1
|
Morelli M, Queiroz K. Breaking Barriers: Candidalysin Disrupts Epithelial Integrity and Induces Inflammation in a Gut-on-Chip Model. Toxins (Basel) 2025; 17:89. [PMID: 39998106 PMCID: PMC11861147 DOI: 10.3390/toxins17020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast commonly found in the gastrointestinal tract of healthy humans. Under certain conditions, it can become invasive and cause life-threatening systemic infections. One mechanism used by C.albicans to breach the epithelial barrier is the secretion of candidalysin, a cytolytic peptide toxin. Candidalysin damages epithelial membranes and activates the innate immune response, making it key to C.albicans' pathogenicity and a promising therapeutic target. Although candidalysin mediates C. albicans translocation through intestinal layers, its impact on epithelial responses is not fully understood. This study aims to characterize this response and develop scalable, quantitative methodologies to assess candidalysin's toxicological effects using gut-on-chip models. We used the OrganoPlate® platform to expose Caco-2 tubules to candidalysin and evaluated their response with trans-epithelial electrical resistance (TEER), protein detection, and immunostaining. We then validated our findings in a proof-of-concept experiment using human intestinal organoid tubules. Candidalysin impaired barrier integrity, induced actin remodeling, and increased cell permeability. It also induced the release of LDH, cytokines, and the antimicrobial peptide LL37, suggesting cellular damage, inflammation, and antimicrobial activity. This study strengthens our understanding of candidalysin's role in C. albicans pathogenesis and suggests new therapeutic strategies targeting this toxin. Moreover, patient-derived organoids show promise for capturing patient heterogeneity and developing personalized treatments.
Collapse
Affiliation(s)
- Moran Morelli
- MIMETAS B.V., De Limes 7, 2342 DH Oegstgeest, The Netherlands
| | | |
Collapse
|
2
|
Li M, Wang J, Liu Q, Liu Y, Mi W, Li W, Li J. Beyond the dichotomy: understanding the overlap between atopic dermatitis and psoriasis. Front Immunol 2025; 16:1541776. [PMID: 39995673 PMCID: PMC11847814 DOI: 10.3389/fimmu.2025.1541776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Atopic dermatitis and psoriasis have traditionally been considered distinct inflammatory skin diseases with unique pathogenic mechanisms. However, accumulating evidence suggests significant overlap in their immunological pathways, metabolic features, and microbiome characteristics, challenging this conventional dichotomy. This review comprehensively examines the complex relationship between psoriasis and atopic dermatitis, with particular emphasis on their shared and distinct pathogenic mechanisms. We analyze the immunological networks, metabolic pathways, and microbial factors contributing to their development and progression. The review expands upon the disease spectrum hypothesis and discusses the nomenclature for conditions exhibiting features of both diseases. We critically evaluate the clinical and histopathological characteristics of concomitant psoriasis and atopic dermatitis, highlighting recent advances in molecular diagnostics for accurate disease differentiation. Importantly, we propose standardized diagnostic criteria for psoriasis dermatitis and examine current therapeutic strategies for managing overlapping conditions. Recent developments in targeted therapies and their implications for treatment selection are thoroughly discussed. By synthesizing current evidence and identifying knowledge gaps, this review provides insights into the complex interplay between psoriasis and atopic dermatitis, aiming to guide clinical decision-making and future research directions in this evolving field.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangyi Wang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingfeng Liu
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Youqing Liu
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyao Mi
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyi Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Sasakura M, Urakami H, Tachibana K, Ikeda K, Hasui KI, Matsuda Y, Sunagawa K, Ennishi D, Tomida S, Morizane S. Topical application of activator protein-1 inhibitor T-5224 suppresses inflammation and improves skin barrier function in a murine atopic dermatitis-like dermatitis. Allergol Int 2024; 73:323-331. [PMID: 38350816 DOI: 10.1016/j.alit.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Selective activator protein (AP)-1 inhibitors are potentially promising therapeutic agents for atopic dermatitis (AD) because AP-1 is an important regulator of skin inflammation. However, few studies have investigated the effect of topical application of AP-1 inhibitors in treating inflammatory skin disorders. METHODS Immunohistochemistry was conducted to detect phosphorylated AP-1/c-Jun expression of skin lesions in AD patients. In the in vivo study, 1 % T-5224 ointment was topically applied for 8 days to the ears of 2,4 dinitrofluorobenzene challenged AD-like dermatitis model mice. Baricitinib, a conventional therapeutic agent Janus kinase (JAK) inhibitor, was also topically applied. In the in vitro study, human epidermal keratinocytes were treated with T-5224 and stimulated with AD-related cytokines. RESULTS AP-1/c-Jun was phosphorylated at skin lesions in AD patients. In vivo, topical T-5224 application inhibited ear swelling (P < 0.001), restored filaggrin (Flg) expression (P < 0.01), and generally suppressed immune-related pathways. T-5224 significantly suppressed Il17a and l17f expression, whereas baricitinib did not. Baricitinib suppressed Il4, Il19, Il33 and Ifnb expression, whereas T-5224 did not. Il1a, Il1b, Il23a, Ifna, S100a8, and S100a9 expression was cooperatively downregulated following the combined use of T-5224 and baricitinib. In vitro, T-5224 restored the expression of FLG and loricrin (LOR) (P < 0.05) and suppressed IL33 expression (P < 0.05) without affecting cell viability and cytotoxicity. CONCLUSIONS Topical T-5224 ameliorates clinical manifestations of AD-like dermatitis in mice. The effect of this inhibitor is amplified via combined use with JAK inhibitors.
Collapse
Affiliation(s)
- Minori Sasakura
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Urakami
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Tachibana
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenta Ikeda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Hasui
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ko Sunagawa
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
5
|
Bombassaro A, Figueiredo JM, Taborda CP, Joosten LAB, Vicente VA, Queiroz-Telles F, Meis JF, Kischkel B. Skin innate immune response against fungal infections and the potential role of trained immunity. Mycoses 2024; 67. [PMID: 38282360 DOI: 10.1111/myc.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Julia Marcondes Figueiredo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Dermatology, LIM53, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vania A Vicente
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Flavio Queiroz-Telles
- Department of Public Health, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, Cologne, Germany
| | - Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Yan Y, Zhu K, Fan M, Wan W, Zhao X, Pan M, Ma B, Wei Q. Immunolocalization of antibacterial peptide S100A7 in mastitis goat mammary gland and lipopolysaccharide induces the expression and secretion of S100A7 in goat mammary gland epithelial cells via TLR4/NFκB signal pathway. Anim Biotechnol 2023; 34:2701-2713. [PMID: 37764644 DOI: 10.1080/10495398.2022.2112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The antimicrobial peptide S100A7, with antimicrobial activities for a broad spectrum of bacteria, has attracted more and more attention for the prevention and treatment of mastitis. However, there is little information about the expression and regulation mechanism of S100A7 in mastitis goats. This study revealed that S100A7 was mainly expressed in the stratified squamous epithelium of teat skin and streak canal, and S100A7 was present weakly in the healthy goat alveolus yet densely in the mastitis goat collapsed alveolus. Goat mammary epithelial cells (MECs) were isolated and treated with 2.5, 5, 10 and 20 µg/mL lipopolysaccharide (LPS) respectively for a different time, S100A7 mRNA expression and protein secretion were upregulated significantly with LPS treatment for 3 h, and the secretion level of S100A7 descended after 48 h treatment for all of these four groups. Moreover, after treatment with LPS, the mRNA levels of Toll-like receptor 4 (TLR4) and MyD88 were up-regulated, and the phosphorylation of p65 was up-regulated markedly. However, adding TLR4 inhibitor TAK-242 or/and NF-κB inhibitor QNZ significantly suppressed the phosphorylation of p65, and then inhibited the expression and secretion of S100A7 induced by LPS treatment. In conclusion, LPS induced the expression and secretion of S100A7 in goat MECs via TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yutong Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Mingzhen Fan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Wenjing Wan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Pereira EPV, da Silva Felipe SM, de Freitas RM, da Cruz Freire JE, Oliveira AER, Canabrava N, Soares PM, van Tilburg MF, Guedes MIF, Grueter CE, Ceccatto VM. Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways. Pathogens 2023; 12:1373. [PMID: 38003837 PMCID: PMC10674242 DOI: 10.3390/pathogens12111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that infected millions of people and caused significant deaths. COVID-19 continues to be a major threat, and there is a need to deepen our understanding of the virus and its mechanisms of infection. To study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected vs. uninfected Calu-3 cells. Total RNA was extracted from infected (0.5 MOI) and control Calu-3 cells and converted to cDNA. Sequencing was performed, and the obtained reads were quality-analyzed and pre-processed. Differential expression was assessed with the EdgeR package, and functional enrichment was performed in EnrichR for Gene Ontology, KEGG pathways, and WikiPathways. A total of 1040 differentially expressed genes were found in infected vs. uninfected Calu-3 cells, of which 695 were up-regulated and 345 were down-regulated. Functional enrichment analyses revealed the predominant up-regulation of genes related to innate immune response, response to virus, inflammation, cell proliferation, and apoptosis. These transcriptional changes following SARS-CoV-2 infection may reflect a cellular response to the infection and help to elucidate COVID-19 pathogenesis, in addition to revealing potential biomarkers and drug targets.
Collapse
Affiliation(s)
- Eric Petterson Viana Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Stela Mirla da Silva Felipe
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Raquel Martins de Freitas
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - José Ednésio da Cruz Freire
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | | | - Natália Canabrava
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Paula Matias Soares
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Mauricio Fraga van Tilburg
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Maria Izabel Florindo Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Chad Eric Grueter
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Vânia Marilande Ceccatto
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| |
Collapse
|
8
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
9
|
Wang Z, Zhang J, An F, Zhang J, Meng X, Liu S, Xia R, Wang G, Yan C. The mechanism of dendritic cell-T cell crosstalk in rheumatoid arthritis. Arthritis Res Ther 2023; 25:193. [PMID: 37798668 PMCID: PMC10552435 DOI: 10.1186/s13075-023-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by joint pain and swelling, synovial hyperplasia, cartilage damage, and bone destruction. The mechanisms of dendritic cell (DC) and T cell-mediated crosstalk have gradually become a focus of attention. DCs regulate the proliferation and differentiation of CD4+ T cell subtypes through different cytokines, surface molecules, and antigen presentation. DC-T cell crosstalk also blocks antigen presentation by DCs, ultimately maintaining immune tolerance. DC-T cell crosstalk mainly involves chemokines, surface molecules (TonEBP, NFATc1), the PD-L1/PD-1 signalling axis, and the TGF-β signalling axis. In addition, DC-T cell crosstalk in RA is affected by glycolysis, reactive oxygen species, vitamin D, and other factors. These factors lead to the formation of an extremely complex regulatory network involving various mechanisms. This article reviews the key immune targets of DC-T cell crosstalk and elucidates the mechanism of DC-T cell crosstalk in RA to provide a basis for the treatment of patients with RA.
Collapse
Affiliation(s)
- Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jinlong Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Shiqing Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Gang Wang
- Rheumatism and Orthopaedics Department, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
10
|
Lauffer F, Eyerich K. Ekzematisierte Psoriasis - eine häufige, aber oft vernachlässigte Variante der Plaque-Psoriasis. J Dtsch Dermatol Ges 2023; 21:445-454. [PMID: 37183739 DOI: 10.1111/ddg.14991_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/20/2022] [Indexed: 05/16/2023]
Affiliation(s)
- Felix Lauffer
- Klinik für Dermatologie und Allergologie, Technische Universität München, München, Deutschland
| | - Kilian Eyerich
- Abteilung für Dermatologie und Venerologie, Medizinische Klinik Solna und Zentrum für Molekularmedizin, Karolinska Institutet, Stockholm, Schweden
- Abteilung für Dermatologie und Venerologie, Medizinisches Zentrum, Universität Freiburg, Freiburg, Deutschland
| |
Collapse
|
11
|
Lauffer F, Eyerich K. Eczematized psoriasis - a frequent but often neglected variant of plaque psoriasis. J Dtsch Dermatol Ges 2023; 21:445-453. [PMID: 36772926 DOI: 10.1111/ddg.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023]
Abstract
Psoriasis is a common chronic inflammatory skin disease that causes systemic inflammation and severely impacts the patient's quality of life. Several highly effective therapeutics for psoriasis have been approved in recent years. However, in real life, a high proportion of patients either do not experience the clinical improvement observed in clinical trials or develop a secondary loss of efficacy. This may be a result of unrecognized endotypes of psoriasis that need to be characterized in greater depth to enable selection of an appropriate therapy. Eczematized psoriasis, which occurs in approximately 5-10% of patients with psoriasis, is an often-neglected variant of psoriasis. The term "eczematized psoriasis" refers to patients developing psoriasis with similarities to eczema. These patients typically present with severe itching, and skin biopsies often reveal eosinophil granulocytes, serum crusts, or spongiosis, which are frequently observed in eczema. From an immunological perspective, additional signaling pathways that are responsible for eczema reactions might be activated in eczematized psoriasis compared to classical plaque psoriasis. This review summarizes the key clinical, histological, and immunological features of eczematized psoriasis, proposes diagnostic criteria, and evaluates the therapeutic options for eczematized psoriasis.
Collapse
Affiliation(s)
- Felix Lauffer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Semin Immunol 2023; 65:101673. [PMID: 36459927 PMCID: PMC10311222 DOI: 10.1016/j.smim.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Fungi are ubiquitous commensals, seasoned predators, and important agents of emerging infectious diseases [1 ]. The immune system assumes the essential responsibility for responding intelligently to the presence of known and novel fungi to maintain host health. In this Review, we describe the immune responses to pathogenic fungi and the varied array of fungal agents confronting the vertebrate host within the broader context of fungal and animal evolution. We provide an overview of the mechanistic details of innate and adaptive antifungal immune responses, as well as ways in which these basic mechanisms support the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Therese Woodring
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - George S Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA.
| |
Collapse
|
13
|
Balato A, Scala E, Eyerich K, Brembilla NC, Chiricozzi A, Sabat R, Ghoreschi K. Management of Infections in Psoriatic Patients Treated with Systemic Therapies: A Lesson from the Immunopathogenesis of Psoriasis. Dermatol Pract Concept 2023; 13:dpc.1301a16. [PMID: 36892377 PMCID: PMC9946081 DOI: 10.5826/dpc.1301a16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Modern treatments continue to be developed based on identifying targets within the innate and adaptive immune pathways associated with psoriasis. Whilst there is a sound biologic rationale for increased risk of infection following treatment with immunomodulators, the clinical evidence is confounded by these agents being used in patients affected with several comorbidities. In an era characterized by an ever greater and growing risk of infections, it is necessary to always be updated on this risk. In this mini-review, we will discuss recent updates in psoriasis immunopathogenesis as a rationale for systemic therapy, outline the risk of infections linked to the disease itself and systemic therapy as well, and provide an overview of the prevention and management of infections.
Collapse
Affiliation(s)
- Anna Balato
- Dermatology Unit, University of Campania, Naples, Italy
| | - Emanuele Scala
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Dermatology and Venereology, Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin, Berlin, Germany.,Psoriasis Research and Treatment Center, Department of Dermatology and Allergy and Institute of Medical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
14
|
El-Serafi AT, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M. A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. Int J Mol Sci 2022; 23:7934. [PMID: 35887279 PMCID: PMC9323141 DOI: 10.3390/ijms23147934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cell regenerative therapy is a modern solution for difficult-to-heal wounds. Keratinocytes, the most common cell type in the skin, are difficult to obtain without the creation of another wound. Stem cell differentiation towards keratinocytes is a challenging process, and it is difficult to reproduce in chemically defined media. Nevertheless, a co-culture of keratinocytes with stem cells usually achieves efficient differentiation. This systematic review aims to identify the secretions of normal human keratinocytes reported in the literature and correlate them with the differentiation process. An online search revealed 338 references, of which 100 met the selection criteria. A total of 80 different keratinocyte secretions were reported, which can be grouped mainly into cytokines, growth factors, and antimicrobial peptides. The growth-factor group mostly affects stem cell differentiation into keratinocytes, especially epidermal growth factor and members of the transforming growth factor family. Nevertheless, the reported secretions reflected the nature of the involved studies, as most of them focused on keratinocyte interaction with inflammation. This review highlights the secretory function of keratinocytes, as well as the need for intense investigation to characterize these secretions and evaluate their regenerative capacities.
Collapse
Affiliation(s)
- Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Ibrahim El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Ingrid Steinvall
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Folke Sjöberg
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linkoping, Sweden; (I.S.); (F.S.); (M.E.)
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58183 Linkoping, Sweden;
| |
Collapse
|
15
|
Immunopathogenesis and distinct role of Th17 in Periodontitis: A review. J Oral Biosci 2022; 64:193-201. [PMID: 35489583 DOI: 10.1016/j.job.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Periodontitis is a multifactorial inflammatory disease mediated by the host immune response to dental plaque. Periodontitis is characterized by periodontal bone loss and loss of tooth support. Several studies have corroborated the infiltration of T lymphocytes in periodontitis and correlated the infiltration with chronic inflammation in a dysregulated T cell-mediated immune response. The complexity of the disease has prompted multiple studies aiming to understand T cell-mediated pathogenesis. HIGHLIGHT Recent findings have demonstrated the pivotal role of helper T cells in many autoimmune diseases, such as rheumatoid arthritis, which has been conventionally correlated with periodontal bone loss. In contrast, the roles of helper T subsets, Th1, Th2, and particularly Th17, have not been explored. Th17-mediated pathogenesis is a significant aspect of the progression and therapy of periodontitis. CONCLUSION In this review, we highlight the complex role of Th17 in the underlying pro-inflammatory cascades mediated by a repertoire of Th17-released molecules and their role in aggravated inflammation in periodontitis. We also summarize recent therapeutics targeting Th17 and related molecules, primarily to ameliorate inflammation and maintain periodontal care.
Collapse
|
16
|
Zhu GD, Xie LM, Su JW, Cao XJ, Yin X, Li YP, Gao YM, Guo XG. Identification of differentially expressed genes and signaling pathways with Candida infection by bioinformatics analysis. Eur J Med Res 2022; 27:43. [PMID: 35314002 PMCID: PMC8935812 DOI: 10.1186/s40001-022-00651-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opportunistic Candida species causes severe infections when the human immune system is weakened, leading to high mortality. METHODS In our study, bioinformatics analysis was used to study the high-throughput sequencing data of samples infected with four kinds of Candida species. And the hub genes were obtained by statistical analysis. RESULTS A total of 547, 422, 415 and 405 differentially expressed genes (DEGs) of Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis groups were obtained, respectively. A total of 216 DEGs were obtained after taking intersections of DEGs from the four groups. A protein-protein interaction (PPI) network was established using these 216 genes. The top 10 hub genes (FOSB, EGR1, JUNB, ATF3, EGR2, NR4A1, NR4A2, DUSP1, BTG2, and EGR3) were acquired through calculation by the cytoHubba plug-in in Cytoscape software. Validated by the sequencing data of peripheral blood, JUNB, ATF3 and EGR2 genes were significant statistical significance. CONCLUSIONS In conclusion, our study demonstrated the potential pathogenic genes in Candida species and their underlying mechanisms by bioinformatic analysis methods. Further, after statistical validation, JUNB, ATF3 and EGR2 genes were attained, which may be used as potential biomarkers with Candida species infection.
Collapse
Affiliation(s)
- Guo-Dong Zhu
- Department of Oncology, Guangzhou Geriatric Hospital, Guangzhou, 510180, China
| | - Li-Min Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jian-Wen Su
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Yin
- Department of Pediatrics, The Pediatrics School of Guangzhou Medical University, Guangzhou, 510182, China
| | - Ya-Ping Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Mei Gao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
17
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|
18
|
Al-Muraikhy S, Ramanjaneya M, Dömling AS, Bettahi I, Donati F, Botre F, Abou-Samra AB, Sellami M, Elrayess MA. High Endurance Elite Athletes Show Age-dependent Lower Levels of Circulating Complements Compared to Low/Moderate Endurance Elite Athletes. Front Mol Biosci 2021; 8:715035. [PMID: 34631796 PMCID: PMC8494969 DOI: 10.3389/fmolb.2021.715035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: Aerobic exercise activates the complement system in the peripheral blood. However, the effect of age and high intensity endurance training on the levels of circulating complements and sassociated inflammatory cytokines, oxidative stress markers and cellular aging remains unknown. Methods: In this study, serum samples from 79 elite athletes who belong to high (n = 48) and low/moderate (n = 31) endurance sports and two age groups (below 30 years old, n = 53, and above 30 years old, n = 26) were profiled for 14 complements. Linear models were used to assess differences in complements levels between sport and age groups. Spearmann’s correlation was used to assess the relationship among detected complements and proinflammatory cytokines, oxidative stress markers and telomere lengths. Results: High endurance elite athletes exhibited significantly lower levels of circulating C2, C3b/iC3b and adipsin complements than their age-matched low/moderate endurance counterparts. Levels of C2, adipsin and C3b/iC3b were positively correlated with most detected complements, the pro-inflammatory cytokines TNF-alpha and IL-22 and the anti-oxidant enzyme catalase. However, they were negatively correlated with telomere length only in younger elite athletes regardless of their sport groups. Furthermore, high endurance elite athletes showed significantly lower concentrations of C3b/iC3b, C4b, C5, C5a, C1q, C3, C4, factor H and properdin in younger athletes compared to their older counterparts. Conclusion: Our novel data suggest that high endurance elite athletes exhibit age-independent lower levels of circulating C2, C3b/iC3b and adipsin, associated with lower inflammatory, oxidative stress and cellular aging, as well as lower levels of 10 other complements in younger athletes compared to older counterparts. Assessing the effect of various levels of endurance sports on complements-based immune response provides a better understanding of exercise physiology and pathophysiology of elite athletes.
Collapse
Affiliation(s)
- Shamma Al-Muraikhy
- Biomedical Research Center, Qatar University, Doha, Qatar.,Department of Drug Design, University of Groningen, Groningen, Netherlands
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Ilham Bettahi
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Maha Sellami
- Physical Education Department, College of Education, Qatar University, Doha, Qatar
| | | |
Collapse
|
19
|
Abstract
The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development. We present notable advances in the creation of engineered cells that harbour synthetic gene circuits capable of biological sensing and computation of signals derived from intracellular or extracellular biomarkers. We categorize and describe these developments based on the cell scaffold (human or microbial) and the site at which the engineered cell exerts its therapeutic function within its human host. The design of cell-based therapeutics with synthetic biology is a rapidly growing strategy in medicine that holds great promise for the development of effective treatments for a wide variety of human diseases.
Collapse
|
20
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Melanin of Sporothrix globosa affects the function of THP-1 macrophages and modulates the expression of TLR2 and TLR4. Microb Pathog 2021; 159:105158. [PMID: 34454025 DOI: 10.1016/j.micpath.2021.105158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Melanin is an important virulence factor for Sporothrix globosa, the causative agent of sporotrichosis, a subcutaneous mycosis that occurs worldwide. Although previous research suggests that melanin is involved in the pathogenesis of sporotrichosis, little is known about its influence on the macrophages that represent the frontline components of innate immunity. OBJECTIVES To evaluate the effects of melanin on phagocytic activity and the expression of Toll-like receptor (TLR)2 and TLR4 during S. globosa infection of macrophages in vitro. METHODS To compare phagocytic activity and survival rates, THP-1 macrophages and primary mouse peritoneal macrophages were co-cultured with a wild-type S. globosa strain (Mel+), an albino mutant strain (Mel-), a tricyclazole-treated Mel + strain (TCZ-Mel+), or melanin ghosts extracted from S. globosa conidia. Reactive oxygen species (ROS), nitric oxide (NO) generation, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were assayed in THP-1 cells infected with S. globosa conidia. Quantitative PCR and western blotting were used to observe the effect of melanin on TLR2 and TLR4 expression. Knockdown of TLR2/4 expression with small interfering RNA was performed to further verify the role of these receptors during infection. RESULTS Macrophages infected with Mel + conidia showed a lower phagocytosis index and a higher survival rate than TCZ-Mel+ and Mel- in vitro. After incubation with S. globosa, the release of ROS, NO, TNF-α and IL-6 by THP-1 were decreased in the presence of melanin. Increased mRNA and protein expression of TLR2 and TLR4 occurred upon S. globosa infection in THP-1, whereas the presence of melanin suppressed TLR2 and TLR4. Moreover, TLR2 or TLR4 knockdown showed a trend toward reducing the pernicious effect of S. globosa conidia on THP-1 cells in vitro. CONCLUSIONS Collectively, our results indicated that melanin inhibits the phagocytosis of S. globosa and guards against macrophage attack by providing protection from oxygen- and nitrogen-derived radicals, as well as suppressing the host pro-inflammatory cytokine response (TNF-α and IL-6). Melanin was also involved in modulating TLR2 and TLR4 receptor expression, weakening the killing efficiency of S. globosa.
Collapse
|
22
|
Schäbitz A, Eyerich K, Garzorz-Stark N. So close, and yet so far away: The dichotomy of the specific immune response and inflammation in psoriasis and atopic dermatitis. J Intern Med 2021; 290:27-39. [PMID: 33428274 DOI: 10.1111/joim.13235] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Characterization of the complex interplay between cytokines, chemokines and microorganisms has led to a better understanding of the pathogenesis of both psoriasis and AD and resulted in new therapeutics targeting distinct immune responses. Psoriasis and AD share many characteristics: they are highly prevalent, chronic, cause primarily skin inflammation, but are associated with comorbidities, and come with a devastating quality of life due to itch and stigmatization. However, the pathogenesis of psoriasis and AD is opposing - psoriasis is dominated by a Th17 immune response that causes neutrophil migration, induction of innate immunity and exaggerated epithelial metabolism. Leading cytokines of this Th17 immune response are IL-17A and F, IL-22 and TNF-a. AD is characterized by Th2 immunity characterized by the signature cytokines IL-4 and IL-13 leading to an impaired epidermal barrier, dampened innate immunity and eosinophil migration. This review compares genetics, microbiome and T-cell infiltrate and resulting epithelial response in psoriasis and AD. Whilst the antagonistic course of psoriasis and AD is confirmed by response to specific biologics targeting the key cytokines of inflammation in psoriasis and AD, respectively, clinically overlapping phenotypes are challenging in our daily clinical practice. We conclude this review by summarizing what is known about these mixed phenotypes and how the identification of clinically relevant endotypes and molecular-driven decision-making is the next step in the field of dermato-immunology.
Collapse
Affiliation(s)
- A Schäbitz
- From the, Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - K Eyerich
- From the, Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Venereology, Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - N Garzorz-Stark
- From the, Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Zhou Y, Cheng L, Lei YL, Ren B, Zhou X. The Interactions Between Candida albicans and Mucosal Immunity. Front Microbiol 2021; 12:652725. [PMID: 34234752 PMCID: PMC8255368 DOI: 10.3389/fmicb.2021.652725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Mucosa protects the body against external pathogen invasion. However, pathogen colonies on the mucosa can invade the mucosa when the immunosurveillance is compromised, causing mucosal infection and subsequent diseases. Therefore, it is necessary to timely and effectively monitor and control pathogenic microorganisms through mucosal immunity. Candida albicans is the most prevalent fungi on the mucosa. The C. albicans colonies proliferate and increase their virulence, causing severe infectious diseases and even death, especially in immunocompromised patients. The normal host mucosal immune defense inhibits pathogenic C. albicans through stepwise processes, such as pathogen recognition, cytokine production, and immune cell phagocytosis. Herein, the current advances in the interactions between C. albicans and host mucosal immune defenses have been summarized to improve understanding on the immune mechanisms against fungal infections.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yu L. Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Liu Q, Yu C, Cheng J, Jiang Y, Xu Y, Liu Y, Jiang W, Zhang W, Gao Y, Shao L. Characterization of membrane-bound IL-22+ T cell subsets in HIV-1 patients coinfected with Mycobacterium tuberculosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:429-436. [PMID: 32081591 DOI: 10.1016/j.jmii.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Previously, we have found that IL-22 could be not only secreted outside of cells, but also highly expressed on the T cells membrane in HIV-1 negative patients with tuberculosis (TB). However, the study on membrane-bound IL-22+ cells of HIV-1 infected patients is rare. Therefore, we investigated antigen-specific membrane-bound IL-22+ T cell subsets in Mycobacterium tuberculosis (M.tb) coinfection of HIV-1 infected individuals. METHODS A case-control study that enrolled 74 HIV-1 infected participants was carried out, including HIV-1 monoinfection (HIV+TB-, n = 43), HIV-1 infected patients with latent TB (HIV+LTB, n = 18) and HIV-1 coinfected patients with active TB (HIV+TB+, n = 13). We made use of an IFN-γ release assay (IGRA) to screen LTB individuals. Purified protein derivative (PPD) and phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) were used as specific-stimulators to detect the levels of peripheral blood membrane-bound IL-22+ T cell subsets via cell surface staining and flow cytometry among three groups. RESULTS An approximate rate of 24.3% (n = 18 out of 74) of latent M.tb infection among HIV-1 positive population in Eastern China. Interestingly, HMBPP-specific CD3+Vγ2+ T cells were impaired in HIV+TB+patients compared with HIV+LTB patients (P < 0.05). Furthermore, increases of PPD-specific and HMBPP-specific membrane-bound IL-22+ T cell subsets including CD3+, CD3+CD4+ and CD3+Vγ2+ T cells were observed in HIV+TB+group rather than HIV+LTB groups (all P < 0.05). CONCLUSION Antigen-specific membrane-bound IL-22+ T cells were highly expressed in M.tb coinfection of HIV-1 infected individuals, and may play an important role in anti-TB immune response during coinfection with HIV-1.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chong Yu
- Department of Infectious Diseases, Nantong Third People's Hospital, Nantong University, Jiangsu, 226006, China
| | - Juan Cheng
- Department of Infectious Diseases, Yancheng Second People's Hospital, Jiangsu, 224003, China
| | - Yingkui Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuzhen Xu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weimin Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China; Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College, and Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
25
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
26
|
Limited Role of Mincle in the Host Defense against Infection with Cryptococcus deneoformans. Infect Immun 2020; 88:IAI.00400-20. [PMID: 32868343 DOI: 10.1128/iai.00400-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired cell-mediated immune responses such as AIDS. Caspase-associated recruitment domain 9 (CARD9) plays a critical role in the host defense against cryptococcal infection, suggesting the involvement of one or more C-type lectin receptors (CLRs). In the present study, we analyzed the role of macrophage-inducible C-type lectin (Mincle), one of the CLRs, in the host defense against C. deneoformans infection. Mincle expression in the lungs of wild-type (WT) mice was increased in the early stage of cryptococcal infection in a CARD9-dependent manner. In Mincle gene-disrupted (Mincle KO) mice, the clearance of this fungus, pathological findings, Th1/Th2 response, and antimicrobial peptide production in the infected lungs were nearly comparable to those in WT mice. However, the production of interleukin-22 (IL-22), tumor necrosis factor alpha (TNF-α), and IL-6 and the expression of AhR were significantly decreased in the lungs of Mincle KO mice compared to those of WT mice. In in vitro experiments, TNF-α production by bone marrow-derived dendritic cells was significantly decreased in Mincle KO mice. In addition, the disrupted lysates of C. deneoformans, but not those of whole yeast cells, activated Mincle-triggered signaling in an assay with a nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Mincle may be involved in the production of Th22-related cytokines at the early stage of cryptococcal infection, although its role may be limited in the host defense against infection with C. deneoformans.
Collapse
|
27
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
28
|
Gallais Sérézal I, Cheuk S, Martini E, Eidsmo L. Cellular scars and local crosstalk in relapsing psoriasis: an example of a skin sticking disease. Scand J Immunol 2020; 92:e12953. [PMID: 32757303 PMCID: PMC7685142 DOI: 10.1111/sji.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Psoriasis is an inflammatory disease that arises in genetically predisposed individuals. Chronic skin lesions that contain activated immune cells can persist for years. Systemic inhibition of TNF, IL‐17 and IL‐23 cytokines has revolutionized psoriasis care during the recent decades. Unfortunately, local relapse of disease is common at previously inflamed sites after cessation of treatment. This highlights that fundamental pathologic alterations of the affected tissues are not completely resolved during clinical remission. Here, we present arguments for a local disease memory located in both dermis and epidermis in psoriasis skin. We decipher different cellular components and intercellular crosstalk that sustain local disease memory and amplify disease relapse in human psoriasis. Decrypting the mechanisms underlying the establishment and persistence of pathogenic memory cells in resolved psoriasis may provide new therapeutic perspectives aimed at long‐term remission of psoriasis.
Collapse
Affiliation(s)
- Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology Karolinska Institutet Solna, Stockholm, Sweden.,Department of Dermatology, Besançon University Hospital, Besançon, France
| | - Stanley Cheuk
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Elisa Martini
- Department of Medicine, Unit of Rheumatology Karolinska Institutet Solna, Stockholm, Sweden
| | - Liv Eidsmo
- Department of Medicine, Unit of Rheumatology Karolinska Institutet Solna, Stockholm, Sweden.,Diagnostiskt Centrum Hud, Stockholm, Sweden
| |
Collapse
|
29
|
Abdellatif MM, Khalil IA, Elakkad YE, Eliwa HA, Samir TM, Al-Mokaddem AK. Formulation and Characterization of Sertaconazole Nitrate Mucoadhesive Liposomes for Vaginal Candidiasis. Int J Nanomedicine 2020; 15:4079-4090. [PMID: 32606665 PMCID: PMC7295534 DOI: 10.2147/ijn.s250960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The aim of this study is to develop efficient localized therapy of sertaconazole nitrate for the treatment of vaginal candidiasis. Methods Sertaconazole nitrate-loaded cationic liposomes were prepared by thin-film hydration method and coated with different concentrations of pectin (0.05%, 0.1% and 0.2%) to develop mucoadhesive liposomes. The formulated mucoadhesive vesicles were characterized in terms of morphology, entrapment efficiency, particle size, zeta value, mucoadhesive properties and drug release. The selected formula was incorporated into a gel base and further characterized by an ex vivo permeation study in comparison with conventional sertaconazole gel. Also, the in vivo study was performed to assess the efficacy of sertaconazole mucoadhesive liposomal gel in treating rats with vaginal candidiasis. Results The mucoadhesive liposomes were spherical. Coating liposomes with pectin results in increased entrapment efficiency and particle size compared with uncoated vesicles. On the contrary, zeta values were reduced upon coating liposomes with pectin indicating efficient coating of liposomes with pectin. Mucoadhesive liposomes showed a more prolonged and sustained drug release compared with uncoated liposomes. Ex vivo study results showed that mucoadhesive liposomal gel increased sertaconazole tissue retention and reduced drug tissue penetration. In the invivo study, the mucoadhesive liposomal gel showed a significant reduction in the microbial count with a subsequent reduction in inflammatory responses with the lowest histopathological change compared with conventional gel. Conclusion The study confirmed the potentiality of employing mucoadhesive liposomes as a successful carrier for the vaginal delivery of antifungal drugs.
Collapse
Affiliation(s)
- Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Yara E Elakkad
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Wang Q, Wang C, Yang M, Li X, Cui J, Wang C. Diagnostic efficacy of serum cytokines and chemokines in patients with candidemia and bacteremia. Cytokine 2020; 130:155081. [PMID: 32247169 DOI: 10.1016/j.cyto.2020.155081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The role of serum cytokines/chemokines in differential diagnosis between fungal infections and bacterial infections have not been fully understood. This study aims to measure the serum levels of cytokines/chemokines in cases of candidemia and to compare them with those observed in cases of bacteremia. MATERIAL AND METHODS Patients with febrile episodes and were identified as bloodstream infections through blood culture were enrolled, while healthy people were included as control group. Fourteen serum cytokine and chemokine levels were detected with multiplex platform. ROC analysis was performed and an area under the curve (AUC), sensitivity and specificity values were calculated to determine the efficacy of various cytokines and chemokines for candidemia and bacteremia. Binary logistic regression was performed to further explore the combination mode of cytokines and chemokines, which could increase the diagnostic efficiency. RESULTS We included 40 patients with an episode of microbiologically proven fungal infection, 175 patients with bacteremia (85 with Gram-positive bacteremia and 90 with Gram-negative bacteremia) and another 30 healthy controls. Routine laboratory parameters including CRP and PCT were not statistically significant between candidemia group and bacteremia group (both gram-positive and gram-negative). There were significantly higher levels of IFN-γ, TNF-α, IL-10 and lower levels of IL-3, IL-4 in candidemia group, compared with gram-positive and gram-negative bacteremia groups. G-CSF was significantly lower and MIP-1β was higher in candidemia group, when compared with gram-negative bacteremia group. While IL-6, IL-8 and IL-17 were all significantly higher in candidemia group, when compared with gram-positive bacteremia group. Combination of IFN-γ and IL-17 could improve the diagnostic efficiency between candidemia and gram-positive bacteremia, with the AUROC of 0.873 (95% CI: 0.767-0.929). While combination of G-CSF and MIP-1β improved the diagnostic efficiency between candidemia and gram-negative bacteremia, with the AUROC of 0.896 (95% CI: 0.792-0.939). CONCLUSION Our study demonstrates that serum cytokines and chemokines including IFN-γ, MIP-1β, IL-17 and G-CSF could be considered as diagnostic markers to distinguish between candidemia and bacteremia. Combination of these biomarkers might improve the diagnostic efficiency of candidemia when compared with bacteremia.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China; Department of Orthopedics, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Chi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Ming Yang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China; Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinjun Li
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China
| | - Jiayue Cui
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
31
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
32
|
Howlett P, Du Bruyn E, Morrison H, Godsent IC, Wilkinson KA, Ntsekhe M, Wilkinson RJ. The immunopathogenesis of tuberculous pericarditis. Microbes Infect 2020; 22:172-181. [PMID: 32092538 DOI: 10.1016/j.micinf.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Tuberculous pericarditis is a severe form of extrapulmonary tuberculosis and is the commonest cause of pericardial effusion in high incidence settings. Mortality ranges between 8 and 34%, and it is the leading cause of pericardial constriction in Africa and Asia. Current understanding of the disease is based on models derived from studies performed in the 1940-50s. This review summarises recent advances in the histology, microbiology and immunology of tuberculous pericarditis, with special focus on the effect of Human Immunodeficiency Virus (HIV) and the determinants of constriction.
Collapse
Affiliation(s)
- Patrick Howlett
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, University of Cape Town, Observatory 7925, South Africa.
| | - Elsa Du Bruyn
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Hazel Morrison
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, United Kingdom
| | - Isiguzo C Godsent
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, Federal Teaching Hospital Abakaliki, Nigeria
| | - Katalin A Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Mpiko Ntsekhe
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert J Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom; Department of Infectious Diseases, Imperial College London, W2 1PG, United Kingdom
| |
Collapse
|
33
|
Wang Q, Yang M, Wang C, Cui J, Li X, Wang C. Diagnostic efficacy of serum cytokines and chemokines in fungal bloodstream infection in febrile patients. J Clin Lab Anal 2020; 34:e23149. [PMID: 31971308 PMCID: PMC7171303 DOI: 10.1002/jcla.23149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of serum cytokines/chemokines in early diagnosis of fungal infections has not been clearly clarified yet. This study aims to measure the serum levels of cytokines/chemokines in cases of fungemia and to compare them with culture-negative controls. METHODS In total, fourteen types of serum cytokines and chemokines from 41 patients with fungemia were compared with 57 patients with negative blood culture results. The cytokine and chemokine levels were detected with multiplex platform. We then performed statistical analysis as a two-tailed P < .05. ROC analysis was performed, and an area under the curve (AUC), and sensitivity and specificity values were calculated to determine the efficacy of various cytokines and chemokines for fungemia. Binary logistic regression was performed to further explore the combination mode of cytokines and chemokines, which could increase the diagnostic efficiency. RESULTS C-reactive protein and procalcitonin were significantly higher compared with those in negative control group, while white blood cell, percentage of neutrophil, percentage of lymphocyte, and ratio of neutrophil and lymphocyte did not differentiate between two groups. Serum levels of IFN-γ, TNF-α, MIP-1β, IL-6, IL-8, IL-10, IL-12p70, and IL-17 were significantly higher in patients with fungemia compared with the control group. Combination of MIP-1β and IL-17 could improve the AUC, sensitivity, and specificity for the diagnosis of fungemia. CONCLUSION Our study demonstrates that serum cytokines and chemokines including IFN-γ, TNF-α, MIP-1β, IL-6, IL-8, IL-10, IL-12p70, and IL-17 could be considered as diagnostic markers for fungemia. Combination of these biomarkers might improve the diagnostic efficiency of fungemia.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China.,Department of Orthopedics, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ming Yang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chi Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Jiayue Cui
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinjun Li
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Chengbin Wang
- Department of Clinical Laboratory Medicine, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
34
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Scala E, Di Caprio R, Cacciapuoti S, Caiazzo G, Fusco A, Tortorella E, Fabbrocini G, Balato A. A new T helper 17 cytokine in hidradenitis suppurativa: antimicrobial and proinflammatory role of interleukin-26. Br J Dermatol 2019; 181:1038-1045. [PMID: 30829398 DOI: 10.1111/bjd.17854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Interleukin (IL)-26 is a signature T helper 17 cytokine described as a proinflammatory and antimicrobial mediator. So far, IL-26 has been reported in several immune-mediated inflammatory diseases, but its involvement in inflammatory skin disorders is poorly known. OBJECTIVES To investigate the role of IL-26 in hidradenitis suppurativa (HS), through its involvement in antimicrobial activity. METHODS IL-26 was assessed in patients with HS through gene expression and protein analysis at skin and circulating levels. Ex vivo HS organ skin cultures, together with IL-26 antibody treatment, were performed to determine the IL-26 activity. Peripheral blood mononuclear cells (PBMCs) from patients with HS and healthy controls were either silenced or not with IL-26 small interfering (si)RNA in order to measure its antimicrobial, cytotoxic and phagocytic activities against Staphylococcus aureus. RESULTS Firstly, we observed that IL-26 is able to modulate the proinflammatory response at the immune cell level. IL-26 was increased in the plasma of patients with HS compared with healthy controls. Subsequently, we explored the bactericidal, cytotoxic and phagocytic activities of PBMCs against S. aureus in patients with HS and healthy controls. These activities were lower in patients with HS than in controls. Remarkably, the killing activities were reduced when healthy control PBMCs were transfected with IL-26 siRNA. However, the transfection did not affect the killing activity of HS PBMCs, supporting the idea that IL-26 lacks efficacy in HS. CONCLUSIONS Our findings suggest that infection susceptibility in HS might be related to IL-26. Although the role of bacteria remains controversial in HS, this paper supports that there is a defect of antimicrobial response in these patients. What's already known about this topic? Interleukin (IL)-26 is a T helper 17 cytokine described as an antimicrobial and proinflammatory mediator. IL-26 has been reported in immune-mediated inflammatory diseases, but its involvement in inflammatory skin disorders remains unclear. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder characterized by deficiency of IL-20 and IL-22 (a close homologue of IL-26), which causes antimicrobial peptide pauperization leading to severe and recurrent skin infections. What does this study add? IL-26 plasma levels are higher in patients with HS than in healthy control individuals. The antimicrobial activity of IL-26 might be ineffective in patients with HS. What is the translational message? Cutaneous antimicrobial incompetence in HS could be related to IL-26.
Collapse
Affiliation(s)
- E Scala
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - R Di Caprio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - S Cacciapuoti
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - G Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - A Fusco
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - E Tortorella
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - G Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - A Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
36
|
Leyva-Castillo JM, Yoon J, Geha RS. IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice. J Allergy Clin Immunol 2019; 143:619-630.e7. [PMID: 29920352 PMCID: PMC6298864 DOI: 10.1016/j.jaci.2018.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/09/2018] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Serum IL-22 levels are increased in patients with atopic dermatitis, which commonly precedes asthma in the atopic march. Epicutaneous sensitization in mice results in TH2-dominated skin inflammation that mimics atopic dermatitis and sensitizes the airways for antigen challenge-induced allergic inflammation characterized by the presence of both eosinophils and neutrophils. Epicutaneous sensitization results in increased serum levels of IL-22. OBJECTIVE We sought to determine the role of IL-22 in antigen-driven airway allergic inflammation after inhalation challenge in epicutaneously sensitized mice. METHODS Wild-type (WT) and Il22-/- mice were sensitized epicutaneously or immunized intraperitoneally with ovalbumin (OVA) and challenged intranasally with antigen. OVA T-cell receptor-specific T cells were TH22 polarized in vitro. Airway inflammation, mRNA levels in the lungs, and airway hyperresponsiveness (AHR) were examined. RESULTS Epicutaneous sensitization preferentially elicited an IL-22 response compared with intraperitoneal immunization. Intranasal challenge of mice epicutaneously sensitized with OVA elicited in the lungs Il22 mRNA expression, IL-22 production, and accumulation of CD3+CD4+IL-22+ T cells that coexpressed IL-17A and TNF-α. Epicutaneously sensitized Il22-/- mice exhibited diminished eosinophil and neutrophil airway infiltration and decreased AHR after intranasal OVA challenge. Production of IL-13, IL-17A, and TNF-α was normal, but IFN-γ production was increased in lung cells from airway-challenged and epicutaneously sensitized Il22-/- mice. Intranasal instillation of IFN-γ-neutralizing antibody partially reversed the defect in eosinophil recruitment. WT recipients of TH22-polarized WT, but not IL-22-deficient, T-cell receptor OVA-specific T cells, which secrete both IL-17A and TNF-α, had neutrophil-dominated airway inflammation and AHR on intranasal OVA challenge. Intranasal instillation of IL-22 with TNF-α, but not IL-17A, elicited neutrophil-dominated airway inflammation and AHR in WT mice, suggesting that loss of IL-22 synergy with TNF-α contributed to defective recruitment of neutrophils into the airways of Il22-/- mice. TNF-α, but not IL-22, blockade at the time of antigen inhalation challenge inhibited airway inflammation in epicutaneously sensitized mice. CONCLUSION Epicutaneous sensitization promotes generation of antigen-specific IL-22-producing T cells that promote airway inflammation and AHR after antigen challenge, suggesting that IL-22 plays an important role in the atopic march.
Collapse
Affiliation(s)
- Juan Manuel Leyva-Castillo
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Juhan Yoon
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
37
|
Li Q, Wang B, Mu K, Zhang J. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1−Th2 paradigm. J Cell Physiol 2018; 234:2204-2216. [PMID: 30246383 DOI: 10.1002/jcp.27180] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Qian Li
- Department of EndocrinologyJinshan Hospital of Fudan UniversityShanghai China
| | - Bin Wang
- Department of EndocrinologyJinshan Hospital of Fudan UniversityShanghai China
| | - Kaida Mu
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghai China
| | - Jin‐An Zhang
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghai China
| |
Collapse
|
38
|
Carey B, Lambourne J, Porter S, Hodgson T. Chronic mucocutaneous candidiasis due to gain-of-function mutation in STAT1. Oral Dis 2018; 25:684-692. [PMID: 29702748 DOI: 10.1111/odi.12881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
Chronic mucocutaneous candidiasis (CMC) is a heterogenous group of primary immunodeficiency diseases characterised by susceptibility to chronic or recurrent superficial Candida infection of skin, nails and mucous membranes. Gain-of-function mutations in the STAT1 gene (STAT1-GOF) are the most common genetic aetiology for CMC, and mutation analysis should be considered. These mutations lead to defective responses in Type 1 and Type 17 helper T cells (Th1 and Th17), which, depending on the mutation, also predispose to infection with Staphylococci, Mycobacteria and Herpesviridae. We describe the clinical and genetic findings for three patients with CMC due to gain-of-function mutations in the STAT1 gene.
Collapse
Affiliation(s)
- Barbara Carey
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| | - Jonathan Lambourne
- Department of Microbiology and Infectious Diseases, Barts Health NHS Trust, London, UK
| | - Stephen Porter
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| | - Tim Hodgson
- Oral Medicine Unit, UCLH NHS Foundation Trust, Eastman Dental Hospital, UCL Eastman Dental Institute, London, UK
| |
Collapse
|
39
|
Bedeutung von Klima- und Umweltschutz für die Gesundheit mit besonderer Berücksichtigung von Schädigungen der Hautbarriere und allergischen Folgeerkrankungen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:684-696. [DOI: 10.1007/s00103-018-2742-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends Immunol 2018; 39:315-327. [DOI: 10.1016/j.it.2018.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
|
41
|
de Albuquerque JAT, Banerjee PP, Castoldi A, Ma R, Zurro NB, Ynoue LH, Arslanian C, Barbosa-Carvalho MUW, Correia-Deur JEDM, Weiler FG, Dias-da-Silva MR, Lazaretti-Castro M, Pedroza LA, Câmara NOS, Mace E, Orange JS, Condino-Neto A. The Role of AIRE in the Immunity Against Candida Albicans in a Model of Human Macrophages. Front Immunol 2018; 9:567. [PMID: 29666621 PMCID: PMC5875531 DOI: 10.3389/fimmu.2018.00567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a primary immunodeficiency caused by mutations in the autoimmune regulator gene (AIRE). Patients with AIRE mutations are susceptible to Candida albicans infection and present with autoimmune disorders. We previously demonstrated that cytoplasmic AIRE regulates the Syk-dependent Dectin-1 pathway. In this study, we further evaluated direct contact with fungal elements, synapse formation, and the response of macrophage-like THP-1 cells to C. albicans hyphae to determine the role of AIRE upon Dectin receptors function and signaling. We examined the fungal synapse (FS) formation in wild-type and AIRE-knockdown THP-1 cells differentiated to macrophages, as well as monocyte-derived macrophages from APECED patients. We evaluated Dectin-2 receptor signaling, phagocytosis, and cytokine secretion upon hyphal stimulation. AIRE co-localized with Dectin-2 and Syk at the FS upon hyphal stimulation of macrophage-like THP-1 cells. AIRE-knockdown macrophage-like THP-1 cells exhibited less Dectin-1 and Dectin-2 receptors accumulation, decreased signaling pathway activity at the FS, lower C. albicans phagocytosis, and less lysosome formation. Furthermore, IL-1β, IL-6, or TNF-α secretion by AIRE-knockdown macrophage-like THP-1 cells and AIRE-deficient patient macrophages was decreased compared to control cells. Our results suggest that AIRE modulates the FS formation and hyphal recognition and help to orchestrate an effective immune response against C. albicans.
Collapse
Affiliation(s)
| | - Pinaki Prosad Banerjee
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Royce Ma
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Hideki Ynoue
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Arslanian
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Luis Alberto Pedroza
- Colegio de Ciencias de la Salud, Escuela de Medicina, Hospital de los Valles, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Emily Mace
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jordan Scott Orange
- Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Li Y, Sun W. Effects of Th17/Treg cell imbalance on HIV replication in patients with AIDS complicated with tuberculosis. Exp Ther Med 2018; 15:2879-2883. [PMID: 29456692 PMCID: PMC5795545 DOI: 10.3892/etm.2018.5768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to determine the effect of Th17/Treg cell imbalance on HIV replication in patients with AIDS complicated with tuberculosis (TB). We selected 32 patients with AIDS combined with TB infection in our hospital and 30 healthy individual as controls. The Th17/Treg ratio in peripheral blood lymphocytes was detected by flow cytometry. Compared with healthy subjects, Th17 cells first declined in HIV patients with TB, but gradually increased over the course of the disease. Treg showed an increasing trend in HIV patients with TB. The Th17/Treg ratio was significantly altered as the condition gradually deteriorated. ELISA showed that interleukin (IL)-17, IL-6 and IL-10 in patients with HIV complicated with TB were significantly lower than in healthy subjects. The imbalance of Th17/Treg cells can promote HIV virus replication in AIDS patients with TB infection, which can aggravate the condition.
Collapse
Affiliation(s)
- Yanshuang Li
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weijia Sun
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
43
|
Mattii M, Lovászi M, Garzorz N, Atenhan A, Quaranta M, Lauffer F, Konstantinow A, Küpper M, Zouboulis C, Kemeny L, Eyerich K, Schmidt-Weber C, Törőcsik D, Eyerich S. Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. Br J Dermatol 2018; 178:722-730. [DOI: 10.1111/bjd.15879] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- M. Mattii
- ZAUM - Center for Allergy and Environment; Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Biedersteinerstraße 29 80802 Munich Germany
| | - M. Lovászi
- Department of Dermatology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - N. Garzorz
- Department of Dermatology and Allergy; Technische Universität Munich; Munich Germany
| | - A. Atenhan
- ZAUM - Center for Allergy and Environment; Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Biedersteinerstraße 29 80802 Munich Germany
| | - M. Quaranta
- ZAUM - Center for Allergy and Environment; Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Biedersteinerstraße 29 80802 Munich Germany
| | - F. Lauffer
- Department of Dermatology and Allergy; Technische Universität Munich; Munich Germany
| | - A. Konstantinow
- Department of Dermatology and Allergy; Technische Universität Munich; Munich Germany
| | - M. Küpper
- ZAUM - Center for Allergy and Environment; Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Biedersteinerstraße 29 80802 Munich Germany
| | - C.C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau Germany
| | - L. Kemeny
- Department of Dermatology and Allergology; University of Szeged; Szeged Hungary
| | - K. Eyerich
- Department of Dermatology and Allergy; Technische Universität Munich; Munich Germany
| | - C.B. Schmidt-Weber
- ZAUM - Center for Allergy and Environment; Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Biedersteinerstraße 29 80802 Munich Germany
| | - D. Törőcsik
- Department of Dermatology; Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - S. Eyerich
- ZAUM - Center for Allergy and Environment; Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Biedersteinerstraße 29 80802 Munich Germany
| |
Collapse
|
44
|
Davidson L, Netea MG, Kullberg BJ. Patient Susceptibility to Candidiasis-A Potential for Adjunctive Immunotherapy. J Fungi (Basel) 2018; 4:E9. [PMID: 29371502 PMCID: PMC5872312 DOI: 10.3390/jof4010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/15/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30-50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy.
Collapse
Affiliation(s)
- Linda Davidson
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Bart Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Shroff A, Sequeira R, Patel V, Reddy KVR. Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell Immunol 2017; 324:59-73. [PMID: 29306553 DOI: 10.1016/j.cellimm.2017.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
The female reproductive tract (FRT) presents a unique challenge to the mucosal immune system as it needs to monitor constantly for the presence of opportunistic pathogens amidst its commensal flora. During infection, autophagy plays a critical role in pathogen clearance, presentation of antigens and production of pro-inflammatory cytokines. However, no information is available that describes the role of autophagy in mouse vaginal infection of Candida albicans. The objective of our study is to evaluate the effect of autophagy gene, ATG5 knockout in vaginal cells in response to vaginal C. albicans infection. Mice having knockout of ATG5 in the vaginal cells (PR-ATG5-KO mice) were infected intra-vaginally with the yeast form of Candida albicans. Vaginal lavages were collected once in a week until the infection was cleared. We detected the expression of autophagy marker genes (LC3, ATG5 and LAMP1) in the vaginal cells. We determined the levels of various cytokines (IL-1α, IL-1β, IL-6, IL-10, IL-17A, IL-22, IL-23p19, TNF-α and G-CSF) involved in anti-candida response. The levels of cytokines in the vaginal lavages were quantified using Aimplex Premixed analyte kit. The vaginal lavages were checked for polymorphonuclear leucocytes (PMNLs) infiltration. The candida clearance rate from the vaginal lumen was determined by Colony Forming Units (CFUs) assay. The results revealed that PR-ATG5-KO mice failed to induce the expression of LC3, ATG5 and LAMP1 indicating an impaired autophagy pathway. The levels of all the cytokines (except IL-10) in C. albicans infected PR-ATG5-KO mice were significantly reduced as compared to the wild type infected C57BL/6 mice. The number of PMNLs infiltrated into the vaginal lavages of infected PR-ATG5-KO mice was reduced. The clearance of C. albicans from the vaginal lumen was also considerably delayed in PR-ATG5-KO mice. In conclusion, the results revealed that impaired autophagy in vaginal cells influences host response during vaginal infection of C. albicans by affecting anti-Candida cytokine levels in the vaginal lavage resulting in reduction of pathogen clearance rate.
Collapse
Affiliation(s)
- Ankit Shroff
- Division of Molecular Immunology & Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), J.M. Street, Parel, Mumbai 400012, India
| | - Roicy Sequeira
- Division of Molecular Immunology & Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), J.M. Street, Parel, Mumbai 400012, India
| | - Vainav Patel
- Department of Biochemistry & Virology, National Institute for Research in Reproductive Health (NIRRH), J.M. Street, Parel, Mumbai 400012, India
| | - K V R Reddy
- Division of Molecular Immunology & Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), J.M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
46
|
Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, Li R. Impaired Specific Antifungal Immunity in CARD9-Deficient Patients with Phaeohyphomycosis. J Invest Dermatol 2017; 138:607-617. [PMID: 29080677 DOI: 10.1016/j.jid.2017.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/17/2017] [Accepted: 10/08/2017] [Indexed: 12/29/2022]
Abstract
Phaeohyphomycosis is a group of severe infections caused by dematiaceous fungi. We previously identified CARD9 deficiencies in four Chinese patients with phaeohyphomycosis caused by Phialophora verrucosa. In this study, we sought to identify the genetic and immunological mechanisms underlying rare dematiaceous fungal infections in three otherwise healthy patients with phaeohyphomycosis caused by Exophiala spinifera, Ochroconis musae, and Corynespora cassiicola. CARD9 sequencing in these patients showed one mutation (p.S23X) that, to our knowledge, has not been characterized and two previously characterized mutations (p.D274fsX60 and p.L64fsX59) that led to lack of CARD9 protein expression. Patient-derived CARD9-deficient cells showed a selective impairment of proinflammatory cytokine and chemokine production, NF-κB activation, and T helper type 22- and T helper type 17-associated responses upon fungus-specific stimulation, whereas phagocytosis and reactive oxygen species production were intact. Consistently, Card9-knockout mice were highly susceptible to phaeohyphomycosis and exhibited immune deficiencies similar to those of patients, including diminished NF-κB and p38 MAPK activation in local and in vitro functional studies. This work clarifies the association between inherited CARD9 deficiencies and phaeohyphomycosis, and furthers current knowledge on the spectrum and pathophysiology of diseases resulting from CARD9 deficiencies.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruijun Zhang
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Weiwei Wu
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.
| |
Collapse
|
47
|
Campanati A, Consales V, Orciani M, Giuliodori K, Ganzetti G, Bobyr I, Sorgentoni G, di Primio R, Offidani A. Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. PSORIASIS-TARGETS AND THERAPY 2017; 7:73-85. [PMID: 29387610 PMCID: PMC5774609 DOI: 10.2147/ptt.s108311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent nonhematopoietic stromal cells studied for their properties and importance in management of several skin diseases. This review collects and analyzes the emerging published data, which describe the function of MSCs in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Anna Campanati
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Veronica Consales
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Monia Orciani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Katia Giuliodori
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Ganzetti
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Ivan Bobyr
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Giulia Sorgentoni
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Roberto di Primio
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Clinic, Department of Clinical and Molecular Sciences, Polytechnic Marche University, Ancona, Italy
| |
Collapse
|
48
|
Interaction of Candida Species with the Skin. Microorganisms 2017; 5:microorganisms5020032. [PMID: 28590443 PMCID: PMC5488103 DOI: 10.3390/microorganisms5020032] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
The human skin is commonly colonized by diverse fungal species. Some Candida species, especially C. albicans, do not only reside on the skin surface as commensals, but also cause infections by growing into the colonized tissue. However, defense mechanisms at the skin barrier level are very efficient, involving residential non-immune and immune cells as well as immune cells specifically recruited to the site of infection. Therefore, the skin is an effective barrier against fungal infection. While most studies about commensal and pathogenic interaction of Candida species with host epithelia focus on the interaction with mucosal surfaces such as the vaginal and gastrointestinal epithelia, less is known about the mechanisms underlying Candida interaction with the skin. In this review, we focus on the ecology and molecular pathogenesis of Candida species on the skin and give an overview of defense mechanisms against C. albicans in this context. We also discuss new research avenues in dermal infection, including the involvement of neurons, fibroblasts, and commensal bacteria in both mouse and human model systems.
Collapse
|
49
|
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Ter Horst R, Jansen T, Jacobs L, Bonder MJ, Kurilshikov A, Fu J, Joosten LAB, Zhernakova A, Huttenhower C, Wijmenga C, Netea MG, Xavier RJ. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2017; 167:1125-1136.e8. [PMID: 27814509 DOI: 10.1016/j.cell.2016.10.020] [Citation(s) in RCA: 694] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP.
Collapse
Affiliation(s)
- Melanie Schirmer
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sanne P Smeekens
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Hera Vlamakis
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Eric A Franzosa
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Trees Jansen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Liesbeth Jacobs
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 EX Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 EX Groningen, the Netherlands; Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 EX Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Centre Groningen, 9713 EX Groningen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 EX Groningen, the Netherlands
| | - Curtis Huttenhower
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 EX Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, 6525 GA Nijmegen, the Netherlands.
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Hau CS, Tada Y, Kanda N, Watanabe S. Immunoresponses in dermatomycoses. J Dermatol 2016; 42:236-44. [PMID: 25736316 DOI: 10.1111/1346-8138.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/19/2022]
Abstract
Contact with fungal pathogens initiates a series of host responses beginning with innate immunity, which leads to fungal recognition and microbial killing. The innate immune system also modulates the adaptive immune responses, leading to the establishment of immunological memory and protection against pathogens. In the case of dimorphic fungi such as Candida albicans and Malassezia, the immune system plays an important role in tolerance and resistance when managing the organisms either as commensal microbiota or invading pathogens, and disruption of this balance can result in pathological consequences for the host. In addition, Malassezia and dermatophytes have immunomodulatory capabilities that allow them to adapt to their environments and they may exert different effects in healthy and diseased skin. Here, we discuss the host immune responses to dermatomycoses caused by dimorphic fungi such as C. albicans and Malassezia as well as dermatophytes such as Trichophyton spp. and Arthroderma benhamiae to gain a better understanding of the mechanisms of the host-dermatomycosis interaction.
Collapse
Affiliation(s)
- Carren Sy Hau
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|