1
|
Zhao J, Zhang S, Bai Y, Gong Z, Bao W, Yu Z, Liu B, Mao W, Hasi S. MLKL is involved in the regulation of skin wound healing and interplay between macrophages and myofibroblasts in mice. Sci Rep 2025; 15:13612. [PMID: 40253554 PMCID: PMC12009362 DOI: 10.1038/s41598-025-97729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL), a critical necroptosis effector, is strongly linked to inflammation, a key component of skin wound healing. However, its precise role in the wound healing process remains inadequately characterized. This study revealed sustained MLKL overexpression throughout the wound healing process, not limited to the early inflammation phase. Wound healing was delayed in MLKL-deficient (MLKL-/-) mice compared to wild type C57BL/6J (MLKL+/+) mice, with impaired morphological and pathological recovery. MLKL deficiency reduced the synthesis of inflammatory factors (IL-6, TNF-α, PGE2), tissue repair molecules (EGF, VEGF, ERα, MMP-9), and apoptosis markers (Caspase-3, p53, Bcl-2) at wound site. Subsequently, a co-culture system was established to explore the roles of MLKL in macrophage-fibroblast interactions. M1 or M2 macrophages (M1ø or M2ø) were co-cultured with fibroblast-conditioned medium (MFbCM), and fibroblasts were co-cultured with macrophage-conditioned medium (M1ø CM or M2ø CM). The results indicated that MLKL+/+ M1ø CM and M2ø CM significantly increased ERα, VEGF and MMP-9 protein expression levels in fibroblasts, whereas this effect was impaired when MLKL-/- M1ø CM or M2ø CM were used. Similarly, MLKL+/+ MFbCM upregulated IL-6, NO, and TNF-α in M1ø and IL-10, arginase, and Ym-1 in M2ø, but these effects were diminished with MLKL-/- MFbCM treatment. These results indicate bidirectional crosstalk between macrophages and fibroblasts, in which MLKL plays a role. Additionally, PGE2 was identified as a downstream mediator of MLKL-mediated interactions between macrophages and fibroblasts. In conclusion, these findings identify MLKL as a multifunctional regulator in skin wound healing in mice.
Collapse
Affiliation(s)
- Jiamin Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China.
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| | - Yunjie Bai
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiguo Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenhui Bao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhuoya Yu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, Hohhot, 010011, China.
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
2
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
3
|
Mellentine SQ, Brown HN, Ramsey AS, Li J, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. Front Cell Dev Biol 2024; 11:1257751. [PMID: 38283991 PMCID: PMC10811798 DOI: 10.3389/fcell.2023.1257751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. The border cells undergo a collective and invasive migration between the nurse cells; thus, the nurse cells are the substrate and microenvironment for the border cells. Prior work found PG signaling is required for on-time border cell migration and cluster cohesion. Methods: Confocal microscopy and quantitative image analyses of available mutant alleles and RNAi lines were used to define the roles of the PGE2 and PGF2α synthases in border cell migration. Results: We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B may regulate border cell migration and/or cluster cohesion is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Decreasing myosin activity overcomes the migration delays in both akr1B and cPGES mutants, indicating the changes in cellular stiffness contribute to the migration defects. Discussion: Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Cui Y, Lv Z, Yang Z, Lei J. Inhibition of Prostaglandin-Degrading Enzyme 15-PGDH Mitigates Acute Murine Lung Allograft Rejection. Lung 2023; 201:591-601. [PMID: 37934242 DOI: 10.1007/s00408-023-00651-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Acute rejection is a frequent complication among lung transplant recipients and poses substantial therapeutic challenges. 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme responsible for the inactivation of prostaglandin E2 (PGE2), has recently been implicated in inflammatory lung diseases. However, the role of 15-PGDH in lung transplantation rejection remains elusive. The present study was undertaken to examine the expression of 15-PGDH in rejected lung allografts and whether inhibition of 15-PGDH ameliorates acute lung allograft rejection. METHODS Orthotopic mouse lung transplantations were performed between donor and recipient mice of the same strain or allogeneic mismatched pairs. The expression of 15-PGDH in mouse lung grafts was measured. The efficacy of a selective 15-PGDH inhibitor (SW033291) in ameliorating acute rejection was assessed through histopathological examination, micro-CT imaging, and pulmonary function tests. Additionally, the mechanism underlying the effects of SW033291 treatment was explored using CD8+ T cells isolated from mouse lung allografts. RESULTS Increased 15-PGDH expression was observed in rejected allografts and allogeneic CD8+ T cells. Treatment with SW033291 led to an accumulation of PGE2, modulation of CD8+ T-cell responses and mitochondrial activity, and improved allograft function and survival. CONCLUSION Our study provides new insights into the role of 15-PGDH in acute lung rejection and highlights the therapeutic potential of inhibiting 15-PGDH for enhancing graft survival. The accumulation of PGE2 and modulation of CD8+ T-cell responses represent potential mechanisms underlying the benefits of 15-PGDH inhibition in this model. Our findings provide impetus for further exploring 15-PGDH as a target for improving lung transplantation outcomes.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai, Beijing, 100069, People's Republic of China.
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai, Beijing, 100069, People's Republic of China
| | - Zeran Yang
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jianfeng Lei
- Research Core Facilities, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
5
|
Mellentine SQ, Ramsey AS, Li J, Brown HN, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546291. [PMID: 37425965 PMCID: PMC10327004 DOI: 10.1101/2023.06.23.546291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. Prior work shows PG signaling is required for on-time migration and cluster cohesion. We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B regulates border cell migration is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
6
|
Rakhshandeh H, Baradaran Rahimi V, Dehghan-Naieri B, Rahmanian-Devin P, Jebalbarezy A, Hasanpour M, Iranshahi M, Askari VR. Peritoneal lavage with Glycyrrhiza glabra is effective in preventing peritoneal adhesion in a rat model. Inflammopharmacology 2023; 31:899-914. [PMID: 36862226 DOI: 10.1007/s10787-023-01139-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Intraperitoneal adhesion formation is a significant problem following surgeries, resulting in substantial clinical and economic consequences. Glycyrrhiza glabra has several pharmacological properties consisting of anti-inflammatory, anti-microbial, anti-oxidant, anti-cancer, and immunomodulatory activities. AIM Therefore, we aimed to investigate the impacts of G. glabra on the development of post-operative abdominal adhesion in a rat model. METHODS Male Wistar rats weighing 200-250 g were divided into six groups (n = 8): Group 1: normal group (non-surgical), and the surgical groups including Group 2: control group received the vehicle, Group 3: G. glabra 0.5% w/v, Group 4: G. glabra 1% w/v, Group 5: G. glabra 2% w/v, and Group 6: dexamethasone, 0.4% w/v. The intra-abdominal adhesion was performed utilizing soft sterilized sandpaper on one side of the cecum, and the peritoneum was slightly washed with 2 ml of the extract or vehicle. In addition, macroscopic examination of adhesion scoring and the levels of inflammatory mediators [interferon (IFN)-γ, prostaglandin E2 (PGE2)], fibrosis markers [interleukin (IL)-4, transforming growth factor (TGF)-ꞵ], and oxidative factors [malondialdehyde (MDA), nitric oxide metabolites (NO), and reduced glutathione (GSH)] were evaluated. In vitro toxicities were also done on mouse fibroblast L929 and NIH/3T3 cell lines. RESULTS We found higher levels of adhesion (P < 0.001), IFN-γ(P < 0.001), PGE2(P < 0.001), IL-4(P < 0.001), TGF-β(P < 0.001), MDA(P < 0.001), and NO(P < 0.001), and lower levels of GSH(P < 0.001) in the control group. In contrast, G. glabra concentration dependent and dexamethasone alleviated the levels of adhesion (P < 0.05), inflammatory mediators (P < 0.001-0.05), fibrosis (P < 0.001-0.05), and oxidative (P < 0.001-0.05) factors, while propagating the anti-oxidant marker (P < 0.001-0.05) in comparison to the control group. Results also showed that the extract did not significantly reduce cell viability up to 300 µg/ml (P > 0.05). CONCLUSION G. glabra could concentration-dependently mitigate peritoneal adhesion formation through its anti-inflammatory, anti-fibrosis, and anti-oxidant properties. However, further clinical investigations are required to approve that G. glabra may be a promising candidate against post-surgical adhesive complications.
Collapse
Affiliation(s)
- Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Dehghan-Naieri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Burkett JB, Doran AC, Gannon M. Harnessing prostaglandin E 2 signaling to ameliorate autoimmunity. Trends Immunol 2023; 44:162-171. [PMID: 36707339 PMCID: PMC9975049 DOI: 10.1016/j.it.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/26/2023]
Abstract
The etiology of most autoimmune diseases remains unknown; however, shared among them is a disruption of immunoregulation. Prostaglandin lipid signaling molecules possess context-dependent immunoregulatory properties, making their role in autoimmunity difficult to decipher. For example, prostaglandin E2 (PGE2) can function as an immunosuppressive molecule as well as a proinflammatory mediator in different circumstances, contributing to the expansion and activation of T cell subsets associated with autoimmunity. Recently, PGE2 was shown to play important roles in the resolution and post-resolution phases of inflammation, promoting return to tissue homeostasis. We propose that PGE2 plays both proinflammatory and pro-resolutory roles in the etiology of autoimmunity, and that harnessing this signaling pathway during the resolution phase might help prevent autoimmune attack.
Collapse
Affiliation(s)
- Juliann B Burkett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Amanda C Doran
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA.
| |
Collapse
|
8
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
9
|
The role of PGE2 and EP receptors on lung's immune and structural cells; possibilities for future asthma therapy. Pharmacol Ther 2023; 241:108313. [PMID: 36427569 DOI: 10.1016/j.pharmthera.2022.108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Asthma is the most common airway chronic disease with treatments aimed mainly to control the symptoms. Adrenergic receptor agonists, corticosteroids and anti-leukotrienes have been used for decades, and the development of more targeted asthma treatments, known as biological therapies, were only recently established. However, due to the complexity of asthma and the limited efficacy as well as the side effects of available treatments, there is an urgent need for a new generation of asthma therapies. The anti-inflammatory and bronchodilatory effects of prostaglandin E2 in asthma are promising, yet complicated by undesirable side effects, such as cough and airway irritation. In this review, we summarize the most important literature on the role of all four E prostanoid (EP) receptors on the lung's immune and structural cells to further dissect the relevance of EP2/EP4 receptors as potential targets for future asthma therapy.
Collapse
|
10
|
Wang X, Li N, Ma M, Han Y, Rao K. Immunotoxicity In Vitro Assays for Environmental Pollutants under Paradigm Shift in Toxicity Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:273. [PMID: 36612599 PMCID: PMC9819277 DOI: 10.3390/ijerph20010273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.
Collapse
Affiliation(s)
- Xinge Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China
| |
Collapse
|
11
|
Nienaber A, Ozturk M, Dolman R, Blaauw R, Zandberg LL, van Rensburg S, Britz M, Hayford FEA, Brombacher F, Loots DT, Smuts CM, Parihar SP, Malan L. n-3 long-chain PUFA promote antibacterial and inflammation-resolving effects in Mycobacterium tuberculosis-infected C3HeB/FeJ mice, dependent on fatty acid status. Br J Nutr 2022; 127:384-397. [PMID: 33814018 DOI: 10.1017/s0007114521001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-resolving inflammation is characteristic of tuberculosis (TB). Given their inflammation-resolving properties, n-3 long-chain PUFA (n-3 LCPUFA) may support TB treatment. This research aimed to investigate the effects of n-3 LCPUFA on clinical and inflammatory outcomes of Mycobacterium tuberculosis-infected C3HeB/FeJ mice with either normal or low n-3 PUFA status before infection. Using a two-by-two design, uninfected mice were conditioned on either an n-3 PUFA-sufficient (n-3FAS) or -deficient (n-3FAD) diet for 6 weeks. One week post-infection, mice were randomised to either n-3 LCPUFA supplemented (n-3FAS/n-3+ and n-3FAD/n-3+) or continued on n-3FAS or n-3FAD diets for 3 weeks. Mice were euthanised and fatty acid status, lung bacterial load and pathology, cytokine, lipid mediator and immune cell phenotype analysed. n-3 LCPUFA supplementation in n-3FAS mice lowered lung bacterial loads (P = 0·003), T cells (P = 0·019), CD4+ T cells (P = 0·014) and interferon (IFN)-γ (P < 0·001) and promoted a pro-resolving lung lipid mediator profile. Compared with n-3FAS mice, the n-3FAD group had lower bacterial loads (P = 0·037), significantly higher immune cell recruitment and a more pro-inflammatory lipid mediator profile, however, significantly lower lung IFN-γ, IL-1α, IL-1β and IL-17, and supplementation in the n-3FAD group provided no beneficial effect on lung bacterial load or inflammation. Our study provides the first evidence that n-3 LCPUFA supplementation has antibacterial and inflammation-resolving benefits in TB when provided 1 week after infection in the context of a sufficient n-3 PUFA status, whilst a low n-3 PUFA status may promote better bacterial control and lower lung inflammation not benefiting from n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Robin Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Renee Blaauw
- Division of Human Nutrition, Stellenbosch University, Tygerberg, Cape Town, Western Cape, South Africa
| | - Lizelle L Zandberg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Simone van Rensburg
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Melinda Britz
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Frank E A Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Nutrition and Dietetics, University of Ghana, Accra, Ghana
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, Western Cape, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, Western Cape, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, Western Cape, South Africa
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Garcia FADO, Sales-Campos H, Yuen VG, Machado JR, Viana GSDB, Oliveira CJF, McNeill JH. Arthrospira ( Spirulina) platensis Attenuates Dextran Sulfate Sodium-induced Colitis in Mice by Suppressing Key Pro-inflammatory Cytokines. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 76:150-158. [PMID: 32969363 DOI: 10.4166/kjg.2020.76.3.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Abstract
Background/Aims Therapies aimed at modulating cytokines have been used to treat inflammatory illnesses, such as inflammatory bowel disease. On the other hand, patients may become intolerant, refractory, or present with several side effects. Arthrospira (Spirulina) platensis (SPI) is a blue-green microalga with bioactive molecules that have been evaluated to treat inflammatory diseases. On the other hand, few studies have examined their effects on the production of specific cytokines and the intestinal architecture in dextran sulfate sodium (DSS)-induced colitis. Therefore, this study examined the effects of a treatment using SPI in a murine model of intestinal inflammation. Methods All mice (C57BL/6 male) were evaluated daily for their food and water intake, bodyweight variations, and clinical signs of disease. Colon inflammation was induced by exposure to DSS for 6 consecutive days. SPI was given orally at 50, 100, and 250 mg/kg/day. ELISA was performed to assess the production of cytokines. Myeloperoxidase and nitric oxide were also investigated. The level of microscopic damage was assessed by staining colon sections with hematoxylin and eosin. Results SPI attenuated the DSS-induced inflammation, with improvements in the clinical signs and a decrease in the production of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ. In addition, particularly at 250 mg/kg, SPI attenuated the severity of colitis by modulating the level of mucosal and submucosal cell infiltration, which preserved the epithelial barrier. Conclusions SPI may be an alternative source of bioactive molecules with immunomodulatory properties, and has great potential to be used in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Francisca Adilfa de Oliveira Garcia
- Faculty of Pharmaceutical Sciences, The University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departamento de Fisiologia, Faculdade de Medicina Estacio de Juazeiro do Norte (ESTACIO), Juazeiro do Norte, CE, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triangulo Mineiro (UFTM), Minas Gerais, Brazil.,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Violet G Yuen
- Faculty of Pharmaceutical Sciences, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Juliana Reis Machado
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triangulo Mineiro (UFTM), Minas Gerais, Brazil
| | - Glauce Socorro de Barros Viana
- Departamento de Farmacologia, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil.,Departamento de Fisiologia, Faculdade de Medicina Estacio de Juazeiro do Norte (ESTACIO), Juazeiro do Norte, CE, Brazil
| | - Carlo José Freire Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triangulo Mineiro (UFTM), Minas Gerais, Brazil
| | - John H McNeill
- Faculty of Pharmaceutical Sciences, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, Maddipati KR, Lamon-Fava S. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis 2021; 316:90-98. [PMID: 33303222 DOI: 10.1016/j.atherosclerosis.2020.11.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. METHODS After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. RESULTS Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. CONCLUSIONS EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
14
|
Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. The Essential Role of Peptidylarginine Deiminases 2 for Cytokines Secretion, Apoptosis, and Cell Adhesion in Macrophage. Int J Mol Sci 2020; 21:ijms21165720. [PMID: 32785008 PMCID: PMC7460808 DOI: 10.3390/ijms21165720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: The study aims to investigate the functional roles of peptidylarginine deiminase 2 (PADI2) in macrophages. Methods: The clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein-9 nuclease (Cas9) system was used to knockout PADI2 in U937 cells. U937 cells were introduced to differentiate macrophages and were stimulated with lipopolysaccharides (LPS). The protein expression of PADI2, PADI4, and citrullinated proteins were analyzed by Western blotting. The mRNA and protein levels of interleukin 1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) were analyzed using RT-PCR and ELISA, respectively. Cell apoptosis was analyzed using flow cytometry. Cell adhesion assay was performed using a commercially available fibrinogen-coated plate. Results: PADI2 knockout could markedly suppress the PADI2 protein expression, but not the PADI4 protein expression. PADI2 knockout decreased the protein levels of citrullinated nuclear factor κB (NF-κB) p65, but not those of citrullinated histone 3, resulting in the decreased mRNA expression levels of IL-1β and TNF-α in the U937 cells and IL-1β and IL-6 in the differentiated macrophages and the macrophages stimulated with LPS. The cytokines levels of IL-1β, IL-6, and TNF-α were all dramatically decreased in the PADI2 knockout group compared with in the controls. PADI2 knockout prevented macrophages apoptosis via the decreased caspase-3, caspase-2, and caspase-9 activation. PADI2 knockout also impaired macrophages adhesion capacity through the decreased protein levels of focal adhesion kinase (FAK), phospho-FAK, paxillin, phospho-paxillin, and p21-activated kinase 1. Conclusion: This study showed that PADI2 could promote IL-1β, IL-6, and TNF-α production in macrophages, promote macrophage apoptosis through caspase-3, caspase-2, and caspase-9 activation and enhance cell adhesion via FAK, paxillin, and PAK1. Therefore, targeting PADI2 could be used as a novel strategy for controlling inflammation caused by macrophages.
Collapse
Affiliation(s)
- Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Minxiong, Chiayi 62130, Taiwan;
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi 62130, Taiwan; (H.-C.Y.); (C.-H.T.); (K.-Y.H.)
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
- Correspondence: ; Tel.: +886-5-2648000 (ext. 3205); Fax: +886-5-2648006
| |
Collapse
|
15
|
Mançanares ACF, Cabezas J, Manríquez J, de Oliveira VC, Wong Alvaro YS, Rojas D, Navarrete Aguirre F, Rodriguez-Alvarez L, Castro FO. Edition of Prostaglandin E2 Receptors EP2 and EP4 by CRISPR/Cas9 Technology in Equine Adipose Mesenchymal Stem Cells. Animals (Basel) 2020; 10:E1078. [PMID: 32585798 PMCID: PMC7341266 DOI: 10.3390/ani10061078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023] Open
Abstract
In mesenchymal stem cells (MSCs), it has been reported that prostaglandin E2 (PGE2) stimulation of EP2 and EP4 receptors triggers processes such as migration, self-renewal, survival, and proliferation, and their activation is involved in homing. The aim of this work was to establish a genetically modified adipose (aMSC) model in which receptor genes EP2 and EP4 were edited separately using the CRISPR/Cas9 system. After edition, the genes were evaluated as to if the expression of MSC surface markers was affected, as well as the migration capacity in vitro of the generated cells. Adipose MSCs were obtained from Chilean breed horses and cultured in DMEM High Glucose with 10% fetal bovine serum (FBS). sgRNA were cloned into a linearized LentiCRISPRv2GFP vector and transfected into HEK293FT cells for producing viral particles that were used to transduce aMSCs. GFP-expressing cells were separated by sorting to obtain individual clones. Genomic DNA was amplified, and the site-directed mutation frequency was assessed by T7E1, followed by Sanger sequencing. We selected 11 clones of EP2 and 10 clones of EP4, and by Sanger sequencing we confirmed 1 clone knock-out to aMSC/EP2 and one heterozygous mutant clone of aMSC/EP4. Both edited cells had decreased expression of EP2 and EP4 receptors when compared to the wild type, and the edition of EP2 and EP4 did not affect the expression of MSC surface markers, showing the same pattern in filling the scratch. We can conclude that the edition of these receptors in aMSCs does not affect their surface marker phenotype and migration ability when compared to wild-type cells.
Collapse
Affiliation(s)
- Ana Carolina Furlanetto Mançanares
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - José Manríquez
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo 13630-000, Brazil;
| | - Yat Sen Wong Alvaro
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Daniela Rojas
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile;
| | - Felipe Navarrete Aguirre
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Lleretny Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| |
Collapse
|
16
|
Wu J, Wang Y, Zhou Y, Wang Y, Sun X, Zhao Y, Guan Y, Zhang Y, Wang W. PPARγ as an E3 Ubiquitin-Ligase Impedes Phosphate-Stat6 Stability and Promotes Prostaglandins E 2-Mediated Inhibition of IgE Production in Asthma. Front Immunol 2020; 11:1224. [PMID: 32636842 PMCID: PMC7317005 DOI: 10.3389/fimmu.2020.01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Increased serum IgE level is one of the features of allergic asthma. It is reported that IgE production can be enhanced by E-prostanoid 2 (EP2) receptor of prostaglandin E2 (PGE2); however, whether E-prostanoid 4 (EP4) receptor (encoded by Ptger4) has a unique or redundant role is still unclear. Here, we demonstrated the mice with B cell-specific deletion of the EP4 receptor (Ptger4fl/flMb1cre+/−) showed their serum levels of IgE were markedly increased. A much more severe airway allergic inflammation was observed in the absence of EP4 signal using the OVA-induced asthma model. Mechanistic studies demonstrated that the transcription levels of AID, GLTε, and PSTε in EP4-deficient B cells were found to be significantly increased, implying an enhanced IgE class switch. In addition, we saw higher levels of phosphorylated STAT6, a vital factor for IgE class switch. Biochemical analyses indicated that inhibitory effect of EP4 signal on IgE depended on the activation of the PI3K-AKT pathway. Further downstream, PPARγ expression was up-regulated. Independent of its activity as a transcription factor, PPARγ here primarily functioned as an E3 ubiquitin-ligase, which bound the phosphorylated STAT6 to initiate its degradation. In support of PPARγ as a key mediator downstream of the EP4 signal, PPARγ agonist induced the down-regulation of phospho-STAT6, whereas its antagonist was able to rescue the EP4-mediated inhibition of STAT6 activation and IgE production. Thus, our findings highlight a role for the PGE2-EP4-AKT-PPARγ-STAT6 signaling in IgE response, highlighting the therapeutic potential of combined application of EP4 and PPARγ agonists in asthma.
Collapse
Affiliation(s)
- Jia Wu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaowan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
17
|
Ruiz A, Sarabia C, Torres M, Juárez E. Resolvin D1 (RvD1) and maresin 1 (Mar1) contribute to human macrophage control of M. tuberculosis infection while resolving inflammation. Int Immunopharmacol 2019; 74:105694. [DOI: 10.1016/j.intimp.2019.105694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
|
18
|
Chen Y, Fu WL, Gan XD, Xing WW, Xia WR, Zou MJ, Liu Q, Wang YY, Zhang C, Xu DG. SAK-HV Promotes RAW264.7 cells Migration Mediated by MCP-1 via JNK and NF-κB Pathways. Int J Biol Sci 2018; 14:1993-2002. [PMID: 30585263 PMCID: PMC6299369 DOI: 10.7150/ijbs.27459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophage migration plays an essential role in immune system and is also involved in many pathological situations. However, the regulatory mechanism of macrophage migration remains to be elucidated due to its diverse responses to various stimuli. SAK-HV, a multifunctional protein possessing thrombolytic and lipid-lowering activity, can selectively induce the macrophage proliferation. Here, we reported SAK-HV significantly triggered RAW264.7 cells migration through its functional domain of SAK-mutant by activating both c-jun N-terminal kinases (JNK) and nuclear factor-κB (NF-κB) pathways. Meanwhile, SAK-HV upregulated the expression of some effector proteins, among which only the expression of Monocyte chemoattractant protein-1 (MCP-1) was inhibited by the blockade of JNK and NF-κB pathways. Further research showed that MCP-1 promoted migration ultimately by interacting with Chemokine (C-C motif) Receptor 2 (CCR2) in an autocrine manner. In summary, SAK-HV induced RAW264.7 cells migration through its SAK-mutant domain, during which MCP-1 chemokine mediated by JNK and NF-κB pathways played a key role. These results revealed a novel effect of SAK-HV on modulating macrophage migration and also deepened the understanding of its pharmacodynamics.
Collapse
Affiliation(s)
- Yao Chen
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wen-Liang Fu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Xiang-Dong Gan
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wei-Wei Xing
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Wen-Rong Xia
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Min-Ji Zou
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Qing Liu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Yuan-Yuan Wang
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| | - Chao Zhang
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Dong-Gang Xu
- Institute of Military Cognitive and Brain Sciences, Beijing, 100850, China
| |
Collapse
|
19
|
Loynes CA, Lee JA, Robertson AL, Steel MJG, Ellett F, Feng Y, Levy BD, Whyte MK, Renshaw SA. PGE 2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. SCIENCE ADVANCES 2018; 4:eaar8320. [PMID: 30191175 PMCID: PMC6124908 DOI: 10.1126/sciadv.aar8320] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/23/2018] [Indexed: 05/12/2023]
Abstract
Neutrophils are the first immune cells recruited to a site of injury or infection, where they perform many functions. Having completed their role, neutrophils must be removed from the inflammatory site-either by apoptosis and efferocytosis or by reverse migration away from the wound-for restoration of normal tissue homeostasis. Disruption of these tightly controlled physiological processes of neutrophil removal can lead to a range of inflammatory diseases. We used an in vivo zebrafish model to understand the role of lipid mediator production in neutrophil removal. Following tailfin amputation in the absence of macrophages, neutrophillic inflammation does not resolve, due to loss of macrophage-dependent handling of eicosanoid prostaglandin E2 (PGE2) that drives neutrophil removal via promotion of reverse migration. Knockdown of endogenous PGE synthase gene reveals PGE2 as essential for neutrophil inflammation resolution. Furthermore, PGE2 is able to signal through EP4 receptors during injury, causing an increase in Alox12 production and switching toward anti-inflammatory eicosanoid signaling. Our data confirm regulation of neutrophil migration by PGE2 and LXA4 (lipoxin A4) in an in vivo model of inflammation resolution. This pathway may contain therapeutic targets for driving inflammation resolution in chronic inflammatory disease.
Collapse
Affiliation(s)
- Catherine A. Loynes
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jou A. Lee
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne L. Robertson
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Division of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael JG. Steel
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Felix Ellett
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Yi Feng
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Moira K.B. Whyte
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen A. Renshaw
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
20
|
Xu J, Yang J, Nyga A, Ehteramyan M, Moraga A, Wu Y, Zeng L, Knight MM, Shelton JC. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of RhoA expression. Acta Biomater 2018; 72:434-446. [PMID: 29649639 PMCID: PMC5953279 DOI: 10.1016/j.actbio.2018.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Histological assessments of synovial tissues from patients with failed CoCr alloy hip prostheses demonstrate extensive infiltration and accumulation of macrophages, often loaded with large quantities of particulate debris. The resulting adverse reaction to metal debris (ARMD) frequently leads to early joint revision. Inflammatory response starts with the recruitment of immune cells and requires the egress of macrophages from the inflamed site for resolution of the reaction. Metal ions (Co2+ and Cr3+) have been shown to stimulate the migration of T lymphocytes but their effects on macrophages motility are still poorly understood. To elucidate this, we studied in vitro and in vivo macrophage migration during exposure to cobalt and chromium ions and nanoparticles. We found that cobalt but not chromium significantly reduces macrophage motility. This involves increase in cell spreading, formation of intracellular podosome-type adhesion structures and enhanced cell adhesion to the extracellular matrix (ECM). The formation of podosomes was also associated with the production and activation of matrix metalloproteinase-9 (MMP9) and enhanced ECM degradation. We showed that these were driven by the down-regulation of RhoA signalling through the generation of reactive oxygen species (ROS). These novel findings reveal the key mechanisms driving the wear/corrosion metallic byproducts-induced inflammatory response at non-toxic concentrations. Statement of significance Adverse tissue responses to metal wear and corrosion products from CoCr alloy implants remain a great challenge to surgeons and patients. Macrophages are the key regulators of these adverse responses to the ions and debris generated. We demonstrated that cobalt, rather than chromium, causes macrophage retention by restructuring the cytoskeleton and inhibiting cell migration via ROS production that affects Rho Family GTPase. This distinctive effect of cobalt on macrophage behaviour can help us understand the pathogenesis of ARMD and the cellular response to cobalt based alloys, which provide useful information for future implant design and biocompatibility testing.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Junyao Yang
- Department of Laboratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Agata Nyga
- Division of Surgery and Interventional Sciences, University College London, London NW3 2QG, United Kingdom; Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Mazdak Ehteramyan
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Ana Moraga
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Yuanhao Wu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Lingfang Zeng
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.
| | - Martin M Knight
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
21
|
McGonigle TA, Dwyer AR, Greenland EL, Scott NM, Carter KW, Keane KN, Newsholme P, Goodridge HS, Pixley FJ, Hart PH. Reticulon-1 and Reduced Migration toward Chemoattractants by Macrophages Differentiated from the Bone Marrow of Ultraviolet-Irradiated and Ultraviolet-Chimeric Mice. THE JOURNAL OF IMMUNOLOGY 2017; 200:260-270. [DOI: 10.4049/jimmunol.1700760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/18/2017] [Indexed: 01/12/2023]
|
22
|
McGonigle TA, Dwyer AR, Greenland EL, Scott NM, Keane KN, Newsholme P, Goodridge HS, Zon LI, Pixley FJ, Hart PH. PGE 2 pulsing of murine bone marrow cells reduces migration of daughter monocytes/macrophages in vitro and in vivo. Exp Hematol 2017; 56:64-68. [PMID: 28822771 DOI: 10.1016/j.exphem.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/07/2023]
Abstract
Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators.
Collapse
Affiliation(s)
- Terence A McGonigle
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Amy R Dwyer
- School of Biomedical Sciences, University of Western Australia, Western Australia, Australia
| | - Eloise L Greenland
- School of Biomedical Sciences, University of Western Australia, Western Australia, Australia
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Kevin N Keane
- School of Biomedical Sciences, Curtin Health Innovation Research Institute Biosciences, Curtin University, Perth, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute Biosciences, Curtin University, Perth, Australia
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard, Boston, MA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Fiona J Pixley
- School of Biomedical Sciences, University of Western Australia, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia.
| |
Collapse
|
23
|
PGE2 Promotes the Migration of Mesenchymal Stem Cells through the Activation of FAK and ERK1/2 Pathway. Stem Cells Int 2017; 2017:8178643. [PMID: 28740516 PMCID: PMC5504996 DOI: 10.1155/2017/8178643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/03/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
A critical step of MSCs therapy is dependent on its ability to migrate into the sites of injury, so various approaches have been introduced to boost the migratory ability of MSCs. PGE2 is the major prostaglandin generated by COX enzymes and has been implicated in inflammatory response. Evidence indicates that PGE2 can facilitate MSCs migration. Further exploration of the underlying molecular mechanism participating in the promigratory ability of PGE2 may provide a novel strategy to improve MSC transplantation efficacy. In this study, our findings suggested that EP2 prostanoid receptor promotes MSCs migration through activation of FAK and ERK1/2 pathways. Furthermore, MSCs migration induced by PGE2 was blunted by FAK or ERK1/2 inhibitors. EP2-mediated MSCs migration depends on the activation of FAK and ERK1/2. However, the current study did not investigate the migration of MSCs over a blood vessel endothelial barrier. In conclusion, our findings reveal EP2-mediated FAK and ERK1/2 activation was essential for MSCs migration induced by PGE2, indicating that activation of EP2 receptor and FAK/ERK pathways may be a promising strategy to accelerate homing efficiency of MSCs, which in turn enhances therapeutic potential of MSCs transplantation.
Collapse
|
24
|
Digiacomo G, Tusa I, Bacci M, Cipolleschi MG, Dello Sbarba P, Rovida E. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway. Cell Adh Migr 2016; 11:327-337. [PMID: 27588738 DOI: 10.1080/19336918.2016.1221566] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Collapse
Affiliation(s)
- Graziana Digiacomo
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Ignazia Tusa
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Marina Bacci
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Maria Grazia Cipolleschi
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Persio Dello Sbarba
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Elisabetta Rovida
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| |
Collapse
|
25
|
Totary-Jain H, Sionov RV, Gallily R. Indomethacin sensitizes resistant transformed cells to macrophage cytotoxicity. Immunol Lett 2016; 176:1-7. [PMID: 27210423 PMCID: PMC6011832 DOI: 10.1016/j.imlet.2016.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Activated macrophages are well known to exhibit anti-tumor properties. However, certain cell types show intrinsic resistance. Searching for a mechanism that could explain this phenomenon, we observed that the supernatant of resistant cells could confer resistance to otherwise sensitive tumor cells, suggesting the presence of a secreted suppressor factor. The effect was abolished upon dialysis, indicating that the suppressor factor has a low molecular weight. Further studies showed that prostaglandin E2 (PGE2) is secreted by the resistant tumor cells and that inhibition of PGE2 production by indomethacin, a cyclooxygenase (COX) inhibitor, eliminated the macrophage suppression factor from the supernatant, and sensitized the resistant tumor cells to macrophage cytotoxicity. This study emphasizes the important role of tumor-secreted PGE2 in escaping macrophage surveillance and justifies the use of COX inhibitors as an adjuvant for improving tumor immunotherapy.
Collapse
Affiliation(s)
- Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, IMRIC, The Hadassah Medical School-Hebrew University of Jerusalem, Israel.
| | - Ruth Gallily
- The Lautenberg Center for General and Tumor Immunology, The Hadassah Medical School-Hebrew University of Jerusalem, Israel.
| |
Collapse
|
26
|
Williams JK, Entenberg D, Wang Y, Avivar-Valderas A, Padgen M, Clark A, Aguirre-Ghiso JA, Castracane J, Condeelis JS. Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. INTRAVITAL 2016; 5. [PMID: 27790386 DOI: 10.1080/21659087.2016.1182271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is recognized as playing a significant role in the behavior of tumor cells and their progression to metastasis. However, tools to manipulate the tumor microenvironment directly, and image the consequences of this manipulation with single cell resolution in real time in vivo, are lacking. We describe here a method for the direct, local manipulation of microenvironmental parameters through the use of an implantable Induction Nano Intravital Device (iNANIVID) and simultaneous in vivo visualization of the results at single-cell resolution. As a proof of concept, we deliver both a sustained dose of EGF to tumor cells while intravital imaging their chemotactic response as well as locally induce hypoxia in defined microenvironments in solid tumors.
Collapse
Affiliation(s)
- James K Williams
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Alvaro Avivar-Valderas
- Department of Medicine and Department Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Michael Padgen
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Ashley Clark
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - Julio A Aguirre-Ghiso
- Department of Medicine and Department Otolaryngology, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, USA
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| |
Collapse
|
27
|
Tan TL, Ahmad NS, Nasuruddin DN, Ithnin A, Tajul Arifin K, Zaini IZ, Wan Ngah WZ. CD64 and Group II Secretory Phospholipase A2 (sPLA2-IIA) as Biomarkers for Distinguishing Adult Sepsis and Bacterial Infections in the Emergency Department. PLoS One 2016; 11:e0152065. [PMID: 27003588 PMCID: PMC4803226 DOI: 10.1371/journal.pone.0152065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Early diagnosis of sepsis and bacterial infection is imperative as treatment relies on early antibiotic administration. There is a need to develop new biomarkers to detect patients with sepsis and bacterial infection as early as possible, thereby enabling prompt antibiotic treatment and improving the survival rate. METHODS Fifty-one adult patients with suspected bacterial sepsis on admission to the Emergency Department (ED) of a teaching hospital were included into the study. All relevant cultures and serology tests were performed. Serum levels for Group II Secretory Phospholipase A2 (sPLA2-IIA) and CD64 were subsequently analyzed. RESULTS AND DISCUSSION Sepsis was confirmed in 42 patients from a total of 51 recruited subjects. Twenty-one patients had culture-confirmed bacterial infections. Both biomarkers were shown to be good in distinguishing sepsis from non-sepsis groups. CD64 and sPLA2-IIA also demonstrated a strong correlation with early sepsis diagnosis in adults. The area under the curve (AUC) of both Receiver Operating Characteristic curves showed that sPLA2-IIA was better than CD64 (AUC = 0.93, 95% confidence interval (CI) = 0.83-0.97 and AUC = 0.88, 95% CI = 0.82-0.99, respectively). The optimum cutoff value was 2.13μg/l for sPLA2-IIA (sensitivity = 91%, specificity = 78%) and 45 antigen bound cell (abc) for CD64 (sensitivity = 81%, specificity = 89%). In diagnosing bacterial infections, sPLA2-IIA showed superiority over CD64 (AUC = 0.97, 95% CI = 0.85-0.96, and AUC = 0.95, 95% CI = 0.93-1.00, respectively). The optimum cutoff value for bacterial infection was 5.63μg/l for sPLA2-IIA (sensitivity = 94%, specificity = 94%) and 46abc for CD64 (sensitivity = 94%, specificity = 83%). CONCLUSIONS sPLA2-IIA showed superior performance in sepsis and bacterial infection diagnosis compared to CD64. sPLA2-IIA appears to be an excellent biomarker for sepsis screening and for diagnosing bacterial infections, whereas CD64 could be used for screening bacterial infections. Both biomarkers either alone or in combination with other markers may assist in decision making for early antimicrobial administration. We recommend incorporating sPLA2-IIA and CD64 into the diagnostic algorithm of sepsis in ED.
Collapse
Affiliation(s)
- Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dian Nasriana Nasuruddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azlin Ithnin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ida Zarina Zaini
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|