1
|
Oliver-Vila I, Sesma-Herrero E, Belda F, Seriola A, Ojosnegros S. Robust differentiation and potent immunomodulation of human mesenchymal stromal cells cultured with a xeno-free GMP protein supplement. Cytotherapy 2025; 27:552-561. [PMID: 39864016 DOI: 10.1016/j.jcyt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND/AIMS Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited. Here, we evaluate a xeno-free human plasma-derived protein supplement (Plastem, Grifols) for the expansion and functional evaluation of hMSCs. METHODS hMSC from bone marrow, adipose tissue and umbilical cord were obtained from two suppliers and cultured in Dulbecco's modified Eagle's medium (DMEM/F-12) supplemented with fetal bovine serum 10% (FBS), human platelet lysate 5% (hPL) or Plastem 10%+ hPL0.5%. Cell proliferation was evaluated after culturing hMSC for 13 days with trypan blue exclusion. hMSC immunophenotype was assessed by flow cytometry of surface markers expression. Multipotentiality assay determined the ability of hMSC to differentiate into osteogenic, chondrogenic and adipogenic lineages after 21 days, by using specific staining. Immunomodulatory properties of hMSC were analyzed by measuring suppression of human peripheral blood mononuclear cell (PBMC) proliferation in co-culture with hMSC. RESULTS Plastem 10% + hPL 0.5% supported robust and sustained hMSC growth with a similar efficiency to the reference supplement FBS 10%. hMSC cultured with the xeno-free supplement presented a similar morphology comparable to FBS-supplemented cells and maintained typical expression of markers: positive (>95%) for CD90, CD73 and CD105; and negative (<5%) for CD45, CD14, CD19, CD34 and HLA-DR. Likewise, hMSC showed potent, in vitro differentiation potential into osteogenic, chondrogenic and adipogenic lineages, outperforming the results obtained with traditional reference supplements in several instances. They retained their immunomodulatory properties, inhibiting the proliferation of phytohemagglutinin (PHA)-stimulated PBMCs with a notable enhancement of the immunomodulatory capacity of hMSCs compared to conventional reference supplements. CONCLUSIONS Plastem allowed hMSC expansion while preserving phenotype and showed remarkable differentiation and immunomodulatory properties, supporting its use for cell therapy manufacturing processes as a robust, xeno-free alternative to FBS and hPL. Moreover, Plastem can be manufactured at an industrial level, making it a scalable solution for widespread application.
Collapse
Affiliation(s)
| | - Eduardo Sesma-Herrero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francisco Belda
- Research and Development, Bio Supplies Division, Grifols, Sant Cugat del Vallès, Barcelona, Spain
| | - Anna Seriola
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Samuel Ojosnegros
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
2
|
Zhang Y, Song J, Wang B, Wen Y, Jiang W, Zhang YL, Li ZL, Yu H, Qin SF, Lv LL, Tang TT, Liu BC. Comprehensive Comparison of Extracellular Vesicles Derived from Mesenchymal Stem Cells Cultured with Fetal Bovine Serum and Human Platelet Lysate. ACS NANO 2025; 19:12366-12381. [PMID: 40110859 DOI: 10.1021/acsnano.5c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising approach in regenerative therapy. However, the clinical application of MSC-EVs is hindered by the presence of xenogenic components, such as fetal bovine serum (FBS), which is the most used culture supplement for MSCs. Human platelet lysate (HPL) has been proposed as an alternative to FBS, but whether MSC-EVs derived from HPL-cultured MSCs are suitable for clinical translation remains unclear. In this study, we comprehensively compared the characterization of EVs derived from MSCs cultured in the medium with FBS (F-EVs) and HPL (H-EVs). Our study showed that HPL promoted MSC-EV production without compromising EVs critical quality attributes. Multiomics sequencing revealed the stability of H-EVs from different umbilical cord donors and global functional alterations for MSC-EVs under different culture conditions. In comparison to F-EVs, H-EVs enriched more angiogenesis-related molecules and exhibited enhanced angiogenesis, which were further confirmed by in vivo and in vitro studies. H-EVs significantly reduced renal microvascular rarefaction and promoted the regeneration of umbilical vein endothelial cells to hypoxia stimulation compared to that of F-EVs. In conclusion, our findings demonstrated that HPL as culture supplements did not alter the critical quality attributes of MSC-EVs, specifically holding a higher yield and quality of MSC-EVs with enhanced angiogenic potential.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Jing Song
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Suo-Fu Qin
- Shenzhen Kexing Pharmaceutical Co., Ltd., Shenzhen 518057, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 210009, China
| |
Collapse
|
3
|
Huang S, Xu X, Guo J, Li Z, Wu Y, Liu Y, Sun Q, Wang S, Yan H, Su Y, Guo W. Single-Cell Transcriptome Decoding Umbilical Cord-Derived Mesenchymal Stem Cell Heterogeneity Reveals a Unique IL1R1 HighPDGFRA High Ultroser-G-MSC With Osteogenesis and Chondrogenesis Signatures. J Cell Physiol 2025; 240:e70004. [PMID: 39956958 DOI: 10.1002/jcp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
The heterogeneity of human umbilical cord mesenchymal stem cells (hUC-MSCs) is culturing-dependent, resulting in functional non-uniformness. To achieve the best clinical benefit, a comprehensive understanding of the origin of the heterogeneity in different culture systems can identify functional subgroups to direct the precise application of hUC-MSCs. Here, we create a single-cell transcriptome atlas of hUC-MSC in different culture systems for the identification of a subgroup of Ultroser-G-MSCs with high osteogenic and chondrogenic potentials featured by high expressions of IL1R1 and PDGFRA. Further experimental validations surprisingly reveal that IL1R1highPDGFRAhigh Ultroser-G-MSCs possess advantages over "traditional" hUC-MSCs in the treatments of modeled osteoarthritis, leading to a cell-cell communication network centered in Clusters 0 and 2. Moreover, we found that Wnt5 signaling is the key pathway for the dynamic transformation of osteogenic and chondrogenic phenotypes in hUC-MSC. Overall, the present study paves the way for the clarification of heterogenetic nature of hUC-MSC in different culture systems for the selection of optimal MSC types to achieve the precision on clinical treatments.
Collapse
Affiliation(s)
- Shihao Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinyu Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiaqi Guo
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Zhuolan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanlin Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qinyi Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Sihan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huilin Yan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Wei Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Zia S, Pizzuti V, Paris F, Alviano F, Bonsi L, Zattoni A, Reschiglian P, Roda B, Marassi V. Emerging technologies for quality control of cell-based, advanced therapy medicinal products. J Pharm Biomed Anal 2024; 246:116182. [PMID: 38772202 DOI: 10.1016/j.jpba.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Advanced therapy medicinal products (ATMP) are complex medicines based on gene therapy, somatic cell therapy, and tissue engineering. These products are rapidly arising as novel and promising therapies for a wide range of different clinical applications. The process for the development of well-established ATMPs is challenging. Many issues must be considered from raw material, manufacturing, safety, and pricing to assure the quality of ATMPs and their implementation as innovative therapeutic tools. Among ATMPs, cell-based ATMPs are drugs altogether. As for standard drugs, technologies for quality control, and non-invasive isolation and production of cell-based ATMPs are then needed to ensure their rapidly expanding applications and ameliorate safety and standardization of cell production. In this review, emerging approaches and technologies for quality control of innovative cell-based ATMPs are described. Among new techniques, microfluid-based systems show advantages related to their miniaturization, easy implementation in analytical process and automation which allow for the standardization of the final product.
Collapse
Affiliation(s)
| | - Valeria Pizzuti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences (DiBiNem), University of Bologna, Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Zattoni
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Pierluigi Reschiglian
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| | - Barbara Roda
- Stem Sel srl, Bologna, Italy; Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy.
| | - Valentina Marassi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy; National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
5
|
Phinney DG. Alexander Friedenstein, Mesenchymal Stem Cells, Shifting Paradigms and Euphemisms. Bioengineering (Basel) 2024; 11:534. [PMID: 38927770 PMCID: PMC11201071 DOI: 10.3390/bioengineering11060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Six decades ago, Friedenstein and coworkers published a series of seminal papers identifying a cell population in bone marrow with osteogenic potential, now referred to as mesenchymal stem cells (MSCs). This work was also instrumental in establishing the identity of hematopoietic stem cell and the identification of skeletal stem/progenitor cell (SSPC) populations in various skeletal compartments. In recognition of the centenary year of Friedenstein's birth, I review key aspects of his work and discuss the evolving concept of the MSC and its various euphemisms indorsed by changing paradigms in the field. I also discuss the recent emphasis on MSC stromal quality attributes and how emerging data demonstrating a mechanistic link between stromal and stem/progenitor functions bring renewed relevance to Friedenstein's contributions and much needed unity to the field.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Phinney DG, Hwa Lee R, Boregowda SV. Revisiting the Mesenchymal "Stem vs. Stromal" Cell Dichotomy and Its Implications for Development of Improved Potency Metrics. Stem Cells 2023; 41:444-452. [PMID: 36891977 PMCID: PMC10183967 DOI: 10.1093/stmcls/sxad019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapies have been evaluated in over 1500 human clinical trials for a diverse array of disease indication, but outcomes remain unpredictable due to knowledge gaps in the quality attributes that confer therapeutic potency onto cells and their mode of action in vivo. Based on accumulated evidence from pre-clinical models, MSCs exert therapeutic effects by repressing inflammatory and immune-mediated response via paracrine action following reprogramming by the host injury microenvironment, and by polarization of tissue resident macrophages following phagocytosis to an alternatively activated (M2) state. An important tenet of this existing paradigm is that well-established stem/progenitor functions of MSCs are independent of paracrine function and dispensable for their anti-inflammatory and immune suppressive functions. Herein, we review evidence that stem/progenitor and paracrine functions of MSCs are mechanistically linked and organized hierarchically and describe how this link may be exploited to develop metrics that predict MSC potency across a spectrum of activities and regenerative medicine applications.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Siddaraju V Boregowda
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| |
Collapse
|
7
|
Marques CR, Fuzeta MDA, Dos Santos Cunha RM, Pereira-Sousa J, Silva D, Campos J, Teixeira-Castro A, Sousa RA, Fernandes-Platzgummer A, da Silva CL, Salgado AJ. Neurodifferentiation and Neuroprotection Potential of Mesenchymal Stromal Cell-Derived Secretome Produced in Different Dynamic Systems. Biomedicines 2023; 11:biomedicines11051240. [PMID: 37238911 DOI: 10.3390/biomedicines11051240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta, leading to a loss of DA in the basal ganglia. The presence of aggregates of alpha-synuclein (α-synuclein) is seen as the main contributor to the pathogenesis and progression of PD. Evidence suggests that the secretome of mesenchymal stromal cells (MSC) could be a potential cell-free therapy for PD. However, to accelerate the integration of this therapy in the clinical setting, there is still the need to develop a protocol for the large-scale production of secretome under good manufacturing practices (GMP) guidelines. Bioreactors have the capacity to produce large quantities of secretomes in a scalable manner, surpassing the limitations of planar static culture systems. However, few studies focused on the influence of the culture system used to expand MSC, on the secretome composition. In this work, we studied the capacity of the secretome produced by bone marrow-derived mesenchymal stromal cells (BMSC) expanded in a spinner flask (SP) and in a Vertical-Wheel™ bioreactor (VWBR) system, to induce neurodifferentiation of human neural progenitor cells (hNPCs) and to prevent dopaminergic neuron degeneration caused by the overexpression of α-synuclein in one Caenorhabditis elegans model of PD. Results showed that secretomes from both systems were able to induce neurodifferentiation, though the secretome produced in the SP system had a greater effect. Additionally, in the conditions of our study, only the secretome produced in SP had a neuroprotective potential. Lastly, the secretomes had different profiles regarding the presence and/or specific intensity of different molecules, namely, interleukin (IL)-6, IL-4, matrix metalloproteinase-2 (MMP2), and 3 (MMP3), tumor necrosis factor-beta (TNF-β), osteopontin, nerve growth factor beta (NGFβ), granulocyte colony-stimulating factor (GCSF), heparin-binding (HB) epithelial growth factor (EGF)-like growth factor (HB-EGF), and IL-13. Overall, our results suggest that the culture conditions might have influenced the secretory profiles of cultured cells and, consequently, the observed effects. Additional studies should further explore the effects that different culture systems have on the secretome potential of PD.
Collapse
Affiliation(s)
- Cláudia Raquel Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Raquel Medina Dos Santos Cunha
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Amandi Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa S.A., 4805-017 Barco, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS-3Bs PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Sherley JL. A Kinetic Stem Cell Counting Analysis of the Specific Effects of Cell Culture Medium Growth Factors on Adipose-Derived Mesenchymal Stem Cells. Life (Basel) 2023; 13:life13030614. [PMID: 36983770 PMCID: PMC10058732 DOI: 10.3390/life13030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
A recently described kinetic stem cell (KSC) counting method was used to investigate the stem-cell-specific effects of commercial growth factor supplements used for expanding stem cells in adipose-tissue-derived mesenchymal cell preparations. The supplements were a proprietary growth factor product, a source of fetal bovine serum, two sources of pooled human sera, and two sources of human platelet lysate. KSC counting analyses were performed to monitor effects on the fraction and viability of stem cells in serial cultures with their respective supplements. Serial cultures supplemented with the proprietary growth factor product or fetal bovine serum showed a similar high degree of maintenance of stem cell fraction with passage. In contrast, cultures supplemented with human sera or human platelet lysate showed rapid declines in stem cell fraction. KSC counting was used to discover the cellular basis for the decreasing stem cell fractions. For human platelet lysate, it was attributable to lower rates of self-renewing symmetric stem cell divisions. For human sera, both low rates of symmetric division and high rates of stem cell death were responsible. These results demonstrate the power of the KSC counting method to provide previously inaccessible information for improving future tissue stem cell biomanufacturing.
Collapse
|
9
|
Chen C, Hou X, Jing F, Wang T, Feng L, Kang YJ. Alteration of Transcriptomic Profile and Antiseptic Efficacy of Adipose-Derived Mesenchymal Stromal/Stem Cells Under Different Culture Conditions. Stem Cells Dev 2023; 32:75-86. [PMID: 36511391 DOI: 10.1089/scd.2022.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are a promising therapeutic agent for various diseases, including sepsis. However, translating MSC therapy to clinical applications remains challenging due to variations in the properties of MSCs under different preparation conditions. In this study, the gene expression profiles of human adipose-derived mesenchymal stromal/stem cells (ADSCs) under different culture conditions were compared in relation to their therapeutic efficacy for sepsis. Results showed that ADSCs cultured in media supplemented with human platelet lysates (hPL) (hPL-ADSCs) exhibited a smaller cell size and higher proliferative capacity, whereas ADSCs cultured in media supplemented with fetal bovine serum (FBS) (FBS-ADSCs) showed a broader and flatter shape. Both hPL-ADSCs and FBS-ADSCs exhibited a protective effect in a mouse model of sepsis; however, hPL-ADSCs displayed a better potency for immunosuppressive function, as evidenced by a better improvement of survival rate and further reduction of tissue injury and infectious biomarkers (alanine transaminase and procalcitonin). Furthermore, hPL-ADSCs caused a more anti-inflammatory transcriptomic shift, whereas FBS-ADSCs led to more depression of proinflammatory transcriptomic response. This study thus demonstrates that both hPL-ADSCs and FBS-ADSCs are effective for antiseptic therapy via different mechanisms of inflammatory manipulation, although hPL-ADSCs may imply a better preference.
Collapse
Affiliation(s)
- Chen Chen
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
| | - Xiaoming Hou
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
| | - Fujia Jing
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
| | - Tao Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
| | - Li Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, China.,Tennessee Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Hypothermic Preservation of Adipose-Derived Mesenchymal Stromal Cells as a Viable Solution for the Storage and Distribution of Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120805. [PMID: 36551011 PMCID: PMC9774331 DOI: 10.3390/bioengineering9120805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.
Collapse
|
11
|
Urzì O, Olofsson Bagge R, Crescitelli R. The dark side of foetal bovine serum in extracellular vesicle studies. J Extracell Vesicles 2022; 11:e12271. [PMID: 36214482 PMCID: PMC9549727 DOI: 10.1002/jev2.12271] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs) have been shown to be involved in cell-cell communication and to take part in both physiological and pathological processes. Thanks to their exclusive cargo, which includes proteins, lipids, and nucleic acids from the originating cells, they are gaining interest as potential biomarkers of disease. In recent years, their appealing features have been fascinating researchers from all over the world, thus increasing the number of in vitro studies focused on EV release, content, and biological activities. Cultured cell lines are the most-used source of EVs; however, the EVs released in cell cultures are influenced by the cell culture conditions, such as the use of foetal bovine serum (FBS). FBS is the most common supplement for cell culture media, but it is also a source of contaminants, such as exogenous bovine EVs, RNA, and protein aggregates, that can contaminate the cell-derived EVs and influence their cargo composition. The presence of FBS contaminants in cell-derived EV samples is a well-known issue that limits the clinical applications of EVs, thus increasing the need for standardization. In this review, we will discuss the pros and cons of using FBS in cell cultures as a source of EVs, as well as the protocols used to remove contaminants from FBS.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of BiomedicineNeurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoPalermoItaly
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of SurgerySahlgrenska University HospitalRegion Västra GötalandGothenburgSweden
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research and Wallenberg Centre for Molecular and Translational MedicineDepartment of SurgeryInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Thamm K, Möbus K, Towers R, Baertschi S, Wetzel R, Wobus M, Segeletz S. A chemically defined biomimetic surface for enhanced isolation efficiency of high-quality human mesenchymal stromal cells under xenogeneic/serum-free conditions. Cytotherapy 2022; 24:1049-1059. [PMID: 35931601 DOI: 10.1016/j.jcyt.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are one of the most frequently used cell types in regenerative medicine and cell therapy. Generating sufficient cell numbers for MSC-based therapies is constrained by (i) their low abundance in tissues of origin, which imposes the need for significant ex vivo cell expansion; (ii) donor-specific characteristics, including MSC frequency/quality, that decline with disease state and increasing age; and (iii) cellular senescence, which is promoted by extensive cell expansion and results in decreased therapeutic functionality. The final yield of a manufacturing process is therefore primarily determined by the applied isolation procedure and its efficiency in isolating therapeutically active cells from donor tissue. To date, MSCs are predominantly isolated using media supplemented with either serum or its derivatives, which poses safety and consistency issues. METHODS To overcome these limitations while enabling robust MSC production with constant high yield and quality, the authors developed a chemically defined biomimetic surface coating called isoMATRIX (denovoMATRIX GmbH, Dresden, Germany) and tested its performance during isolation of MSCs. RESULTS The isoMATRIX facilitates the isolation of significantly higher numbers of MSCs in xenogeneic (xeno)/serum-free and chemically defined conditions. The isolated cells display a smaller cell size and higher proliferation rate than those derived from a serum-containing isolation procedure and a strong immunomodulatory capacity. The high proliferation rates can be maintained up to 5 passages after isolation and cells even benefit from a switch towards a proliferation-specific MSC matrix (myMATRIX MSC) (denovoMATRIX GmbH, Dresden, Germany). CONCLUSION In sum, isoMATRIX promotes enhanced xeno/serum-free and chemically defined isolation of human MSCs and supports consistent and reliable cell performance for improved stem cell-based therapies.
Collapse
Affiliation(s)
| | - Kristin Möbus
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | - Russell Towers
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | | | | | - Manja Wobus
- Universitätskrankenhaus Carl Gustav Carus der Technischen Universität Dresden, Dresden, Germany
| | | |
Collapse
|
14
|
Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther 2022; 13:345. [PMID: 35883198 PMCID: PMC9327195 DOI: 10.1186/s13287-022-03043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral arterial disease is atherosclerotic occlusive disease of the lower extremity arteries and afflicts hundreds of millions of individuals worldwide. Its most severe manifestation is chronic limb-threatening ischemia (Petersen et al. (Science 300(5622):1140–2, 2003)), which is associated with severe pain at rest in the limbs, which progresses to necrosis, limb amputation, and/or death of the patient. Consequently, the care of these patients is considered a financial burden for both patients and health systems. Multidisciplinary endeavors are required to address this refractory disease and to find definitive solutions that lead to improved living conditions. Revascularization is the cornerstone of therapy for preventing limb amputation, and both open vascular surgery and endovascular therapy play a key role in the treatment of patients with CLI. Around one-third of these patients are not candidates for conventional surgical treatment, however, leading to higher amputation rates (approaching 20–25% at one year) with high morbidity and lower quality of life. Advances in regenerative medicine have enabled the development of cell-based therapies that promote the formation of new blood vessels. Particularly, mesenchymal stem cells (MSCs) have emerged as an attractive therapeutic agent in various diseases, including CLI, due to their role in tissue regeneration and immunomodulation. This review discusses the characteristics of MSCs, as well as their regenerative properties and their action mechanisms on CLI.
Collapse
Affiliation(s)
- Laura V Lozano Navarro
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Xueyi Chen
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Lady Tatiana Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Maria L Luna-Gonzalez
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
| | - Claudia L Sossa
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia.,Universidad de Valencia, Valencia, Spain
| | - Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.
| |
Collapse
|
15
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
16
|
Wu X, Mu Y, Yao J, Lin F, Wu D, Ma Z. Adipose-Derived Stem Cells From Patients With Ulcerative Colitis Exhibit Impaired Immunosuppressive Function. Front Cell Dev Biol 2022; 10:822772. [PMID: 35252190 PMCID: PMC8894714 DOI: 10.3389/fcell.2022.822772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are able to modulate the immune response and are used for treating ulcerative colitis (UC). However, it is possible that ADSCs from patients with inflammatory or autoimmune disorders may show defective immunosuppression. We investigated the use of ADSCs from UC patients for autologous cell treatment, specifically, ADSCs from healthy donors (H-ADSCs) and UC patients (P-ADSCs) in terms of various functions, including differentiation, proliferation, secretion, and immunosuppression. The efficacy of P-ADSCs for treating UC was examined in mouse models of acute or chronic colitis. Both H-ADSCs and P-ADSCs were similar in cell morphology, size, adipogenic differentiation capabilities, and cell surface markers. We found that P-ADSCs had lower proliferative capacity, cloning ability, and osteogenic and chondrogenic differentiation potential than H-ADSCs. P-ADSCs exhibited a diminished capacity to inhibit peripheral blood mononuclear cell proliferation, suppress CD25 and CD69 marker expression, decrease the production of inflammation-associated cytokines interferon-γ and tumor necrosis factor-α, and reduce their cytotoxic effect on A549 cells. When primed with inflammatory cytokines, P-ADSCs secreted lower levels of prostaglandin E2, indoleamine 2, 3-dioxygenase, and tumor necrosis factor-α–induced protein 6, which mediated their reduced immunopotency. Moreover, P-ADSCs exhibited weaker therapeutic effects than H-ADSCs, determined by disease activity, histology, myeloperoxidase activity, and body weight. These findings indicate that the immunosuppressive properties of ASCs are affected by donor metabolic characteristics. This study shows, for the first time, the presence of defective ADSC immunosuppression in UC, indicating that autologous transplantation of ADSCs may be inappropriate for patients with UC.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jingyi Yao
- Experimental Center, Beijing Clinical Research Institute, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Fuhong Lin
- Department of Neurology, Affiliated Hospital of Chifeng College, Chifeng, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| | - Zhijie Ma
- Department of Pharmacy, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| |
Collapse
|
17
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 PMCID: PMC8510528 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
Affiliation(s)
- Timothy D. Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
18
|
Potapnev MP. Analysis of approaches to increase the efficacy of cell therapy based on mesenchymal stromal cells. GENES & CELLS 2021; 16:22-28. [DOI: 10.23868/202112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review considers the main stages of isolating, processing and clinical use of human mesenchymal stromal cells (MSCs). They included: donor selection, selection of the source of MSCs, methods of isolation of cellular suspension from tissue, culturing in vitro for cell biomass propagation, priming of the resulting cell product, timing and ways of its clinical application, selection of the recipient of MSCs. The analysis of the stages of MSCs preparation and conditions for their use was carried out from the position of the influence on the final therapeutic effect of cell therapy in patients (or experimental animals - in preclinical studies). The optimal parameters of work with MSCs at each stage, the possibility to improve their quality / biological activity in order to increase their therapeutic efficacy were determined. The analysis and ways of avoiding the influence of adverse factors associated with the manufacturing and use of MSCs on the effectiveness of cell therapy in patients were given.
Collapse
|
19
|
Alyazici LY, Kocabas F. Identification of Small Molecules That Enhance the Expansion of Mesenchymal Stem Cells Originating from Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:43-55. [PMID: 34845672 DOI: 10.1007/5584_2021_677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to be promising for regenerative medicines with their immunomodulatory characteristics. They may be obtained from a variety of tissue types, including umbilical cord, adipose tissue, dental tissue, and bone marrow (BM). BM-MSCs are challenging in terms of their ex vivo expansion capability. Thus, we aimed to improve the expansion of BM-MSCs with small molecule treatments. We tested about forty small molecules that are potent quiescence modulators, and determined their efficacy by analysis of cell viability, cell cycle, and apoptosis in BM-MSCs. We also examined gene expression for selected small molecules to explore essential molecular pathways. We observed that treatment with SB203580 increased BM-MSCs expansion up to two fold when used for 5 days. SB203580 decreased the proportion of cells in the G1 phase of the cell cycle and substantially increased the ratio of cells in the S-G2-M phase. Enhanced MSC expansion with SB203580 therapy was associated with the lower expression of CDKIs like p15, p18, p19, p21, p27, and p57. In conclusion, we have developed a new approach to facilitate the expansion of BM-MSCs. These results could enhance autologous and immunomodulation therapy involving BM-MSCs.
Collapse
Affiliation(s)
- Lamia Yazgi Alyazici
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
20
|
Effect of biomolecules derived from human platelet-rich plasma on the ex vivo expansion of human adipose-derived mesenchymal stem cells for clinical applications. Biologicals 2021; 75:37-48. [PMID: 34785135 DOI: 10.1016/j.biologicals.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal stem cells are a tool in cell therapies but demand a large cell number per treatment, for that, suitable culture media is required which contains fetal bovine serum (FBS). However, for cell-based therapy applications, the use of FBS is problematic. Several alternatives to FBS have been explored, including human derivatives from platelet-rich plasma (hD-PRP). Although various studies have evaluated the impact of hD-PRP on MSC proliferation and differentiation, few of them have assessed their influence on processes, such as metabolism and gene expression. Here, we cultured human adipose-derived MSCs (hAD-MSCs) in media supplemented with either 10% hD-PRP (hD-PRP-SM) or 10% FBS (FBS-SM) in order to characterize them and evaluate the effect of hD-PRP on cell metabolism, gene expression of associated regenerative factors, as well as chromosome stability during cell expansion. We found that hAD-MSCs cultured in hD-PRP-SM have a greater cell elongation but express similar surface markers; in addition, hD-PRP-SM promoted a significant osteogenic differentiation in the absence of differentiation medium and increased the growth rate, maintaining chromosomal stability. In terms of cell metabolic profile, hAD-MSC behavior did not reveal any differences between both culture conditions. Conversely, significant differences in collagen I and angiopoietin 2 expression were observed between both conditions. The present results suggest that hD-PRP may influence hAD-MSC behavior.
Collapse
|
21
|
Meenakshi Sundaram R, Kadapakkam Nandabalan S, Rupert S, Srinivasan P, Sankar P, Patra B, Verma RS, Vennila R, Sathyanesan J, Rajagopal S. Differential immunomodulation of human Mesenchymal Stromal Cells from various sources in an inflammation mimetic milieu. Cytotherapy 2021; 24:110-123. [PMID: 34740526 DOI: 10.1016/j.jcyt.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 01/18/2023]
Abstract
Mesenchymal stromal cells (MSCs) are very advantageous in the field of regenerative medicine because of their immunomodulatory properties. However, reports show that these properties vary from source to source. Hence, understanding the source-dependent specificity of MSCs and their immunomodulatory abilities will enable optimal use of MSCs in cell-based therapies. Here, we studied human MSCs from three different sources, adipose tissue (AT), bone marrow (BM) and Wharton's jelly (WJ), with respect to phenotypic responses of human peripheral blood mononuclear immune cells (hPBMCs/MNCs) and the concurrent changes in cytokine expression in MSCs, under mitogen-stimulated co-culture conditions. We used cytometric analysis to study the immunoregulatory properties of MSCs on MNCs and cytokine profiling of MSCs using a customized PCR array and solid-phase sandwich enzyme-linked immunosorbent assay. Our results reveal differential modulation of immune cells as well as MSCs upon activation by the mitogen phytohemagglutinin, independently and in co-culture. Notably, we observed source-specific MSC-cytokine signatures under stimulated conditions. Our results show that AT-MSCs up-regulate VEGF, BM-MSCs up-regulate PTGS-2 and WJ-MSCs increase expression of IDO considerably compared with controls. This remarkable modulation in source-specific cytokine expression was also validated at a functional level by quantitative protein expression studies. In our hands, even though MSCs from AT, BM and WJ sources exhibit characteristic immunomodulatory properties, our results highlight that MSCs sourced from different tissues may exhibit unique cytokine signatures and thus may be suitable for specific regenerative applications.
Collapse
Affiliation(s)
| | | | - Secunda Rupert
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, India
| | | | - Pavithra Sankar
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, India
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rama Shankar Verma
- Stem Cell and Molecular Biology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rosy Vennila
- Government Medical College Hospital, Karur, India
| | | | - Surendran Rajagopal
- Hepato-Pancreato Biliary Centre for Surgery and Transplantation, MIOT International Hospital, Chennai, India.
| |
Collapse
|
22
|
Bucar S, Branco ADDM, Mata MF, Milhano JC, Caramalho Í, Cabral JMS, Fernandes-Platzgummer A, da Silva CL. Influence of the mesenchymal stromal cell source on the hematopoietic supportive capacity of umbilical cord blood-derived CD34 +-enriched cells. Stem Cell Res Ther 2021; 12:399. [PMID: 34256848 PMCID: PMC8278708 DOI: 10.1186/s13287-021-02474-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Umbilical cord blood (UCB) is a clinically relevant alternative source of hematopoietic stem/progenitor cells (HSPC). To overcome the low cell number per UCB unit, ex vivo expansion of UCB HSPC in co-culture with mesenchymal stromal cells (MSC) has been established. Bone marrow (BM)-derived MSC have been the standard choice, but the use of MSC from alternative sources, less invasive and discardable, could ease clinical translation of an expanded CD34+ cell product. Here, we compare the capacity of BM-, umbilical cord matrix (UCM)-, and adipose tissue (AT)-derived MSC, expanded with/without xenogeneic components, to expand/maintain UCB CD34+-enriched cells ex vivo. Methods UCB CD34+-enriched cells were isolated from cryopreserved mononuclear cells and cultured for 7 days over an established feeder layer (FL) of BM-, UCM-, or AT-derived MSC, previously expanded using fetal bovine serum (FBS) or fibrinogen-depleted human platelet lysate (HPL) supplemented medium. UCB cells were cultured in serum-free medium supplemented with SCF/TPO/FLT3-L/bFGF. Fold increase in total nucleated cells (TNC) as well as immunophenotype and clonogenic potential (cobblestone area-forming cells and colony-forming unit assays) of the expanded hematopoietic cells were assessed. Results MSC from all sources effectively supported UCB HSPC expansion/maintenance ex vivo, with expansion factors (in TNC) superior to 50x, 70x, and 80x in UCM-, BM-, and AT-derived MSC co-cultures, respectively. Specifically, AT-derived MSC co-culture resulted in expanded cells with similar phenotypic profile compared to BM-derived MSC, but resulting in higher total cell numbers. Importantly, a subpopulation of more primitive cells (CD34+CD90+) was maintained in all co-cultures. In addition, the presence of a MSC FL was essential to maintain and expand a subpopulation of progenitor T cells (CD34+CD7+). The use of HPL to expand MSC prior to co-culture establishment did not influence the expansion potential of UCB cells. Conclusions AT represents a promising alternative to BM as a source of MSC for co-culture protocols to expand/maintain HSPC ex vivo. On the other hand, UCM-derived MSC demonstrated inferior hematopoietic supportive capacity compared to MSC from adult tissues. Despite HPL being considered an alternative to FBS for clinical-scale manufacturing of MSC, further studies are needed to determine its impact on the hematopoietic supportive capacity of these cells.
Collapse
Affiliation(s)
- Sara Bucar
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Márcia F Mata
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João Coutinho Milhano
- Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
23
|
Alloreactive Immune Response Associated to Human Mesenchymal Stromal Cells Treatment: A Systematic Review. J Clin Med 2021; 10:jcm10132991. [PMID: 34279481 PMCID: PMC8269175 DOI: 10.3390/jcm10132991] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The well-known immunomodulatory and regenerative properties of mesenchymal stromal cells (MSCs) are the reason why they are being used for the treatment of many diseases. Because they are considered hypoimmunogenic, MSCs treatments are performed without considering histocompatibility barriers and without anticipating possible immune rejections. However, recent preclinical studies describe the generation of alloantibodies and the immune rejection of MSCs. This has led to an increasing number of clinical trials evaluating the immunological profile of patients after treatment with MSCs. The objective of this systematic review was to evaluate the generation of donor specific antibodies (DSA) after allogeneic MSC (allo-MSC) therapy and the impact on safety or tolerability. Data from 555 patients were included in the systematic review, 356 were treated with allo-MSC and the rest were treated with placebo or control drugs. A mean of 11.51% of allo-MSC-treated patients developed DSA. Specifically, 14.95% of these patients developed DSA and 6.33% of them developed cPRA. Neither the production of DSA after treatment nor the presence of DSA at baseline (presensitization) were correlated with safety and/or tolerability of the treatment. The number of doses administrated and human leucocyte antigen (HLA) mismatches between donor and recipient did not affect the production of DSA. The safety of allo-MSC therapy has been proved in all the studies and the generation of alloantibodies might not have clinical relevance. However, there are very few studies in the area. More studies with adequate designs are needed to confirm these results.
Collapse
|
24
|
Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, Mohamed RH, Ghoneim MA. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol 2021; 12:690623. [PMID: 34248981 PMCID: PMC8262452 DOI: 10.3389/fimmu.2021.690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.
Collapse
Affiliation(s)
- Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Malgorzata Kloc
- Department of Immunobiology, The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Omaima M Sabek
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Cell and Microbiology Biology, Weill Cornell Medical Biology, New York, NY, United States
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
25
|
Lechanteur C, Briquet A, Bettonville V, Baudoux E, Beguin Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells 2021; 10:1320. [PMID: 34073206 PMCID: PMC8227789 DOI: 10.3390/cells10061320] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Following European regulation 1394/2007, mesenchymal stromal cell (MSCs) have become an advanced therapy medicinal product (ATMP) that must be produced following the good manufacturing practice (GMP) standards. We describe the upgrade of our existing clinical-grade MSC manufacturing process to obtain GMP certification. Staff organization, premises/equipment qualification and monitoring, raw materials management, starting materials, technical manufacturing processes, quality controls, and the release, thawing and infusion were substantially reorganized. Numerous studies have been carried out to validate cultures and demonstrate the short-term stability of fresh or thawed products, as well their stability during long-term storage. Detailed results of media simulation tests, validation runs and early MSC batches are presented. We also report the validation of a new variant of the process aiming to prepare fresh MSCs for the treatment of specific lesions of Crohn's disease by local injection. In conclusion, we have successfully ensured the adaptation of our clinical-grade MSC production process to the GMP requirements. The GMP manufacturing of MSC products is feasible in the academic setting for a limited number of batches with a significant cost increase, but moving to large-scale production necessary for phase III trials would require the involvement of industrial partners.
Collapse
Affiliation(s)
- Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Virginie Bettonville
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
- Division of Hematology, Department of Medicine, CHU of Liège, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
26
|
Quality by design to define critical process parameters for mesenchymal stem cell expansion. Biotechnol Adv 2021; 50:107765. [PMID: 33961977 DOI: 10.1016/j.biotechadv.2021.107765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/01/2021] [Indexed: 12/15/2022]
Abstract
Stem cell-based therapeutic products could be the key to treat the deadliest current pathologies, ranging from neuro-degenerative to respiratory diseases. However, in order to bring these innovative therapeutics to a commercialization stage, reproducible manufacturing of high quality cell products is required. Although advances in cell culture techniques have led to more robust production processes and dramatically accelerated the development of early-phase clinical studies, challenges remain before regulatory approval, particularly to define and implement science-based quality standards (essential pre-requisites for national health agencies). In this regard, using new methodologies, such as Quality By Design (QBD), to build the production process around drug quality, could significantly reduce the chance of product rejection. This review-based work aims to perform a QBD approach to Mesenchymal Stem Cell (MSC) manufacturing in standard two-dimensional flasks, using published studies which have determined the impact of individual process parameters on defined Critical Quality Attributes (CQA). Along with this bibliographic analysis, parameter criticality was determined during the two main manufacturing stages (cell extraction and cell amplification) along with an overall classification in view of identifying the Critical Process Parameters (CPP). The analysis was performed in view of an improved standardization between research teams, and should contribute to reduce the gap towards compliant Good Manufacturing Practice (cGMP) manufacturing.
Collapse
|
27
|
Fernández Muñoz B, Lopez-Navas L, Gonzalez Bermejo M, Lomas Romero IM, Montiel Aguilera MÁ, Campos Cuerva R, Arribas Arribas B, Nogueras S, Carmona Sánchez G, Santos González M. A PROPRIETARY GMP HUMAN PLATELET LYSATE FOR THE EXPANSION OF DERMAL FIBROBLASTS FOR CLINICAL APPLICATIONS. Platelets 2021; 33:98-109. [PMID: 33393414 DOI: 10.1080/09537104.2020.1856356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent years have witnessed the introduction of ex vivo expanded dermal fibroblasts for several cell therapy and tissue-engineering applications, including the treatment of facial scars and burns, representing a promising cell type for regenerative medicine. We tested different in-house produced human platelet lysate (HPL) solutions against fetal bovine serum as supplements for in vitro fibroblast expansion by comparing cell yield, molecular marker expression, extracellular matrix (ECM) generation, genomic stability and global gene expression. Our in-house produced HPL supported fibroblast growth at levels similar to those for FBS and commercial HPL products and was superior to AB human serum. Cells grown in HPL maintained a fibroblast phenotype (VIM+, CD44+, CD13+, CD90+), ECM generation capacity (FN+, COL1+) and a normal karyotype, although gene expression profiling revealed changes related to cell metabolism, adhesion and cellular senescence. The HPL manufacturing process was validated within a GMP compliant system and the solution was stable at -80ºC and -20ºC for 2 years. Dermal fibroblasts expanded in vitro with HPL maintain a normal karyotype and expression of fibroblast markers, with only minor changes in their global gene expression profile. Our in-house produced GMP-HPL is an efficient, safe and economical cell culture supplement that can help increase the healthcare activity of blood transfusion centers through the re-use of transfusional plasma and platelets approaching their expiration date. Currently, our HPL solution is approved by the Spanish Agency of Medicines and Medical Devices and is being used in the manufacture of cell therapy products.
Collapse
Affiliation(s)
- Beatriz Fernández Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Departamento de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), Seville, Spain
| | - Luis Lopez-Navas
- Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Gonzalez Bermejo
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain
| | - Isabel María Lomas Romero
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Miguel Ángel Montiel Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Rafael Campos Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Blanca Arribas Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Sonia Nogueras
- Departamento de Terapia Celular, Instituto Maimónides de Investigación Biomédica of Córdoba (IMIBIC), Córdoba, Spain.,Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Gloria Carmona Sánchez
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Program in Biomedicine, University of Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
28
|
Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 177:185-228. [PMID: 33090237 DOI: 10.1007/10_2020_147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called "Digital Twin" of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks.In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown.
Collapse
|
29
|
Jena D, Kharche SD, Singh SP, Rani S, Dige MS, Ranjan R, Singh SK, Kumar H. Growth and proliferation of caprine bone marrow mesenchymal stem cells on different culture media. Tissue Cell 2020; 67:101446. [PMID: 33099198 DOI: 10.1016/j.tice.2020.101446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023]
Abstract
The growth and proliferation of mesenchymal stem cells are very sensitive in in vitro and a number of factors like media play a significant role in that context. In this study we assessed effect of different media on growth and proliferation of bone marrow derived mesenchymal stem cells (BMMSCs). The BMMSCs were isolated from caprine bone marrow and were subjected to magnetic activated cell sorting against CD90+, CD105+, CD271+and CD34- along with FC blocker. After characterisation, 2 × 104 cells were seeded in 12 well culture plates in four different media viz. MesenCult, MesenPRO, StemPro and complete DMEM (15 % FBS) to study their growth kinetic for 6 days from passage 0 (P0) to passage 3 (P3). The population doubling time (PDT) was derived from growth curve using logarithmic formula. The results showed that the BMMSCs growth and proliferation was highest in MesenCult media in P0 which varied significantly (p < 0.05) from rest of media and from P1 to P3, it was MesenPRO which yielded maximum cells (p < 0.05). The PDT was also in line with growth curve findings. In conclusion, the MesenPRO media had higher growth and proliferation rate from P1 to P3 although MesenCult had higher cell numbers in P0. In conclusion, the use of MesenPRO media could be a better option than conventional media when mesenchymal stem cells are used in clinical applications and other therapeutic purposes taking consideration to its higher growth and proliferation rate. And MesenCult would be a great option to harvest MSCs from P0.
Collapse
Affiliation(s)
- Dayanidhi Jena
- Dept. of Veterinary Clinical Complex, Faculty of Veterinary & Animal Sciences, Banaras Hindu University, Varanasi, U.P., 231001, India
| | - Suresh Dinkar Kharche
- ICAR-Central Institute for Research on Goats (CIRG), Makhdoom, Farah, 281122, Mathura, U.P., India.
| | - Shiva Pratap Singh
- ICAR-Central Institute for Research on Goats (CIRG), Makhdoom, Farah, 281122, Mathura, U.P., India
| | - Sonam Rani
- ICAR-Central Institute for Research on Goats (CIRG), Makhdoom, Farah, 281122, Mathura, U.P., India
| | - Mahesh Shivanand Dige
- ICAR-Central Institute for Research on Goats (CIRG), Makhdoom, Farah, 281122, Mathura, U.P., India
| | - Ravi Ranjan
- ICAR-Central Institute for Research on Goats (CIRG), Makhdoom, Farah, 281122, Mathura, U.P., India
| | - Sanjay Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, U.P., 243122, India
| | - Harendra Kumar
- ICAR-Indian Veterinary Research Institute, Bareilly, U.P., 243122, India
| |
Collapse
|
30
|
Guiotto M, Raffoul W, Hart AM, Riehle MO, di Summa PG. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. J Transl Med 2020; 18:351. [PMID: 32933520 PMCID: PMC7493356 DOI: 10.1186/s12967-020-02489-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Foetal bovine serum (FBS), is the most commonly used culture medium additive for in vitro cultures, despite its undefined composition, its potential immunogenicity and possible prion/zoonotic transmission. For these reasons, significant efforts have been targeted at finding a substitute, such as serum free-media or human platelet-lysates (hPL). Our aim is to critically appraise the state-of-art for hPL in the published literature, comparing its impact with FBS. MATERIALS AND METHODS In June 2019 a systematic search of the entire Web of Science, Medline and PubMed database was performed with the following search terms: (mesenchymal stem cells) AND (fetal bovine serum OR fetal bovine calf) AND (human platelet lysate). Excluded from this search were review articles that were published before 2005, manuscripts in which mesenchymal stem cells (MSCs) were not from human sources, and when the FBS controls were missing. RESULTS Based on our search algorithm, 56 papers were selected. A review of these papers indicated that hMSCs cultured with hPL showed a spindle-shaped elongated morphology, had higher proliferation indexes, similar cluster of differentiation (CD) markers and no significant variation in differentiation lineage (osteocyte, adipocyte, and chondrocyte) compared to those cultured with FBS. Main sources of primary hMSCs were either fat tissue or bone marrow; in a few studies cells isolated from alternative sources showed no relevant difference in their response. CONCLUSION Despite the difference in medium choice and a lack of standardization of hPL manufacturing, the majority of publications support that hPL was at least as effective as FBS in promoting adhesion, survival and proliferation of hMSCs. We conclude that hPL should be considered a viable alternative to FBS in hMSCs culture-especially with a view for their clinical use.
Collapse
Affiliation(s)
- M Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.
| | - W Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - A M Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - M O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - P G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
31
|
Moloudizargari M, Govahi A, Fallah M, Rezvanfar MA, Asghari MH, Abdollahi M. The mechanisms of cellular crosstalk between mesenchymal stem cells and natural killer cells: Therapeutic implications. J Cell Physiol 2020; 236:2413-2429. [PMID: 32892356 DOI: 10.1002/jcp.30038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are mesenchymal precursors of various origins, with well-known immunomodulatory effects. Natural killer (NK) cells, the major cells of the innate immune system, are critical for the antitumor and antiviral defenses; however, in certain cases, they may be the main culprits in the pathogenesis of some NK-related conditions such as autoimmunities and hematological malignancies. On the other hand, these cells seem to be the major responders in beneficial phenomena like graft versus leukemia. Substantial data suggest that MSCs can variably affect NK cells and can be affected by these cells. Accordingly, acquiring a profound understanding of the crosstalk between MSCs and NK cells and the involved mechanisms seems to be a necessity to develop therapeutic approaches based on such interactions. Therefore, in this study, we made a thorough review of the existing literature on the interactions between MSCs and NK cells with a focus on the underlying mechanisms. The current knowledge herein suggests that MSCs possess a great potential to be used as tools for therapeutic targeting of NK cells in disease context and that preconditioning of MSCs, as well as their genetic manipulation before administration, may provide a wider variety of options in terms of eliciting more specific and desirable therapeutic outcomes. Nevertheless, our knowledge regarding the effects of MSCs on NK cells is still in its infancy, and further studies with well-defined conditions are warranted herein.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Govahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Fallah
- Department of Pharmacology and Toxicology, Medicinal Plant Research Centre, Faculty of Pharmacy, Islamic Azad University, Amol, Iran
| | - Mohammad A Rezvanfar
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad H Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
32
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
33
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Naskou MC, Sumner S, Berezny A, Copland IB, Peroni JF. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal Stem Cells. Stem Cells Dev 2020; 28:1572-1580. [PMID: 31637965 DOI: 10.1089/scd.2019.0070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fetal bovine serum (FBS) is widely used to culture mesenchymal stem cells (MSCs) in the laboratory; however, FBS has been linked to adverse immune-mediated reactions prompting the search for alternative cell culture medium. Platelet lysate (PL) as an FBS substitute has been shown to promote MSCs growth without compromising their functionality. Fibrinogen contained in PL has been shown to negatively impact the immune modulating properties of MSCs; therefore, we sought to deplete fibrinogen from PL and compare proliferation, viability, and immunomodulatory capacities of MSCs in FBS or PL without fibrinogen. We depleted fibrinogen from equine platelet lysate (ePL) and measured platelet-derived growth factor-beta (PDGF-β), transforming growth factor-beta (TGF-β) and tumor necrosis factor-alpha (TNF-α) through ELISA. First, we determined the ability of 10% ePL or fibrinogen-depleted lysate (fdePL) compared with 10% FBS to suppress monocyte activation by measuring TNF-α from culture supernatants. We then evaluated proliferation, viability, and immunomodulatory characteristics of bone marrow-derived MSCs (BM-MSCs) cultured in FBS or ePL with or without fibrinogen. Growth factor concentrations decreased in ePL after fibrinogen depletion. Lipopolysaccharide (LPS)-stimulated monocytes exposed to ePL and fdePL produced less TNF-α than LPS-stimulated monocytes in 10% FBS. BM-MSCs cultured in fdePL exhibited lower proliferation rates, but similar viability compared with BM-MSCs in ePL. BM-MSCs in fdePL did not effectively suppress TNF-α expression from LPS-stimulated monocytes compared with BM-MSCs in FBS. Depleting fibrinogen results in a lysate that suppresses TNF-α expression from LPS-stimulated monocytes, but that does not support proliferation and immune-modulatory capacity of BM-MSCs as effectively as nondepleted lysate.
Collapse
Affiliation(s)
- Maria C Naskou
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Scarlett Sumner
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Alysha Berezny
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Ian B Copland
- Emory Personalized Immunotherapy Center [EPIC], Emory University School of Medicine, Atlanta, Georgia
| | - John F Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
35
|
Thamm K, Möbus K, Towers R, Segeletz S, Wetzel R, Bornhäuser M, Zhang Y, Wobus M. A Novel Synthetic, Xeno‐Free Biomimetic Surface for Serum‐Free Expansion of Human Mesenchymal Stromal Cells. ACTA ACUST UNITED AC 2020; 4:e2000008. [DOI: 10.1002/adbi.202000008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
| | - Kristin Möbus
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| | - Russell Towers
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| | | | | | - Martin Bornhäuser
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| | - Yixin Zhang
- Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Manja Wobus
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| |
Collapse
|
36
|
Mareschi K, Castiglia S, Adamini A, Rustichelli D, Marini E, Banche Niclot AGS, Bergallo M, Labanca L, Ferrero I, Fagioli F. Inactivated Platelet Lysate Supports the Proliferation and Immunomodulant Characteristics of Mesenchymal Stromal Cells in GMP Culture Conditions. Biomedicines 2020; 8:biomedicines8070220. [PMID: 32708843 PMCID: PMC7400095 DOI: 10.3390/biomedicines8070220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) isolated from bone marrow (BM-MSCs) are considered advanced therapy medicinal products (ATMPs) and need to be produced according to good manufacturing practice (GMP) in their clinical use. Human platelet lysate (HPL) is a good GMP-compliant alternative to animal serum, and we have demonstrated that after pathogen inactivation with psoralen, it was safer and more efficient to use psoralen in the production of MSCs following GMP guidelines. In this study, the MSCs cultivated in fetal bovine serum (FBS-MSC) or inactivated HPL (iHPL-MSC) were compared for their immunomodulatory properties. We studied the effects of MSCs on (1) the proliferation of total lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate in Th1 versus Th2 Ly; (2) the immunophenotype of different T-cell subsets; (3) and the cytokine release to verify Th1, Th2, and Th17 polarization. These were analyzed by using an in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulatory properties observed in the FBS-MSC co-cultures. Furthermore, a more efficient effect on the increase of naïve T- cells and in the Th1 cytokine release from iHPL was observed. This study confirms that iHPL, used as a medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion, and also to preserve their immunomodulatory proprieties.
Collapse
Affiliation(s)
- Katia Mareschi
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
- Correspondence: ; Tel.: +39-11-3135420
| | - Sara Castiglia
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Aloe Adamini
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Deborah Rustichelli
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Elena Marini
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Alessia Giovanna Santa Banche Niclot
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Massimiliano Bergallo
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
| | - Luciana Labanca
- Blood Component Production and Validation Center, City of Health and Science of Turin, S. Anna Hospital, 10126 Turin, Italy;
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| | - Franca Fagioli
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (E.M.); (A.G.S.B.N); (M.B.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy; (S.C.); (A.A.); (D.R.); (I.F.)
| |
Collapse
|
37
|
Liu C, Sun J. Modulation of the secretion of mesenchymal stem cell immunoregulatory factors by hydrolyzed fish collagen. Exp Ther Med 2020; 20:375-384. [PMID: 32509014 PMCID: PMC7271731 DOI: 10.3892/etm.2020.8674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the possible immunomodulatory effects of osteogenically differentiated bone marrow mesenchymal stem cells induced by hydrolyzed fish collagen. Marine biomaterials have attracted significant attention for their environmental friendliness and renewability. Hydrolyzed fish collagen (HFC) has been discovered to induce the osteoblastic differentiation of stem cells, which underlies the foundation for its application in tissue engineering. Stem cells and their biomaterial carriers face acute immune rejection mediated by host macrophages. A potential strategy for combatting rejection in stem cell therapy is to modify the polarization of macrophages. However, whether HFC-induced mesenchymal stem cells maintain their immunomodulatory ability remains to be determined. To understand this phenomenon, a co-culture model of direct contact was established between bone marrow mesenchymal stem cells (BMSCs) and RAW264.7 macrophages, where the secretion of nitrous oxide from macrophages was measured using Griess colorimetric assay. ELISAs were performed to measure the secretion of interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β and IL-10, whilst reverse transcription-quantitative PCR was used to assess the expression levels of IL-1β, IL-6, CD206, resistin-like molecule α (FIZZ1) and prostaglandin E2 receptor 4 (EP4). In addition, the expression levels of relevant proteins in the phosphorylated-cyclic AMP-responsive element-binding protein-CCAAT/enhancer-binding protein β (EBPβ) pathway were investigated using western blotting. HFC-induced BMSCs were found to suppress the expression levels of IL-1β and IL-6, whilst increasing the expression levels of CD206 and FIZZ1 in RAW264.7 macrophages. HFC-induced BMSCs also inhibited the secretion of IL-1β and IL-6, whilst promoting the secretion of TGF-β and IL-10 secretion from RAW264.7 macrophages. Mechanistic studies using western blotting discovered that HFC stimulated the secretion of prostaglandin E2 from BMSCs, which subsequently increased the expression of EP4 on the macrophages. EP4 then increased the expression levels of C/EBPβ and arginase 1 further. In conclusion, results from the present study suggested that following induction with HFC, BMSCs maintain their immunomodulatory activity.
Collapse
Affiliation(s)
- Chao Liu
- Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, P.R. China
| | - Jiao Sun
- Shanghai Biomaterials Research and Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, P.R. China
| |
Collapse
|
38
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Zamani M, Yaghoubi Y, Naimi A, Hassanzadeh A, Pourakbari R, Aghebati-Maleki L, Motavalli R, Aghlmandi A, Mehdizadeh A, Nazari M, Yousefi M, Movassaghpour AA. Humanized Culture Medium for Clinical-Grade Generation of Erythroid Cells from Umbilical Cord Blood CD34 + Cells. Adv Pharm Bull 2020; 11:335-342. [PMID: 33880356 PMCID: PMC8046389 DOI: 10.34172/apb.2021.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: Transfusion of red blood cells (RBCs) is a supportive and common treatment in surgical care, trauma, and anemia. However, in vivo production of RBC seems to be a suitable alternative for blood transfusions due to the limitation of blood resources, the possibility of disease transmission, immune reactions, and the presence of rare blood groups. Cell cultures require serum-free or culture media supplemented with highly expensive animal serum, which can transmit xenoviruses. Platelet lysate (PL) can be considered as a suitable alternative containing a high level of growth factors and a low production cost. Methods: Three-step culture media supplemented with PL or fetal bovine serum (FBS) were used for proliferation and differentiation of CD34+ umbilical cord blood stem cells to erythrocytes in co-culture with bone marrow mesenchymal stem cells (BM-MSCs). The cells were cultivated for 15 days and cell proliferation and expansion were assessed using cell counts at different days. Erythroid differentiation genes, CD71 and glycophorin A expression levels were evaluated. Results: Maximum hematopoietic stem cells (HSCs) proliferation was observed on day 15 in PL-containing medium (99±17×103-fold). Gene expression and surface markers showed higher differentiation of cells in PL-containing medium. Conclusion: The results of this study indicate that PL can enhance erythroid proliferation and differentiation of CD34+ HSCs. PL can also be used as a proper alternative for FBS in the culture medium and HSCs differentiation.
Collapse
Affiliation(s)
- Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsoon Aghlmandi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Nazari
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
41
|
Bieback K, Fernandez-Muñoz B, Pati S, Schäfer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Transfusion 2019; 59:3448-3460. [PMID: 31412158 DOI: 10.1111/trf.15483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen gGmbH, Mannheim, Germany
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)/Laboratorio Andaluz de Reprogramación Celular (LARCEL), Sevilla, Spain.,Iniciativa Andaluza de Terapias Avanzadas, Sevilla, Spain.,IBiS, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Shibani Pati
- Blood Systems Research Institute (BSRI), Blood Systems Inc. (BSI), and the University of California at San Francisco, San Francisco, California
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
42
|
Bieback K, Fernandez-Muñoz B, Pati S, Schäfer R. Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy. Cytotherapy 2019; 21:911-924. [PMID: 31307904 DOI: 10.1016/j.jcyt.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Fetal bovine serum (FBS) is used as a growth supplement in a wide range of cell culture applications for cell-based research and therapy. However, as a xenogenic product, FBS can potentially transmit prions and adventitious viruses as well as induce undesirable immunologic reactions. In addition, the use of bovine fetuses for FBS production raises concerns as society looks for ways to replace animal testing and reduce the use of animal products for scientific purposes, in particular for the manufacture of clinical products intended for human use. Until chemically defined media are available for these purposes, human platelet lysate (hPL) has been introduced as an attractive alternative for replacing FBS as a cell culture supplement. hPL is a human product that can be produced from outdated platelets avoiding ethical, medical and animal welfare concerns. An increasing number of studies demonstrate that hPL can promote cell growth similarly or even better than FBS in specific cell types. Due to increasing interest in hPL, the AABB and the International Society of Cell Therapy (ISCT) established a joint working group to address its potential. With this article, we aim to present an overview of hPL, identifying the gaps in information on how hPL is produced and tested and the barriers to its translational use in the production of clinical-grade cell therapy products.
Collapse
Affiliation(s)
- Karen Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Mannheim, Germany.
| | - Beatriz Fernandez-Muñoz
- Unidad de Producción y Reprogramación Celular (UPRC)/Laboratorio Andaluz de Reprogramación Celular (LARCEL), Sevilla, Spain; Iniciativa Andaluza de Terapias Avanzadas, Sevilla, Spain; IBiS, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Shibani Pati
- Blood Systems Research Institute (BSRI), Blood Systems Inc. (BSI) and University of California San Francisco, San Francisco, California, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Manufacturing mesenchymal stromal cells for clinical applications: A survey of Good Manufacturing Practices at U.S. academic centers. Cytotherapy 2019; 21:782-792. [DOI: 10.1016/j.jcyt.2019.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
|
44
|
Zamani M, Yaghoubi Y, Movassaghpour A, Shakouri K, Mehdizadeh A, Pishgahi A, Yousefi M. Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? J Cell Physiol 2019; 234:17172-17186. [PMID: 30912141 DOI: 10.1002/jcp.28496] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.
Collapse
Affiliation(s)
- Majid Zamani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Shakouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Pishgahi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
46
|
Bandeiras C, Cabral JM, Finkelstein SN, Ferreira FC. Modeling biological and economic uncertainty on cell therapy manufacturing: the choice of culture media supplementation. Regen Med 2018; 13:917-933. [PMID: 30488770 DOI: 10.2217/rme-2018-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To evaluate the cost-effectiveness of autologous cell therapy manufacturing in xeno-free conditions. MATERIALS & METHODS Published data on the isolation and expansion of mesenchymal stem/stromal cells introduced donor, multipassage and culture media variability on cell yields and process times on adherent culture flasks to drive cost simulation of a scale-out campaign of 1000 doses of 75 million cells each in a 400 square meter Good Manufacturing Practices facility. RESULTS & CONCLUSION Passage numbers in the expansion step are strongly associated with isolation cell yield and drive cost increases per donor of $1970 and 2802 for fetal bovine serum and human platelet lysate. Human platelet lysate decreases passage numbers and process costs in 94.5 and 97% of donors through lower facility and labor costs. Cost savings are maintained with full equipment depreciation and higher numbers of cells per dose, highlighting the number of cells per passage step as the key cost driver.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal.,Institute for Data, Systems & Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge MA 02139, USA.,Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston MA 02215, USA
| | - Joaquim Ms Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal
| | - Stan N Finkelstein
- Institute for Data, Systems & Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge MA 02139, USA.,Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston MA 02215, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal
| |
Collapse
|
47
|
Yoshida K, Nakashima A, Doi S, Ueno T, Okubo T, Kawano KI, Kanawa M, Kato Y, Higashi Y, Masaki T. Serum-Free Medium Enhances the Immunosuppressive and Antifibrotic Abilities of Mesenchymal Stem Cells Utilized in Experimental Renal Fibrosis. Stem Cells Transl Med 2018; 7:893-905. [PMID: 30269426 PMCID: PMC6265641 DOI: 10.1002/sctm.17-0284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Serum used in culture medium brings risks of immune reactions or infections and thus may hinder using ex vivo expanded mesenchymal stem cells (MSCs) for medical treatment. Here, we cultured MSCs in a serum-free medium (SF-MSCs) and in a medium containing 10% fetal bovine serum (10%MSCs) and investigated their effects on inflammation and fibrosis. MSC-conditioned medium suppressed transforming growth factor-β1-induced phosphorylation of Smad2 in HK-2 cells, with no significant difference between the two MSCs. This finding suggests that the direct antifibrotic effect of SF-MSCs is similar to that of 10%MSCs. However, immunohistochemistry revealed that renal fibrosis induced by unilateral ureteral obstruction in rats was more significantly ameliorated by the administration of SF-MSCs than by that of 10%MSCs. Coculture of MSCs and monocytic THP-1 cell-derived macrophages using a Transwell system showed that SF-MSCs significantly induced polarization from the proinflammatory M1 to the immunosuppressive M2 phenotype macrophages, suggesting that SF-MSCs strongly suppress the persistence of inflammation. Furthermore, the gene expression of tumor necrosis factor-α-induced protein 6 (TSG-6), which inhibits the recruitment of inflammatory cells, was higher in SF-MSCs than in 10%MSCs, and TSG-6 knockdown in SF-MSCs attenuated the anti-inflammatory responses in unilateral ureteral obstruction rats. These findings imply that SF culture conditions can enhance the immunosuppressive and antifibrotic abilities of MSCs and the administration of ex vivo expanded SF-MSCs has the potential to be a useful therapy for preventing the progression of renal fibrosis. Stem Cells Translational Medicine 2018;7:893-905.
Collapse
Affiliation(s)
- Ken Yoshida
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoe Okubo
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ki-Ichiro Kawano
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masami Kanawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Yukio Kato
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,TWOCELLS Company, Limited, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
48
|
Naskou MC, Sumner SM, Chocallo A, Kemelmakher H, Thoresen M, Copland I, Galipeau J, Peroni JF. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:75. [PMID: 29566772 PMCID: PMC5863827 DOI: 10.1186/s13287-018-0823-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) produced for clinical purposes rely on culture media containing fetal bovine serum (FBS) which is xenogeneic and has the potential to significantly alter the MSC phenotype, rendering these cells immunogenic. As a result of bovine-derived exogenous proteins expressed on the cell surface, MSCs may be recognized by the host immune system as non-self and be rejected. Platelet lysate (PL) may obviate some of these concerns and shows promising results in human medicine as a possible alternative to FBS. Our goal was to evaluate the use of equine platelet lysate (ePL) pooled from donor horses in place of FBS to culture equine MSCs. We hypothesized that ePL, produced following apheresis, will function as the sole media supplement to accelerate the expansion of equine bone marrow-derived MSCs without altering their phenotype and their immunomodulatory capacity. Methods Platelet concentrate was obtained via plateletpheresis and ePL were produced via freeze-thaw and centrifugation cycles. Population doublings (PD) and doubling time (DT) of bone marrow-derived MSCs (n = 3) cultured with FBS or ePL media were calculated. Cell viability, immunophenotypic analysis, and trilineage differentiation capacity of MSCs were assessed accordingly. To assess the ability of MSCs to modulate inflammatory responses, E. coli lipopolysaccharide (LPS)-stimulated monocytes were cocultured with MSCs cultured in the two different media formulations, and cell culture supernatants were assayed for the production of tumor necrosis factor (TNF)-α. Results Our results showed that MSCs cultured in ePL media exhibited similar proliferation rates (PD and DT) compared with those cultured in FBS at individual time points. MSCs cultured in ePL showed a statistically significant increased viability following a single washing step, expressed similar levels of MSC markers compared to FBS, and were able to differentiate towards the three lineages. Finally, MSCs cultured in ePL efficiently suppressed the release of TNF-α when exposed to LPS-stimulated monocytes similar to those cultured in FBS. Conclusion ePL has the potential to be used for the expansion of MSCs before clinical application, avoiding the concerns associated with the use of FBS.
Collapse
Affiliation(s)
- Maria C Naskou
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Scarlett M Sumner
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Anna Chocallo
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Hannah Kemelmakher
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Merrilee Thoresen
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA
| | - Ian Copland
- Emory Personalized Immunotherapy Center [EPIC], Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jacques Galipeau
- Department of Medicine and Carbone Comprehensive Cancer Center, University of Wisconsin, 600 Highland Ave., Madison, WI, 53792, USA
| | - John F Peroni
- Department of Large Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA.
| |
Collapse
|
49
|
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102:3981-3994. [PMID: 29564526 PMCID: PMC5895685 DOI: 10.1007/s00253-018-8912-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| |
Collapse
|
50
|
Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Sci Rep 2018; 8:3907. [PMID: 29500387 PMCID: PMC5834600 DOI: 10.1038/s41598-018-22326-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source to develop cell therapy for many diseases. Human platelet lysate (PLT) is increasingly used as an alternative to foetal calf serum (FCS) for clinical-scale MSC production. To date, the global surface protein expression of PLT-expended MSCs (MSC-PLT) is not known. To investigate this, paired MSC-PLT and MSC-FCS were analysed in parallel using high-throughput flow cytometry for the expression of 356 cell surface proteins. MSC-PLT showed differential surface protein expression compared to their MSC-FCS counterpart. Higher percentage of positive cells was observed in MSC-PLT for 48 surface proteins, of which 13 were significantly enriched on MSC-PLT. This finding was validated using multiparameter flow cytometry and further confirmed by quantitative staining intensity analysis. The enriched surface proteins are relevant to increased proliferation and migration capacity, as well as enhanced chondrogenic and osteogenic differentiation properties. In silico network analysis revealed that these enriched surface proteins are involved in three distinct networks that are associated with inflammatory responses, carbohydrate metabolism and cellular motility. This is the first study reporting differential cell surface protein expression between MSC-PLT and MSC-FSC. Further studies are required to uncover the impact of those enriched proteins on biological functions of MSC-PLT.
Collapse
|