1
|
Patente TA, Gasan TA, Scheenstra M, Ozir-Fazalalikhan A, Obieglo K, Schetters S, Verwaerde S, Vergote K, Otto F, Wilbers RHP, van Bloois E, Wijck YV, Taube C, Hammad H, Schots A, Everts B, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. S. mansoni -derived omega-1 prevents OVA-specific allergic airway inflammation via hampering of cDC2 migration. PLoS Pathog 2024; 20:e1012457. [PMID: 39186814 PMCID: PMC11379383 DOI: 10.1371/journal.ppat.1012457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic infection with Schistosoma mansoni parasites is associated with reduced allergic sensitization in humans, while schistosome eggs protects against allergic airway inflammation (AAI) in mice. One of the main secretory/excretory molecules from schistosome eggs is the glycosylated T2-RNAse Omega-1 (ω1). We hypothesized that ω1 induces protection against AAI during infection. Peritoneal administration of ω1 prior to sensitization with Ovalbumin (OVA) reduced airway eosinophilia and pathology, and OVA-specific Th2 responses upon challenge, independent from changes in regulatory T cells. ω1 was taken up by monocyte-derived dendritic cells, mannose receptor (CD206)-positive conventional type 2 dendritic cells (CD206+ cDC2), and by recruited peritoneal macrophages. Additionally, ω1 impaired CCR7, F-actin, and costimulatory molecule expression on myeloid cells and cDC2 migration in and ex vivo, as evidenced by reduced OVA+ CD206+ cDC2 in the draining mediastinal lymph nodes (medLn) and retainment in the peritoneal cavity, while antigen processing and presentation in cDC2 were not affected by ω1 treatment. Importantly, RNAse mutant ω1 was unable to reduce AAI or affect DC migration, indicating that ω1 effects are dependent on its RNAse activity. Altogether, ω1 hampers migration of OVA+ cDC2 to the draining medLn in mice, elucidating how ω1 prevents allergic airway inflammation in the OVA/alum mouse model.
Collapse
Affiliation(s)
- Thiago A Patente
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maaike Scheenstra
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Katja Obieglo
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Frank Otto
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Wageningen, Netherlands
| | - Eline van Bloois
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Christian Taube
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Arjen Schots
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart Everts
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
2
|
Tang CL, Lian Z, Ding FR, Liang J, Li XY. Schistosoma-related molecules as a new strategy to combat type 1 diabetes through immune regulation. Parasitol Int 2024; 98:102818. [PMID: 37848126 DOI: 10.1016/j.parint.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
The study of immune regulation mechanisms induced by parasites may help develop new treatment methods for inflammatory diseases including type 1 diabetes, which is related to type 1 immune responses. The negative correlation between schistosomiasis infection and type 1 diabetes has been confirmed, and the mechanism of Schistosoma-mediated prevention of type 1 diabetes may be related to the adaptive and innate immune systems. Schistosoma-related molecules affect immune cell composition and macrophage polarization and stimulate an increase in natural killer T cells. Furthermore, Schistosoma-related molecules can regulate the adaptive immune responses related to the prevention of type 1 diabetes and change the Th1/Th2 and Th17/Treg axis. Our previous review showed the role of regulatory T cells in the protective of type 1 diabetes mediated by Schistosoma. Here, we aim to review the other mechanisms of schistosomiasis infection and Schistosoma-related products in regulating the immune response associated with the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhan Lian
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Fan-Rong Ding
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China.
| | - Xiang-You Li
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
3
|
Morales-Ruiz V, López-Recinos D, Castañeda MG, Guevara-Salinas A, Parada-Colin C, Gómez-Fuentes S, Espitia-Pinzón C, Hernández-González M, Adalid-Peralta L. Characterization of excretory/secretory products of the Taenia crassiceps cysticercus involved in the induction of regulatory T cells in vivo. Parasitol Res 2023:10.1007/s00436-023-07847-x. [PMID: 37115316 DOI: 10.1007/s00436-023-07847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
The ability to modulate the host immune response has allowed some parasites to establish themselves in the tissues of an immunocompetent organism. While some parasite excretion/secretion products (ESPs) were recently reported to induce differentiation of regulatory T cells (Tregs), their identity is not known. This work is aimed to identify and characterize ESPs of Taenia crassiceps cysticerci linked with Treg induction in vivo. ESPs were obtained from cultures of T. crassiceps cysticerci and inoculated in mice, measuring Treg levels by flow cytometry. Proteins in ESPs were analyzed by electrophoresis; then, ESPs were classified as either differential or conserved. Differentially included proteins were MS-sequenced and functionally characterized. Only 4 of 10 ESPs induced Tregs. Proteins with catalytic activity and those involved in immunological processes predominated, supporting the idea that these molecules could play an important role in the induction of Tregs.
Collapse
Affiliation(s)
- Valeria Morales-Ruiz
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - Dina López-Recinos
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - María Gracia Castañeda
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
- Laboratorio de Biología Molecular y Genética del Centro Médico Naval, Cirujano Mayor Santiago Távara de La Marina de Guerra del Perú, Avenida S/N, Avenida República de Venezuela, Bellavista, Peru
| | - Adrián Guevara-Salinas
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - Cristina Parada-Colin
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Sandra Gómez-Fuentes
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico
| | - Clara Espitia-Pinzón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Marisela Hernández-González
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Laura Adalid-Peralta
- Unidad Periférica Para El Estudio de La Neuroinflamación en Patologías Neurológicas del Instituto de Investigaciones Biomédicas de La UNAM en El Instituto Nacional de Neurología Y Neurocirugía. Insurgentes Sur, 3877, Col. La Fama, 14269, Mexico City, Mexico.
- Instituto Nacional de Neurología Y Neurocirugía, Insurgentes Sur 3877, Col. La Fama, 14269, Mexico City, Mexico.
| |
Collapse
|
4
|
He X, Sun Y, Yang F, Zheng G, Li R, Liu M, Li W, Zhou DH, Zheng Y. Heat shock protein 60 in parasitic helminths: A role in immune responses and therapeutic applications. Mol Biochem Parasitol 2023; 253:111544. [PMID: 36641059 DOI: 10.1016/j.molbiopara.2023.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Heat shock protein 60 (HSP60) is an unique member of the heat shock protein family, being involved in parasite infections. To cope with harsh environments where parasites live, HSP60s are indispensable and involved in a variety of biological processes. HSP60s have relative low similarity among parasites, but their ATPase /Mg2+ active sites are highly conserved. The interactions of HSP60s with signaling pathway regulators in immune cells suggest a crucial role in immune responses, rendering them a potential therapeutic target. This paper reviews the current understandings of HSP60s in parasitic helminths in aspects of molecular characteristics, immunoregulatory responses and HSP60-based therapeutics.
Collapse
Affiliation(s)
- Xuedong He
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yue Sun
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fang Yang
- Zhejiang Kangjia Gene Technology Limited Liability Company, Hangzhou 310022, China
| | - Guanghui Zheng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wanjing Li
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology&College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Tsubokawa D. Immunomodulators secreted from parasitic helminths act on pattern recognition receptors. FRONTIERS IN PARASITOLOGY 2023; 1:1091596. [PMID: 39816467 PMCID: PMC11731691 DOI: 10.3389/fpara.2022.1091596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2025]
Abstract
Excretory-secretory (ES) products from parasitic helminths contain immunomodulatory molecules, which can regulate host immune responses. These immunomodulatory molecules are crucial for successful parasitism, and play roles in tissue migration, maturation, and reproduction. Some target pattern recognition receptors (PRRs), including toll-like receptor, C-type lectin receptor, receptor for advanced glycation end products, and nucleotide-binding oligomerization domain-like receptor. PRRs trigger activation of signaling cascades, inducing innate inflammatory responses and adaptive immunity in hosts. This article reviews ES immunomodulators identified in parasitic helminths that act on PRRs, and their PRR-facilitated immune-regulatory mechanisms. In addition, we describe the therapeutic potential of ES immunomodulators for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
6
|
Hou X, Zhu F, Zheng W, Jacques ML, Huang J, Guan F, Lei J. Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Front Cell Infect Microbiol 2022; 12:1028899. [PMID: 36304936 PMCID: PMC9592807 DOI: 10.3389/fcimb.2022.1028899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have been classified as modern refractory diseases. However, safe, well-tolerated, and effective treatments for IBDs are still lacking. Therefore, there is an urgent need to develop novel therapeutic targets with fewer undesirable adverse reactions. A growing body of research has shown that infection with live helminths or exposure to defined helminth-derived components can downregulate pathogenic inflammation due to their immunoregulatory ability. Here we were to explore the protective role of Schistosoma japonicum eggs on murine experimental colitis caused by trinitrobenzene sulfonic acid (TNBS) and the underlying mechanism. Frequencies of splenic Treg and Th17 cells were detected by flow cytometry. Protein and mRNA expressions of Foxp3 and RORγt were investigated by Western Blot and quantitative real-time polymerase chain reaction (qPCR), respectively. Concentrations of transforming growth factor-beta1 (TGF-β1), interleukin-10 (IL-10) and IL-17A were assessed with ELISA. Expression levels of genes related to glycolipid metabolism were measured with qPCR. The results showed that pre-exposure to S. japonicum eggs contributed to the relief of colitis in the TNBS model, evidenced by improved body weight loss, reversing spleen enlargement and colon shortening, and decreased histology scores. Compared with the TNBS group, the TNBS+Egg group had increased Treg immune response, accompanied by decreased Th17 immune response, leading to the reconstruction of Treg/Th17 balance. In addition, a ratio of Treg/Th17 was correlated negatively with the histological scores in the experiment groups. Furthermore, the regulation of Treg/Th17 balance by S. japonicum eggs was associated with inhibiting the glycolysis pathway and lipogenesis, along with promoting fatty acid oxidation in the TNBS+Egg group. These data indicate that S. japonicum eggs have a protective effect against TNBS-induced colitis, which is related to restoring Treg/Th17 balance and regulating glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiao Hou
- Department of Clinical Laboratory, The General Hospital of Central Theater Command, The People's Liberation Army, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muziazia Lupemba Jacques
- Department of Parasitology, Kinshasa Institute of Medical, Kinshasa, Democratic Republic of the Congo
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Pu’ai Hospital, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiahui Lei,
| |
Collapse
|
7
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Protective effect and mechanism of Schistosoma japonicum soluble egg antigen against type 1 diabetes in NOD mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Nagai K, Goto Y. Parasitomimetics: Can We Utilize Parasite-Derived Immunomodulatory Molecules for Interventions to Immunological Disorders? Front Immunol 2022; 13:824695. [PMID: 35386686 PMCID: PMC8977410 DOI: 10.3389/fimmu.2022.824695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Because our immune system has ability to expel microorganisms invading our body, parasites need evolution to maintain their symbiosis with the hosts. One such strategy of the parasites is to manipulate host immunity by producing immunomodulatory molecules and the ability of parasites to regulate host immunity has long been a target of research. Parasites can not only manipulate host immune response specific to them, but also influence the host's entire immune system. Such ability of the parasites may sometimes bring benefit to the hosts as many studies have indicated the "hygiene hypothesis" that a decreased opportunity of parasitic infections is associated with an increased incidence of allergy and autoimmune diseases. In other words, elucidating the mechanisms of parasites to regulate host immunity could be applied not only to resolution of parasitic infections but also to treatment of non-parasitic immunological disorders. In this review, we show how much progress has been made in the research on immunomodulation of host immunity by parasites. Here, we define the word 'parasitomimetics' as emulation of parasites' immunomodulatory systems to solve immunological problems in humans and discuss potential applications of parasite-derived molecules to other diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
11
|
IL-33: A central cytokine in helminth infections. Semin Immunol 2021; 53:101532. [PMID: 34823996 DOI: 10.1016/j.smim.2021.101532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
IL-33 is an alarmin cytokine which has been implicated in allergy, fibrosis, inflammation, tumorigenesis, metabolism, and homeostasis. However, amongst its strongest roles are in helminth infections, where IL-33 usually (but not always) is central to induction of an effective anti-parasitic immune response. In this review, we will summarise the literature around this fascinating cytokine, its activity on immune and non-immune cells, the unique (and sometimes counterintuitive) responses it induces, and how it can coordinate the immune response during infections by parasitic helminths. Finally, we will summarise some of the ways that parasites have developed to modulate the IL-33 pathway for their own benefit.
Collapse
|
12
|
The relationship between Schistosoma and glycolipid metabolism. Microb Pathog 2021; 159:105120. [PMID: 34358648 DOI: 10.1016/j.micpath.2021.105120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/02/2023]
Abstract
Diabetes and obesity have become the most popular metabolic diseases in the world. A large number of previous studies have shown that glucose and lipid metabolism disorder is an important risk factor and a main cause of diabetes and obesity. Schistosoma is a parasite transmitted by freshwater snails. It can induce a series of inflammatory and immune reactions after infecting the human body, causing schistosomiasis. However, in recent years, studies have found that Schistosoma infection or Schistosoma related products can improve or prevent some immune and inflammatory diseases, such as severe asthma, inflammatory bowel disease, diabetes and so on. Further experiments have also revealed that Schistosoma can promote the secretion of anti-inflammatory factors and regulate the glucose and lipid metabolism in the host body by polarizing immune cells such as T cells, B cells and dendritic cells (DCs). In this review, we summarize studies that investigated Schistosoma and Schistosoma-derived products and their relationship with glycolipid metabolism and related diseases, highlighting potential protective mechanisms.
Collapse
|
13
|
Pearson JA, Wong FS, Wen L. Inflammasomes and Type 1 Diabetes. Front Immunol 2021; 12:686956. [PMID: 34177937 PMCID: PMC8219953 DOI: 10.3389/fimmu.2021.686956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Microbiota have been identified as an important modulator of susceptibility in the development of Type 1 diabetes in both animal models and humans. Collectively these studies highlight the association of the microbiota composition with genetic risk, islet autoantibody development and modulation of the immune responses. However, the signaling pathways involved in mediating these changes are less well investigated, particularly in humans. Importantly, understanding the activation of signaling pathways in response to microbial stimulation is vital to enable further development of immunotherapeutics, which may enable enhanced tolerance to the microbiota or prevent the initiation of the autoimmune process. One such signaling pathway that has been poorly studied in the context of Type 1 diabetes is the role of the inflammasomes, which are multiprotein complexes that can initiate immune responses following detection of their microbial ligands. In this review, we discuss the roles of the inflammasomes in modulating Type 1 diabetes susceptibility, from genetic associations to the priming and activation of the inflammasomes. In addition, we also summarize the available inhibitors for therapeutically targeting the inflammasomes, which may be of future use in Type 1 diabetes.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
Jittimanee S, Wongratanacheewin S, Kaewraemruaen C, Jittimanee J. Opisthorchis viverrini antigens up-regulates the expression of CD80 and MHC class II in JAWSII mouse dendritic cells and promotes IL-10 and TGF-β secretions. Parasitol Int 2021; 84:102401. [PMID: 34082134 DOI: 10.1016/j.parint.2021.102401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APC) involved in the initiation of immune responses. Maturation of DCs is characterized by the high expression of major histocompatibility complex (MHC) class II and co-stimulatory clusters of differentiation (CD) 40, CD80, and CD86 molecules. Matured DCs are required for T cell differentiation and proliferation. However, the response of DCs to Opisthorchis viverrini antigens has not yet been understood. Therefore, this study sought to determine the expression of surface molecules of JAWSII mouse DCs stimulated by crude somatic (CS) and excretory-secretory (ES) antigens of O. viverrini. ES antigen significantly induced only mRNA expression of CD80 and MHC class II in JAWSII mouse DCs, while CS antigen promoted up-regulation of both mRNA and protein levels of CD80 and MHC class II, indicating relative maturation of JAWII mouse DCs. Moreover, the secreted cytokines from the co-cultures of O. viverrini antigens stimulated JAWSII DC with naïve CD4+ T cells was determined. Significantly increased levels of immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) were found. The up-regulation of these cytokines may indicate the response of regulatory T cells (Treg) to CS antigen-stimulated JAWSII DC. These findings may lead to a better understanding of the role that DCs play in O. viverrini infection.
Collapse
Affiliation(s)
- Suphattra Jittimanee
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Chamraj Kaewraemruaen
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campas, Nakhon Pathom, 73140, Thailand.
| | - Jutharat Jittimanee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
15
|
Mu Y, McManus DP, Hou N, Cai P. Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front Immunol 2021; 12:619776. [PMID: 33692793 PMCID: PMC7937812 DOI: 10.3389/fimmu.2021.619776] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
16
|
El-Naccache DW, Haskó G, Gause WC. Early Events Triggering the Initiation of a Type 2 Immune Response. Trends Immunol 2021; 42:151-164. [PMID: 33386241 PMCID: PMC9813923 DOI: 10.1016/j.it.2020.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
Type 2 immune responses are typically associated with protection against helminth infections and also with harmful inflammation in response to allergens. Recent advances have revealed that type 2 immunity also contributes to sterile inflammation, cancer, and microbial infections. However, the early events that initiate type 2 immune responses remain poorly defined. New insights reveal major contributions from danger-associated molecular patterns (DAMPs) in the initiation of type 2 immune responses. In this review, we examine the molecules released by the host and pathogens and the role they play in mediating the initiation of mammalian innate type 2 immune responses under a variety of conditions.
Collapse
Affiliation(s)
- Darine W El-Naccache
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - William C Gause
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
17
|
Cleenewerk L, Garssen J, Hogenkamp A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front Immunol 2020; 11:1821. [PMID: 32903582 PMCID: PMC7438586 DOI: 10.3389/fimmu.2020.01821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis states that improved hygiene and the resulting disappearance of once endemic diseases is at the origin of the enormous increase in immune related disorders such as autoimmune diseases seen in the industrialized world. Helminths, such as Schistosoma mansoni, are thought to provide protection against the development of autoimmune diseases by regulating the host's immune response. This modulation primarily involves induction of regulatory immune responses, such as generation of tolerogenic dendritic cells and alternatively activated macrophages. This points toward the potential of employing helminths or their products/metabolites as therapeutics for autoimmune diseases that are characterized by an excessive inflammatory state, such as multiple sclerosis (MS), type I diabetes (T1D) and inflammatory bowel disease (IBD). In this review, we examine the known mechanisms of immune modulation by S. mansoni, explore preclinical and clinical studies that investigated the use of an array helminthic products in these diseases, and propose that helminthic therapy opens opportunities in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- L Cleenewerk
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
The Potential Role of Schistosome-Associated Factors as Therapeutic Modulators of the Immune System. Infect Immun 2020; 88:IAI.00754-19. [PMID: 32341115 DOI: 10.1128/iai.00754-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasites and eggs of helminths, including schistosomes, are associated with factors that can modulate the nature and outcomes of host immune responses, particularly enhancing type 2 immunity and impairing the effects of type 1 and type 17 immunity. The main species of schistosomes that cause infection in humans are capable of generating a microenvironment that allows survival of the parasite by evasion of the immune response. Schistosome infections are associated with beneficial effects on chronic immune disorders, including allergies, autoimmune diseases, and alloimmune responses. Recently, there has been increasing research interest in the role of schistosomes in immunoregulation during human infection, and the mechanisms underlying these roles continue to be investigated. Further studies may identify potential opportunities to develop new treatments for immune disease. In this review, we provide an update on the advances in our understanding of schistosome-associated modulation of the cells of the innate and adaptive immune systems as well as the potential role of schistosome-associated factors as therapeutic modulators of immune disorders, including allergies, autoimmune diseases, and transplant immunopathology. We also discuss potential opportunities for targeting schistosome-induced immunoregulation for future translation to the clinical setting.
Collapse
|
19
|
Nono JK, Lutz MB, Brehm K. Expansion of Host Regulatory T Cells by Secreted Products of the Tapeworm Echinococcus multilocularis. Front Immunol 2020; 11:798. [PMID: 32457746 PMCID: PMC7225322 DOI: 10.3389/fimmu.2020.00798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
Background Alveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a chronic zoonosis associated with significant modulation of the host immune response. A role of regulatory T-cells (Treg) in generating an immunosuppressive environment around the metacestode during chronic disease has been reported, but the molecular mechanisms of Treg induction by E. multilocularis, particularly parasite immunoregulatory factors involved, remain elusive so far. Methodology/Principal Findings We herein demonstrate that excretory/secretory (E/S) products of the E. multilocularis metacestode promote the formation of Foxp3+ Treg from CD4+ T-cells in vitro in a TGF-β-dependent manner, given that this effect was abrogated by treatment with antibody to mammalian TGF-β. We also show that host T-cells secrete elevated levels of the immunosuppressive cytokine IL-10 in response to metacestode E/S products. Within the E/S fraction of the metacestode we identified an E. multilocularis activin A homolog (EmACT) that displays significant similarities to mammalian Transforming Growth Factor-β (TGF-β/activin subfamily members. EmACT obtained from heterologous expression failed to directly induce Treg expansion from naïve T cells but required addition of recombinant host TGF-β to promote CD4+ Foxp3+ Treg conversion in vitro. Furthermore, like in the case of metacestode E/S products, EmACT-treated CD4+ T-cells secreted higher levels of IL-10. These observations suggest a contribution of EmACT to in vitro expansion of Foxp3+ Treg by the E. multilocularis metacestode. Using infection experiments we show that intraperitoneally injected metacestode tissue expands host Foxp3+ Treg, confirming the expansion of this cell type in vivo during parasite establishment. Conclusion/Significance In conclusion, we herein demonstrate that E. multilocularis larvae secrete factors that induce the secretion of IL-10 by T-cells and contribute to the expansion of TGF-b-driven Foxp3+ Treg, a cell type that has been reported crucial for generating a tolerogenic environment to support parasite establishment and proliferation. Among the E/S factors of the parasite we identified a factor with structural and functional homologies to mammalian activin A which might play an important role in these activities.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaounde, Cameroon
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
White MPJ, McManus CM, Maizels RM. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. Immunology 2020; 160:248-260. [PMID: 32153025 PMCID: PMC7341546 DOI: 10.1111/imm.13190] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Helminth parasites infect an alarmingly large proportion of the world's population, primarily within tropical regions, and their ability to down‐modulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T‐cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF‐β mimic Hp‐TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite‐associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite‐derived molecules and/or Tregs might be applied as anti‐inflammatory therapies in the future.
Collapse
Affiliation(s)
- Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Caitlin M McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol Res 2019; 119:203-214. [PMID: 31845020 DOI: 10.1007/s00436-019-06511-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Infection with helminth parasites or the administration of their antigens can prevent or attenuate autoimmune diseases. To date, the specific molecules that prime the amelioration are only limited. In this study, recombinant Schistosoma japonicum cystatin (rSjcystatin) and fructose-1,6-bisphosphate aldolase (rSjFBPA) were administered to female NOD mice via intraperitoneal (i.p.) injection to characterize the immunological response by the recombinant proteins. We have shown that the administration of rSjcystatin or rSjFBPA significantly reduced the diabetes incidence and ameliorated the severity of type 1 diabetes mellitus (T1DM). Disease attenuation was associated with suppressed interferon-gamma (IFN-γ) production in autoreactive T cells and with a switch to the production of Th2 cytokines. Following rSjcystatin or rSjFBPA injection, regulatory T cells (Tregs) were remarkably increased, which was accompanied by increased expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β). Our study suggests that helminth-derived proteins may be useful in strategies to limit pathology by promoting the Th2 response and upregulating Tregs during the inflammatory tissue-damage process in T1DM.
Collapse
|
22
|
Therapeutic applicability of helminths in autoimmune diseases - literature overview. GASTROENTEROLOGY REVIEW 2019; 14:168-172. [PMID: 31649786 PMCID: PMC6807663 DOI: 10.5114/pg.2019.88164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/14/2019] [Indexed: 11/17/2022]
Abstract
This paper presents an overview of published studies conducted on helminths – parasites of the human gastrointestinal tract. Making use of their ability for immunomodulation may lead to the introduction of effective therapies for autoimmune diseases. This paper presents chronologically attempts to treat autoimmune diseases not only of the gastrointestinal tract, but also of the nervous and endocrine systems, which have been undertaken for decades. The overview of analysed reports demonstrates that as medical knowledge on the cells and mediators participating actively in inflammatory processes accumulates, clinical trials focus on ever more specific areas concerning the pathomechanisms of autoimmune diseases. The outcomes of clinical trials conducted both on animals and humans give reasons to assume that the modification of the human intestinal microflora may be the key to fighting against these diseases.
Collapse
|
23
|
Mouser EEIM, Pollakis G, Smits HH, Thomas J, Yazdanbakhsh M, de Jong EC, Paxton WA. Schistosoma mansoni soluble egg antigen (SEA) and recombinant Omega-1 modulate induced CD4+ T-lymphocyte responses and HIV-1 infection in vitro. PLoS Pathog 2019; 15:e1007924. [PMID: 31487324 PMCID: PMC6728022 DOI: 10.1371/journal.ppat.1007924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Parasitic helminths evade, skew and dampen human immune responses through numerous mechanisms. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effects that soluble egg antigen (SEA) from Schistosoma mansoni had on modulating HIV-1 infection and cytokine/chemokine production in vitro. We determined that SEA, specifically through kappa-5, can potently bind to DC-SIGN and thereby blocks DC-SIGN mediated HIV-1 trans-infection (p<0.05) whilst not interfering with cis-infection. DCs exposed to SEA whilst maturing under Th2 promoting conditions, will upon co-culture with naïve T-cells induce a T-cell population that was less susceptible to HIV-1 R5 infection (p<0.05) compared to DCs unexposed to SEA, whereas HIV-1 X4 virus infection was unaffected. This was not observed for DCs exposed to SEA while maturing under Th1 or Th1/Th2 (Tmix) promoting conditions. All T-cell populations induced by SEA exposed DCs demonstrate a reduced capacity to produce IFN-γ and MIP-1β. The infection profile of T-cells infected with HIV-1 R5 was not associated with down-modulation of CCR5 cell surface expression. We further show that DCs maturing under Tmix conditions exposed to plant recombinant omega-1 protein (rω-1), which demonstrates similar functions to natural ω-1, induced T-cell populations that were less sensitive for HIV-1 R5 infection (p<0.05), but not for X4 virus infection. This inhibition associated again with a reduction in IFN-γ and MIP-1β expression, but additionally correlated with reduced CCR5 expression. We have shown that SEA parasite antigens and more specifically rω-1 can modulate HIV-1 infectivity with the potential to influence disease course in co-infected individuals. Parasitic helminths have developed a number of strategies to evade, skew and dampen human immune responses. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effect that soluble egg antigen (SEA) from Schistosoma mansoni had on HIV-1 infection in vitro. We determined that SEA, through kappa-5, can potently block DC-SIGN mediated HIV-1 trans-infection of CD4+ T-lymphocytes, but not block cis-infection. Dendritic cells (DC) exposed to SEA during maturation under Th2 skewing conditions, induce T-cell populations that are less susceptible to HIV-1 R5 infection compared to cells induced by unexposed DCs. HIV-1 X4 infection was unaffected. This restricted infection profile was not associated with down-modulation of CCR5 surface expression or observed differences in cytokine/chemokine production. Using recombinant omega-1, an abundant component of SEA, HIV-1 R5 infection was similarly inhibited with no effect on HIV-1 X4 infection levels. Hence SEA possesses antigens, namely omega-1, that can modulate HIV-1 infection and potentially influence disease course in co-infected individuals.
Collapse
Affiliation(s)
- Emily EIM Mouser
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Esther C. de Jong
- Department of Cell Biology and Histology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- * E-mail: (ECdJ); (WAP)
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (ECdJ); (WAP)
| |
Collapse
|
24
|
Tang CL, Gao YR, Wang LX, Zhu YW, Pan Q, Zhang RH, Xiong Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol Cell Endocrinol 2019; 491:110434. [PMID: 31078638 DOI: 10.1016/j.mce.2019.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
The prevalence of T1D in developed societies is partly based on the hygiene hypothesis, that is, the loss of exposure to infectious agents accompanies the loss of immune stimuli shaping the immune system during development. Indeed, the components of parasites, such as Schistosoma, have been reported to ameliorate or prevent the development of T1D, which might be associated with immune cell activity especially that of regulatory T cells (Tregs). Schistosoma infection can lead to the expansion of Treg. Herein, we provide a comprehensive overview of the involvement of Tregs in the response against Schistosoma infection and the mechanism of Schistosoma-associated host protection against T1D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Li-Xia Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
25
|
Tang CL, Yu XH, Li Y, Zhang RH, Xie J, Liu ZM. Schistosoma japonicum Soluble Egg Antigen Protects Against Type 2 Diabetes in Lepr db/db Mice by Enhancing Regulatory T Cells and Th2 Cytokines. Front Immunol 2019; 10:1471. [PMID: 31297120 PMCID: PMC6607994 DOI: 10.3389/fimmu.2019.01471] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes is a metabolic disorder characterized by persistently elevated glucose levels. There is no effective treatment strategy for this condition, and it poses a massive economic burden globally. Schistosoma soluble egg antigen (SEA)-induced immunomodulatory mechanisms have been reported in the treatment of autoimmune disease. This study aimed to determine the ability of Schistosoma japonicum SEA to protect against type 2 diabetes in Leprdb/db mice and understand the associated mechanisms. The mice were divided into four groups: C57BL/6 (the normal group), SEA (C57BL/6 mice treated with SEA), Leprdb/db, and SEA and Leprdb/db co-treatment groups. The mice in the SEA and co-treatment groups were injected with 50 μg of SEA (twice a week for 6 weeks), and the same volume of PBS was used as control. Blood glucose, insulin, and HOMA-IR levels were measured in all mice, which were sacrificed 6 weeks after the last SEA administration. Flow cytometry was used to detect the percentages of regulatory T cells in splenocytes. ELISA was used to detect the levels of IFN-γ, IL-2, IL-4, and IL-5 in cell culture supernatants. Compared with the mice in the Leprdb/db group, the mice in the SEA + Leprdb/db group exhibited significantly reduced insulin resistance, as evidenced by the enhancement of wound healing. The frequency of spleen regulatory T cells increased significantly after SEA administration; meanwhile, the secretion of IL-4 and IL-5 in spleen cells was elevated. These results indicate that SEA can reduce insulin resistance and provide new targets for the treatment of type 2 diabetes. The potential mechanisms might be associated with increases in regulatory T cells and Th2 cytokines in Leprdb/db mice, which warrants further investigation.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiao-Hong Yu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Xie
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Zhi-Ming Liu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Nkurunungi G, van Diepen A, Nassuuna J, Sanya RE, Nampijja M, Nambuya I, Kabagenyi J, Serna S, Reichardt NC, van Ree R, Webb EL, Elliott AM, Yazdanbakhsh M, Hokke CH. Microarray assessment of N-glycan-specific IgE and IgG profiles associated with Schistosoma mansoni infection in rural and urban Uganda. Sci Rep 2019; 9:3522. [PMID: 30837526 PMCID: PMC6401159 DOI: 10.1038/s41598-019-40009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Core β-1,2-xylose and α-1,3-fucose are antigenic motifs on schistosome N-glycans, as well as prominent IgE targets on some plant and insect glycoproteins. To map the association of schistosome infection with responses to these motifs, we assessed plasma IgE and IgG reactivity using microarray technology among Ugandans from rural Schistosoma mansoni (Sm)-endemic islands (n = 209), and from proximate urban communities with lower Sm exposure (n = 62). IgE and IgG responses to core β-1,2-xylose and α-1,3-fucose modified N-glycans were higher in rural versus urban participants. Among rural participants, IgE and IgG to core β-1,2-xylose were positively associated with Sm infection and concentration peaks coincided with the infection intensity peak in early adolescence. Responses to core α-1,3-fucose were elevated regardless of Sm infection status and peaked before the infection peak. Among urban participants, Sm infection intensity was predominantly light and positively associated with responses to both motifs. Principal component and hierarchical cluster analysis reduced the data to a set of variables that captured core β-1,2-xylose- and α-1,3-fucose-specific responses, and confirmed associations with Sm and the rural environment. Responses to core β-1,2-xylose and α-1,3-fucose have distinctive relationships with Sm infection and intensity that should further be explored for associations with protective immunity, and cross-reactivity with other exposures.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda. .,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Richard E Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Irene Nambuya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Sonia Serna
- Glycotechnology Laboratory, Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE), San Sebastián, Spain
| | - Niels-Christian Reichardt
- Glycotechnology Laboratory, Centro de Investigación Cooperativa en Biomateriales (CIC biomaGUNE), San Sebastián, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), San Sebastián, Spain
| | - Ronald van Ree
- Amsterdam University Medical Centers, Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam, The Netherlands
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
27
|
Tang CL, Zou JN, Zhang RH, Liu ZM, Mao CL. Helminths protect against type 1 diabetes: effects and mechanisms. Parasitol Res 2019; 118:1087-1094. [PMID: 30758662 DOI: 10.1007/s00436-019-06247-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which cells of the immune system destroy pancreatic β cells, which secrete insulin. The high prevalence of T1D in developed societies may be explained by environmental changes, including lower exposure to helminths. Indeed, infection by helminths such as Schistosoma, Filaria, and Heligmosomoides polygyrus and their by-products has been reported to ameliorate or prevent the development of T1D in human and animal models. Helminths can trigger distinct immune regulatory pathways, often involving adaptive immune cells that include T helper 2 (Th2) cells and regulatory T cells (Tregs) and innate immune cells that include dendritic cells, macrophages, and invariant natural killer T cells, which may act synergistically to induce Tregs in a Toll-like receptor-dependent manner. Cytokines such as interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-β also play an important role in protection from T1D. Herein, we provide a comprehensive review of the effects and mechanisms underlying protection against T1D by helminths.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jie-Ning Zou
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zhi-Ming Liu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Cun-Lan Mao
- Department of Obstetrics and Gynecology, People's Hospital of Songzi City, Songzi, 434200, Hubei, China.
| |
Collapse
|
28
|
Ittiprasert W, Mann VH, Karinshak SE, Coghlan A, Rinaldi G, Sankaranarayanan G, Chaidee A, Tanno T, Kumkhaek C, Prangtaworn P, Mentink-Kane MM, Cochran CJ, Driguez P, Holroyd N, Tracey A, Rodpai R, Everts B, Hokke CH, Hoffmann KF, Berriman M, Brindley PJ. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. eLife 2019; 8:e41337. [PMID: 30644357 PMCID: PMC6355194 DOI: 10.7554/elife.41337] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Shannon E Karinshak
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Apisit Chaidee
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Toshihiko Tanno
- Department of SurgeryUniversity of MarylandBaltimoreUnited States
- Institute of Human VirologyUniversity of MarylandBaltimoreUnited States
| | - Chutima Kumkhaek
- Cellular and Molecular Therapeutics LaboratoryNational Heart, Lungs and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Pannathee Prangtaworn
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | | | - Christina J Cochran
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Bart Everts
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Cornelis H Hokke
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUnited Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| |
Collapse
|
29
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
30
|
Schwartz C, Fallon PG. Schistosoma "Eggs-Iting" the Host: Granuloma Formation and Egg Excretion. Front Immunol 2018; 9:2492. [PMID: 30459767 PMCID: PMC6232930 DOI: 10.3389/fimmu.2018.02492] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis is a major cause of morbidity in humans invoked by chronic infection with parasitic trematodes of the genus Schistosoma. Schistosomes have a complex life-cycle involving infections of an aquatic snail intermediate host and a definitive mammalian host. In humans, adult male and female worms lie within the vasculature. Here, they propagate and eggs are laid. These eggs must then be released from the host to continue the life cycle. Schistosoma mansoni and Schistosoma japonicum reside in the mesenteric circulation of the intestines with egg excreted in the feces. In contrast, S. haematobium are present in the venus plexus of the bladder, expelling eggs in the urine. In an impressive case of exploitation of the host immune system, this process of Schistosome “eggs-iting” the host is immune dependent. In this article, we review the formation of the egg granuloma and explore how S. mansoni eggs laid in vasculature must usurp immunity to induce regulated inflammation, to facilitate extravasation through the intestinal wall and to be expelled in the feces. We highlight the roles of immune cell populations, stromal factors, and egg secretions in the process of egg excretion to provide a comprehensive overview of the current state of knowledge regarding a vastly unexplored mechanism.
Collapse
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.,Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
32
|
Schwartz C, Hams E, Fallon PG. Helminth Modulation of Lung Inflammation. Trends Parasitol 2018; 34:388-403. [PMID: 29339033 DOI: 10.1016/j.pt.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Parasitic helminths must establish chronic infections to complete their life cycle and therefore are potent modulators of multiple facets of host physiology. Parasitic helminths have coevolved with humans to become arguably master selectors of our immune system, whereby they have impacted on the selection of genes with beneficial mutations for both host and parasite. While helminth infections of humans are a significant health burden, studies have shown that helminths or helminth products can alter susceptibility to unrelated infectious or inflammatory diseases. This has generated interest in the use of helminth infections or molecules as therapeutics. In this review, we focus on the impact of helminth infections on pulmonary immunity, especially with regard to homeostatic lung function, pulmonary viral and bacterial (co)infections, and asthma.
Collapse
Affiliation(s)
- Christian Schwartz
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
33
|
Andreone L, Gimeno ML, Perone MJ. Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes. Front Endocrinol (Lausanne) 2018; 9:229. [PMID: 29867762 PMCID: PMC5966545 DOI: 10.3389/fendo.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.
Collapse
|
34
|
van Die I, Cummings RD. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front Immunol 2017; 8:1677. [PMID: 29238348 PMCID: PMC5712593 DOI: 10.3389/fimmu.2017.01677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Wang M, Wu L, Weng R, Zheng W, Wu Z, Lv Z. Therapeutic potential of helminths in autoimmune diseases: helminth-derived immune-regulators and immune balance. Parasitol Res 2017; 116:2065-2074. [PMID: 28664463 DOI: 10.1007/s00436-017-5544-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Helminths have accompanied human throughout history by releasing immune-evasion molecules that could counteract an aberrant immune response within the host. In the past decades, helminth infections are becoming less prevalent possibly due to the developed sanitation. Meanwhile, the incidence of autoimmune diseases is increasing, which cannot be exclusively explained by the changes of susceptibility genes. While the hygiene hypothesis casts light on the problem. The infections of helminths are believed to interact with and regulate human immunity with the byproduct of suppressing the autoimmune diseases. Thus, helminths are potential to treat or cure the autoimmune diseases. The therapeutic progresses and possible immune suppression mechanisms are illustrated in the review. The helminths that are studied most intensively include Heligmosomoides polygyrus, Hymenolepis diminuta, Schistosoma mansoni, Trichinella spiralis, and Trichuris suis. Special attentions are paid on the booming animal models and clinical trials that are to detect the efficiency of immune-modulating helminth-derived molecules on autoimmune diseases. These trials provide us with a prosperous clinical perspective, but the precise mechanism of the down-regulatory immune response remains to be clarified. More efforts are needed to be dedicated until these parasite-derived immune modulators could be used in clinic to treat or cure the autoimmune diseases under a standard management.
Collapse
Affiliation(s)
- Meng Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Linxiang Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Rennan Weng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Weihong Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Zhiyue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|
36
|
Surendar J, Indulekha K, Hoerauf A, Hübner MP. Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes? Parasite Immunol 2017; 39. [PMID: 27862000 DOI: 10.1111/pim.12401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
The incidence of both type 1 (T1D) and type 2 diabetes (T2D) is drastically increasing, and it is predicted that the global prevalence of diabetes will reach almost 600 million cases by 2035. Even though the pathogenesis of both types of diabetes is distinct, the immune system is actively involved in both forms of the disease. Genetic and environmental factors determine the risk to develop T1D. On the other hand, sedentary life style, surplus of food intake and other lifestyle changes contribute to the increase of T2D incidence. Improved sanitation with high-quality medical treatment is such an environmental factor that has led to a continuous reduction of infectious diseases including helminth infections over the past decades. Recently, a growing body of evidence has implicated a negative association between helminth infections and diabetes in humans as well as animal models. In this review, we discuss studies that have provided evidence for the beneficial impact of helminth infections on T1D and T2D. Possible mechanisms are presented by which helminths prevent T1D onset by mitigating pancreatic inflammation and confer protection against T2D by improving insulin sensitivity, alleviating inflammation, augmenting browning of adipose tissue and improving lipid metabolism and insulin signalling.
Collapse
Affiliation(s)
- J Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - K Indulekha
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Osada Y, Fujiyama T, Kamimura N, Kaji T, Nakae S, Sudo K, Ishiwata K, Kanazawa T. Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Exp Parasitol 2017; 177:1-12. [PMID: 28363777 DOI: 10.1016/j.exppara.2017.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 02/05/2023]
Abstract
Schistosoma mansoni (Sm) is known to exert protective effects against various allergic and autoimmune disorders. It has been reported that this parasite protects NOD mice from spontaneous type 1 diabetes (T1D) and ameliorates streptozotocin (STZ)-induced T1D in wild-type mice. Here, we tried to clarify the anti-diabetic mechanisms of Sm in the latter model. Sm infection partially prevented the degradation of pancreatic islets and hyperglycemia in multiple low-dose (MLD) STZ-treated mice. Neither Treg cell depletion nor genetic absences of IL-10 and/or STAT6 abrogated the anti-hyperglycemic effects of Sm. Among M2 macrophage markers, Arg-1 and Ym1, but not Retnla, remained up-regulated in the pancreatic lymph nodes and in the spleens of STAT6/IL-10 double deficient (DKO) mice. Collectively, it is suggested that Sm exerts anti-diabetic effects on this experimental T1D model via Treg/IL-4/IL-13/IL-10-independent mechanisms. Augmented expressions of Arg-1 and Ym1 in the lymphoid organs adjacent to pancreas may be relevant to the anti-diabetic effects of Sm.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Tomohiro Fujiyama
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Naoto Kamimura
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Tsukushi Kaji
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
38
|
Oliveira SC, Figueiredo BC, Cardoso LS, Carvalho EM. A double edged sword: Schistosoma mansoni Sm29 regulates both Th1 and Th2 responses in inflammatory mucosal diseases. Mucosal Immunol 2016; 9:1366-1371. [PMID: 27554296 DOI: 10.1038/mi.2016.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil
| | - Barbara C Figueiredo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil
| | - Luciana S Cardoso
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério de Ciência Tecnologia e Inovação, Salvador, Bahia, Brazil.,Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
39
|
Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. Is TGFβ as an anti-inflammatory cytokine required for differentiation of inflammatory TH17 cells? J Immunotoxicol 2016; 13:775-783. [DOI: 10.1080/1547691x.2016.1193574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Arash Pourgholaminejad
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Wang X, Li L, Wang J, Dong L, Shu Y, Liang Y, Shi L, Xu C, Zhou Y, Wang Y, Chen D, Mao C. Inhibition of cytokine response to TLR stimulation and alleviation of collagen-induced arthritis in mice by Schistosoma japonicum peptide SJMHE1. J Cell Mol Med 2016; 21:475-486. [PMID: 27677654 PMCID: PMC5323857 DOI: 10.1111/jcmm.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
Helminth‐derived products have recently been shown to prevent the development of inflammatory diseases in mouse models. However, most identified immunomodulators from helminthes are mixtures or macromolecules with potentially immunogenic side effects. We previously identified an immunomodulatory peptide called SJMHE1 from the HSP60 protein of Schistosoma japonicum. In this study, we assessed the ability of SJMHE1 to affect murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated by toll‐like receptor (TLR) ligands in vitro and its treatment effect on mice with collagen‐induced arthritis (CIA). We show that SJMHE1 not only modulates the cytokine production of murine macrophage (MΦ) and dendritic cell but also affects cytokine production upon coculturing with allogeneic CD4+ T cell. SJMHE1 potently inhibits the cytokine response to TLR ligands lipopolysaccharide (LPS), CpG oligodeoxynucleotides (CpG) or resiquimod (R848) from mouse splenocytes, and human PBMCs stimulated by LPS. Furthermore, SJMHE1 suppressed clinical signs of CIA in mice and blocked joint erosion progression. This effect was mediated by downregulation of key cytokines involved in the pathogenesis of CIA, such as interferon‐γ (IFN‐γ), tumour necrosis factor‐α (TNF‐α), interleukin (IL)‐6, IL‐17, and IL‐22 and up‐regulation of the inhibitory cytokine IL‐10, Tgf‐β1 mRNA, and CD4+CD25+Foxp3+ Tregs. This study provides new evidence that the peptide from S. japonicum, which is the ‘safe’ selective generation of small molecule peptide that has evolved during host–parasite interactions, is of great value in the search for novel anti‐inflammatory agents and therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Wang
- Department of Nuclear Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Shu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yong Liang
- Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, Huaian, Jiangsu, China
| | - Liang Shi
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
41
|
Garib FY, Rizopulu AP. T-Regulatory Cells as Part of Strategy of Immune Evasion by Pathogens. BIOCHEMISTRY (MOSCOW) 2016; 80:957-71. [PMID: 26547064 DOI: 10.1134/s0006297915080015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Under physiological conditions, regulatory processes can suppress the immune response after elimination of a pathogen and restore homeostasis through the destruction and suppression of obsolete effector cells of the immune system. The main players in this process are T-regulatory cells (Tregs) and immature dendritic cells, which suppress the immune response by their own products and/or by inducing synthesis of immunosuppressive interleukins IL-10, IL-35, and transforming growth factor (TGF-β) by other cells. This mechanism is also used by widespread "successful" pathogens that are capable of chronically persisting in the human body - herpes virus, hepatitis viruses, human immunodeficiency virus, Mycobacterium tuberculosis, Helicobacter pylori, and others. During coevolution of microbial pathogens and the host immune system, the pathogens developed sophisticated strategies for evading the host defense, so-called immune evasion. In particular, molecular structures of pathogens during the interaction with dendritic cells via activating and inhibitory receptors can change intracellular signal transduction, resulting in block of maturation of dendritic cells. Immature dendritic cells become tolerogenic and cause differentiation of Tregs from the conventional T-cell CD4+. Microbial molecules can also react directly with Tregs through innate immune receptors. Costimulation of Toll-like receptor 5 (TLR5) by flagellin increases the expression of the transcription factor Foxp3, which increases the suppressive activity of Treg cells. From all evasion mechanisms, the induction of immunosuppression by Treg through IL-10, IL-35, and TGF-β appears most effective. This results in the suppression of inflammation and of adaptive immune responses against pathogens, optimizing the conditions for the survival of bacteria and viruses.
Collapse
Affiliation(s)
- F Yu Garib
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| | | |
Collapse
|
42
|
Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 2016; 138:666-675. [PMID: 27476889 PMCID: PMC5010150 DOI: 10.1016/j.jaci.2016.07.007] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Helminth parasite infections are associated with a battery of immunomodulatory mechanisms that affect all facets of the host immune response to ensure their persistence within the host. This broad-spectrum modulation of host immunity has intended and unintended consequences, both advantageous and disadvantageous. Thus the host can benefit from suppression of collateral damage during parasite infection and from reduced allergic, autoimmune, and inflammatory reactions. However, helminth infection can also be detrimental in reducing vaccine responses, increasing susceptibility to coinfection and potentially reducing tumor immunosurveillance. In this review we will summarize the panoply of immunomodulatory mechanisms used by helminths, their potential utility in human disease, and prospective areas of future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Berbudi A, Ajendra J, Wardani APF, Hoerauf A, Hübner MP. Parasitic helminths and their beneficial impact on type 1 and type 2 diabetes. Diabetes Metab Res Rev 2016; 32:238-50. [PMID: 26119261 DOI: 10.1002/dmrr.2673] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
It is estimated that by the year 2035 almost 600 million people will suffer from diabetes. In the case of type 2 diabetes, the strongest increase of diabetes incidence occurs in developing and newly industrialized countries. This increase correlates not only with a progressing sedentary lifestyle and nutritional changes, but also environmental changes. Similarly, the increase of type 1 diabetes incidence in industrialized countries over the past decades cannot be explained by genetic factors alone, suggesting that environmental changes are also involved. One such environmental change is a reduced exposure to pathogens because of improved hygiene. Parasitic helminths modulate the immune system of their hosts and induce type 2 as well as regulatory immune responses. As pro-inflammatory immune responses are crucial for the onset of both type 1 and type 2 diabetes, helminth-induced immunomodulation may prevent diabetes onset and ameliorate insulin sensitivity. Several epidemiological studies in human and experimental animal models support such a protective effect of helminths for autoimmune diabetes. Recent studies further suggest that helminths may also provide such a beneficial effect for type 2 diabetes. In this review we summarize studies that investigated parasitic helminths and helminth-derived products and their impact on both type 1 and type 2 diabetes highlighting potential protective mechanisms.
Collapse
Affiliation(s)
- Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
- Department of Microbiology and Parasitology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
| | - Ajeng P F Wardani
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
- Department of Microbiology and Parasitology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
- German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
| |
Collapse
|
44
|
Toulza F, Tsang L, Ottenhoff THM, Brown M, Dockrell HM. Mycobacterium tuberculosis-specific CD4+ T-cell response is increased, and Treg cells decreased, in anthelmintic-treated patients with latent TB. Eur J Immunol 2016; 46:752-61. [PMID: 26638865 DOI: 10.1002/eji.201545843] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 11/07/2022]
Abstract
In many settings, adults with active or latent tuberculosis will also be coinfected with helminths. Our study aimed to investigate how anthelmintic treatment modulates antimycobacterial immunity, in a setting where helminth reinfection should not occur. We investigated the potential impact of helminth infection on immune responses to Mycobacterium tuberculosis (Mtb) in patients with latent Mtb infection with or without helminth infection (Strongyloides or Schistosoma), and tested T-cell responses before and after anthelmintic treatment. The study was performed in migrants resident in the United Kingdom, where reexposure and reinfection following anthelmintic treatment would not occur. The frequency of CD4(+) IFN-γ(+) T cells was measured following stimulation with Mtb Purified Protein Derivative or ESAT-6/CFP-10 antigen, and concentrations of IFN-γ in culture supernatants measured by ELISA and multiplex bead array. Helminth infection was associated with a lower frequency of CD4(+) IFN-γ(+) T cells, which increased following treatment. Patients with helminth infection showed a significant increase in CD4(+) FoxP3(+) T cells (Treg) compared to those without helminth infection. There was a decrease in the frequency of Treg cells, and an associated increase in CD4(+) IFN-γ(+) T cells after the anthelmintic treatment. Here, we show a potential role of Treg cells in reducing the frequency and function of antimycobacterial CD4(+) IFN-γ(+) T cells, and that these effects are reversed after anthelmintic treatment.
Collapse
Affiliation(s)
- Frederic Toulza
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Lillian Tsang
- Hospital for Tropical Diseases, University College Hospital, and Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Brown
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Hospital for Tropical Diseases, University College Hospital, and Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Hazel M Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
45
|
Abstract
Autoimmune and chronic inflammatory organic diseases represent a "postindustrial revolution epidemics," and their frequency has increased dramatically in the last century. Today, it is assumed that the increase in hygiene standards reduced the interactions with helminth parasites that coevolved with the immune system and are crucial for its proper functioning. Several helminths have been proposed and tested in the search of the ideal therapeutic. In this review, the authors summarize the translational and clinical studies and review the caveats and possible solutions for the optimization of helminth therapies.
Collapse
Affiliation(s)
- Irina Leonardi
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Isabelle Frey
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Johnston CJC, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development and regulation of immunity. Cell Immunol 2015; 299:14-22. [PMID: 26617281 PMCID: PMC4711336 DOI: 10.1016/j.cellimm.2015.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
The broader superfamily of TGF-β-like proteins is reviewed, and signaling pathways summarised. The role of TGF-β in the immune tolerance and control of infectious disease is discussed. The superfamily member AMH is involved in embryonic sexual differentiation. Helminth parasites appear to exploit the TGF-β pathway to suppress host immunity. TGF-β homologues and mimics from parasites offer a new route for therapeutic tolerance induction.
The TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance.
Collapse
Affiliation(s)
- Chris J C Johnston
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Danielle J Smyth
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - David W Dresser
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| |
Collapse
|
47
|
Ferguson BJ, Newland SA, Gibbs SE, Tourlomousis P, Fernandes dos Santos P, Patel MN, Hall SW, Walczak H, Schramm G, Haas H, Dunne DW, Cooke A, Zaccone P. The Schistosoma mansoni T2 ribonuclease omega-1 modulates inflammasome-dependent IL-1β secretion in macrophages. Int J Parasitol 2015; 45:809-13. [PMID: 26385440 DOI: 10.1016/j.ijpara.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/21/2023]
Abstract
The T2 ribonuclease omega-1 is a powerful Th2-inducing factor secreted by the eggs of the blood fluke Schistosoma mansoni. Omega-1 can modulate pattern recognition receptor-induced inflammatory signatures and alter antigen presentation by dendritic cells. Recent findings have suggested that component(s) contained in or secreted by S. mansoni eggs (soluble egg antigen) can also enhance IL-1β secretion by dendritic cells stimulated with pattern recognition receptor ligands. Here we show that omega-1 enhances IL-1β secretion in macrophages stimulated with Toll-like receptor 2 ligand, and propose omega-1 as the factor in soluble egg antigen capable of regulating inflammasome activity. This effect is dependent on the C-type lectin receptor Dectin-1, caspase-8 and the ASC inflammasome adaptor protein, highlighting the ability of omega-1 to regulate multiple pattern recognition receptor signalling pathways. These mechanistic insights into manipulation of host immunity by a parasite product have implications for the design of anti-inflammatory therapeutic drugs.
Collapse
Affiliation(s)
- Brian J Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| | | | - Sarah E Gibbs
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| | | | | | - Meghana N Patel
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Samuel W Hall
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | | | | | - David W Dunne
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| | - Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK.
| |
Collapse
|
48
|
Versini M, Jeandel PY, Bashi T, Bizzaro G, Blank M, Shoenfeld Y. Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 2015; 13:81. [PMID: 25879741 PMCID: PMC4396177 DOI: 10.1186/s12916-015-0306-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Hygiene Hypothesis (HH) attributes the dramatic increase in autoimmune and allergic diseases observed in recent decades in Western countries to the reduced exposure to diverse immunoregulatory infectious agents. This theory has since largely been supported by strong epidemiological and experimental evidence. DISCUSSION The analysis of these data along with the evolution of the Western world's microbiome enable us to obtain greater insight into microorganisms involved in the HH, as well as their regulatory mechanisms on the immune system. Helminthes and their derivatives were shown to have a protective role. Helminthes' broad immunomodulatory properties have already begun to be exploited in clinical trials of autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. SUMMARY In this review, we will dissect the microbial actors thought to be involved in the HH as well as their immunomodulatory mechanisms as emphasized by experimental studies, with a particular attention on parasites. Thereafter, we will review the early clinical trials using helminthes' derivatives focusing on autoimmune diseases.
Collapse
Affiliation(s)
- Mathilde Versini
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
- Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, 06202, Nice, France.
| | - Pierre-Yves Jeandel
- Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, 06202, Nice, France.
| | - Tomer Bashi
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Giorgia Bizzaro
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Miri Blank
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
- The Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
49
|
Afifi MA, Jiman-Fatani AA, El Saadany S, Fouad MA. Parasites-allergy paradox: Disease mediators or therapeutic modulators. J Microsc Ultrastruct 2015; 3:53-61. [PMID: 30023182 PMCID: PMC6014186 DOI: 10.1016/j.jmau.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
The noticeable phenomenon of an increased frequency of immune-inflammatory disorders, in the industrialized world, has led to the implication of parasitic infections in the pathophysiology of these diseases. Most of the studies investigated the infection connection to allergy have centered on helminthes. Parasitic helminthes are a group of metazoans that are evolutionary diverse, yet converge to evolve common modes of immunomodulation. Helminth immunoregulation is mainly mediated by a regulatory response including Treg and Breg cells with alternatively-activated macrophages. There is increasing evidence for a causal relationship between helminth infection and allergic hyporesponsiveness, however, conflicting data are still generating. The helminth immunoregulation seems to be species-specific and phase-specific. It depends on the stage of the clinical disease which correlates with a corresponding parasitic stage (egg, larva or mature adult). Here, we review the cellular and molecular mechanisms utilized by helminthes to manipulate the immune system and the consequent bystander immunomodulatory responses toward environmental allergens. We especially focus on parasitic species and molecules involved in the modulation of allergic disorders and summarize the experimental and clinical trials using them as therapeutic agents. We also discuss the potentials and obstacles, for helminthes and/or their derived molecules, to emerge as novel therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed A. Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Corresponding author at: Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, P.O. Box 80205, Jeddah 21589, Saudi Arabia. Tel.: +966 569722590. E-mail address: (M.A. Afifi)
| | - Asif A. Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Saadany
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Fouad
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Guo Y, Brown C, Ortiz C, Noelle RJ. Leukocyte homing, fate, and function are controlled by retinoic acid. Physiol Rev 2015; 95:125-48. [PMID: 25540140 DOI: 10.1152/physrev.00032.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although vitamin A was recognized as an "anti-infective vitamin" over 90 years ago, the mechanism of how vitamin A regulates immunity is only beginning to be understood. Early studies which focused on the immune responses in vitamin A-deficient (VAD) animals clearly demonstrated compromised immunity and consequently increased susceptibility to infectious disease. The active form of vitamin A, retinoic acid (RA), has been shown to have a profound impact on the homing and differentiation of leukocytes. Both pharmacological and genetic approaches have been applied to the understanding of how RA regulates the development and differentiation of various immune cell subsets, and how RA influences the development of immunity versus tolerance. These studies clearly show that RA profoundly impacts on cell- and humoral-mediated immunity. In this review, the early findings on the complex relationship between VAD and immunity are discussed as well as vitamin A metabolism and signaling within hematopoietic cells. Particular attention is focused on how RA impacts on T-cell lineage commitment and plasticity in various diseases.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| | - Chrysothemis Brown
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| | - Carla Ortiz
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Dartmouth Medical School, Norris Cotton Cancer Center, Lebanon, New Hampshire; and Medical Research Council Centre of Transplantation, Guy's Hospital, King's College London, King's Health Partners, London, United Kingdom
| |
Collapse
|