. Ovariectomized mice treated with low-dose RANKL induced Tc(REG) that suppressed bone resorption, decreased T(EFF) levels, and increased bone formation. High-dose RANKL had the expected osteolytic effect. Low-dose RANKL administration in ovariectomized mice lacking CD8 T cells was also osteolytic, confirming that Tc(REG) mediate this bone anabolic effect. Our results show that although RANKL directly stimulates osteoclasts to resorb bone, it also controls the osteoclasts' ability to induce regulatory T cells, engaging an important negative feedback loop. In addition to the conceivable clinical relevance to treatment of osteoporosis, these observations have potential relevance to induction of tolerance and autoimmune diseases.
Collapse
Affiliation(s)
- Zachary S. Buchwald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Chang Yang
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis
| | - Suman Nellore
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Elena V. Shashkova
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Jennifer L. Davis
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis
| | - Anna Cline
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Je Ko
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Deborah V. Novack
- Division of Bone and Mineral Disease, Department of Medicine, Washington University in St. Louis
| | - Richard DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine
| |
Collapse
|
44
|
Churlaud G, Pitoiset F, Jebbawi F, Lorenzon R, Bellier B, Rosenzwajg M, Klatzmann D. Human and Mouse CD8(+)CD25(+)FOXP3(+) Regulatory T Cells at Steady State and during Interleukin-2 Therapy. Front Immunol 2015; 6:171. [PMID: 25926835 PMCID: PMC4397865 DOI: 10.3389/fimmu.2015.00171] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/27/2015] [Indexed: 01/22/2023] Open
Abstract
In addition to CD4+ regulatory T cells (Tregs), CD8+ suppressor T cells are emerging as an important subset of regulatory T cells. Diverse populations of CD8+ T cells with suppressive activities have been described. Among them, a small population of CD8+CD25+FOXP3+ T cells is found both in mice and humans. In contrast to thymic-derived CD4+CD25+FOXP3+ Tregs, their origin and their role in the pathophysiology of autoimmune diseases (AIDs) are less understood. We report here the number, phenotype, and function of CD8+ Tregs cells in mice and humans, at the steady state and in response to low-dose interleukin-2 (IL-2). CD8+ Tregs represent approximately 0.4 and 0.1% of peripheral blood T cells in healthy humans and mice, respectively. In mice, their frequencies are quite similar in lymph nodes (LNs) and the spleen, but two to threefold higher in Peyer patches and mesenteric LNs. CD8+ Tregs express low levels of CD127. CD8+ Tregs express more activation or proliferation markers such as CTLA-4, ICOS, and Ki-67 than other CD8+ T cells. In vitro, they suppress effector T cell proliferation as well as or even better than CD4+ Tregs. Owing to constitutive expression of CD25, CD8+ Tregs are 20- to 40-fold more sensitive to in vitro IL-2 stimulation than CD8+ effector T cells, but 2–4 times less than CD4+ Tregs. Nevertheless, low-dose IL-2 dramatically expands and activates CD8+ Tregs even more than CD4+ Tregs, in mice and humans. Further studies are warranted to fully appreciate the clinical relevance of CD8+ Tregs in AIDs and the efficacy of IL-2 treatment.
Collapse
Affiliation(s)
- Guillaume Churlaud
- Department of Inflammation-Immunopathology-Biotherapy (I2B), Clinical Investigation Center for Biotherapies (CIC-BTi), Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France ; UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| | - Fabien Pitoiset
- Department of Inflammation-Immunopathology-Biotherapy (I2B), Clinical Investigation Center for Biotherapies (CIC-BTi), Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France ; UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| | - Fadi Jebbawi
- UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| | - Roberta Lorenzon
- Department of Inflammation-Immunopathology-Biotherapy (I2B), Clinical Investigation Center for Biotherapies (CIC-BTi), Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France ; UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| | - Bertrand Bellier
- UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| | - Michelle Rosenzwajg
- Department of Inflammation-Immunopathology-Biotherapy (I2B), Clinical Investigation Center for Biotherapies (CIC-BTi), Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France ; UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| | - David Klatzmann
- Department of Inflammation-Immunopathology-Biotherapy (I2B), Clinical Investigation Center for Biotherapies (CIC-BTi), Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (AP-HP) , Paris , France ; UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Sorbonne Université, Université Pierre-et-Marie-Curie, Institut national de la santé et de la recherche médicale (INSERM) , Paris , France ; FRE 3632, Immunology-Immunopathology-Immunotherapy (I3), Centre national de la recherche scientifique (CNRS) , Paris , France
| |
Collapse
|
45
|
Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015:171520. [PMID: 25961057 PMCID: PMC4413981 DOI: 10.1155/2015/171520] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR(+) cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs.
Collapse
|
46
|
Ellis SDP, McGovern JL, van Maurik A, Howe D, Ehrenstein MR, Notley CA. Induced CD8+FoxP3+ Treg cells in rheumatoid arthritis are modulated by p38 phosphorylation and monocytes expressing membrane tumor necrosis factor α and CD86. Arthritis Rheumatol 2014; 66:2694-705. [PMID: 24980778 DOI: 10.1002/art.38761] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/24/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Limiting the severity of inflammation and promoting its eventual resolution are vital for protecting host tissues both in autoimmunity and chronic infection. The aim of this study was to determine the suitability of repurposing anti-CD3 monoclonal antibody (mAb) therapy for rheumatoid arthritis (RA) by analyzing its ability to induce CD8+FoxP3+ Treg cells from peripheral blood mononuclear cells (PBMCs). METHODS Anti-CD3 mAb was cultured with RA PBMCs to induce CD8+FoxP3+ Treg cells, which were analyzed by flow cytometry to determine their phenotype. Treg cell induction was investigated via neutralization or blocking antibodies, cellular depletion, or ImageStream technology. Blotting was used to determine the signaling pathways involved in CD8+FoxP3+ Treg cell induction. Suppression of CD4+ T cell effector responses was assessed by Treg cell suppression assays and Mosaic enzyme-linked immunosorbent assay. RESULTS Potent CD8+FoxP3+ Treg cells were induced from RA PBMCs by anti-CD3 mAb. Unlike their CD4+ counterparts, CD8+FoxP3+ Treg cells inhibited Th17 responses in a contact-dependent manner, thereby functioning to limit a wider range of inflammatory pathways. CD8+FoxP3+ Treg cell induction was supported both by p38 phosphorylation intrinsic to naive CD8+ T cells and by monocytes via CD86 and membrane tumor necrosis factor α (TNFα). Artificially increasing monocyte membrane TNFα or inhibiting CD8+ T cell p38 phosphorylation drove FoxP3 expression in a subset of initially unresponsive CD8+ T cells. CONCLUSION These data define an unknown mechanism of CD8+FoxP3+ Treg cell induction by anti-CD3 mAb, which could be combined with a p38 inhibitor to improve therapeutic efficacy in RA patients and resolve chronic inflammation via the restoration of tolerance.
Collapse
|
47
|
Zsiros E, Odunsi K. Tumor-associated macrophages: Co-conspirators and orchestrators of immune suppression in endometrial adenocarcinoma. Gynecol Oncol 2014; 135:173-5. [DOI: 10.1016/j.ygyno.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Mayer CT, Lahl K, Milanez-Almeida P, Watts D, Dittmer U, Fyhrquist N, Huehn J, Kopf M, Kretschmer K, Rouse B, Sparwasser T. Advantages of Foxp3(+) regulatory T cell depletion using DEREG mice. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:162-5. [PMID: 25505550 PMCID: PMC4257761 DOI: 10.1002/iid3.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022]
Abstract
Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3(+) Tregs selectively express eGFP and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about important considerations such as DT toxicity, which affects any mouse strain treated with DT, and Treg rebound after depletion. Additionally, we point out the specific advantages of BAC-transgenic DEREG mice including their suitability to study organ-specific autoimmunity such as type I diabetes. Moreover, we discuss recent insights into the role of Tregs in viral infections. In summary, DEREG mice are an important tool to study Treg-mediated tolerance and its therapeutic circumvention.
Collapse
Affiliation(s)
- Christian T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Katharina Lahl
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine Lane Building, Mailcode 5324, Stanford, CA, 94305, USA ; The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Pedro Milanez-Almeida
- Experimental Immunology, Helmholtz Centre for Infection Research Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Deepika Watts
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden Fetscherstr. 105, 01307, Dresden, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen Virchowstr.179, 45122, Essen, Germany
| | - Nanna Fyhrquist
- Unit of Systems Toxicology, Finnish Institute of Occupational Health Topeliuksenkatu 41b, 00250, Helsinki, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Manfred Kopf
- Institute for Molecular Health Sciences, Swiss Federal Institute of Technology Zuerich Otto-Stern-Weg 7, 8093, Zuerich, Switzerland
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden Fetscherstr. 105, 01307, Dresden, Germany ; Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD) Fetscherstr. 74, 01307, Dresden, Germany
| | - Barry Rouse
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee Knoxville, TN, 37996, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| |
Collapse
|
49
|
Svalgaard JD, Særmark C, Dall M, Buschard K, Johansen JD, Engkilde K. Systemic immunogenicity of para-Phenylenediamine and Diphenylcyclopropenone: two potent contact allergy-inducing haptens. Immunol Res 2014; 58:40-50. [PMID: 24385090 DOI: 10.1007/s12026-013-8482-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p-Phenylenediamine (PPD) and Diphenylcyclopropenone (DPCP) are two potent haptens. Both haptens are known to cause delayed-type hypersensitivity, involving a cytokine response and local infiltration of T-cell subpopulations, resulting in contact dermatitis. We investigated the systemic immune effects of PPD and DPCP, two relatively unexplored skin allergens. The dorsal sides of the ears of BALB/c mice were exposed to PPD or DPCP (0.1% w/v or 0.01% w/v), or vehicle alone. Mice were treated once daily for 3 days (induction period) and subsequently twice per week for 8 weeks. Local and systemic immune responses in the auricular and pancreatic lymph nodes, spleen, liver, serum, and ears were analyzed with cytokine profiling MSD, flow cytometry, and qPCR. Ear swelling increased significantly in mice treated with 1% PPD, 0.01% DPCP or 0.1% DPCP, compared with vehicle treatment, indicating that the mice were sensitized and that there was a local inflammation. Auricular lymph nodes, pancreatic lymph nodes, spleen, and liver showed changes in regulatory T-cell, B-cell, and NKT-cell frequencies, and increased activation of CD8(+) T cells and B cells. Intracellular cytokine profiling revealed an increase in the IFN-γ- and IL-4-positive NKT cells present in the liver following treatment with both haptens. Moreover, we saw a tendency toward a systemic increase in IL-17A. We observed systemic immunological effects of PPD and DPCP. Furthermore, concentrations too low to increase ear thickness and cause clinical symptoms may still prime the immune system. These systemic immunological effects may potentially predispose individuals to certain diseases.
Collapse
Affiliation(s)
- Jesper Dyrendom Svalgaard
- Department of Dermato-Allergology, National Allergy Research Centre, Gentofte Hospital, University of Copenhagen, 2900, Hellerup, Denmark,
| | | | | | | | | | | |
Collapse
|
50
|
Foxp3 expression in macrophages associated with RENCA tumors in mice. PLoS One 2014; 9:e108670. [PMID: 25264896 PMCID: PMC4180934 DOI: 10.1371/journal.pone.0108670] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/24/2014] [Indexed: 11/19/2022] Open
Abstract
The transcription factor Foxp3 represents the most specific functional marker of CD4+ regulatory T cells (TRegs). However, previous reports have described Foxp3 expression in other cell types including some subsets of macrophages, although there are conflicting reports and Foxp3 expression in cells other than Treg is not well characterized. We performed detailed investigations into Foxp3 expression in macrophages in the normal tissue and tumor settings. We detected Foxp3 protein in macrophages infiltrating mouse renal cancer tumors injected subcutaneously or in the kidney. Expression was demonstrated using flow cytometry and Western blot with two individual monoclonal antibodies. Further analyses confirmed Foxp3 expression in macrophages by RT PCR, and studies using ribonucleic acid-sequencing (RNAseq) demonstrated a previously unknown Foxp3 messenger (m)RNA transcript in tumor-associated macrophages. In addition, depletion of Foxp3+ cells using diphtheria toxin in Foxp3DTR mice reduced the frequency of type-2 macrophages (M2) in kidney tumors. Collectively, these results indicate that tumor-associated macrophages could express Foxp3.
Collapse
|