1
|
Martínez Lozada PS, Mancero Montalvo R, Iturralde Carrillo A, Montesdeoca-Lozada M, Rodas JA, Leon-Rojas JE. Roles of CDR2 and CDR2L in Anti-Yo Paraneoplastic Cerebellar Degeneration: A Literature Review. Int J Mol Sci 2024; 26:70. [PMID: 39795928 PMCID: PMC11720089 DOI: 10.3390/ijms26010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury. Notably, at least 50% of PCD cases involve anti-Yo autoantibodies, also referred to as anti-PCA1 (Purkinje cell antigen 1) antibodies, which specifically target cerebellar degeneration-related protein 2 (CDR2) and its paralogue, CDR2-like (CDR2L). Another recognized antigen is CDR 34, a 34 kDa Purkinje cell antigen characterized by tandem repeats and a B-cell epitope; its detection in non-cerebellar tissues necessitates further in situ hybridization studies. Onconeural antigens are expressed in both Purkinje cells and tumour cells, where they localize in the cytoplasm and associate with membrane-bound and free ribosomes, playing critical roles in regulating transcription and calcium homeostasis. Recent studies suggest that the breakdown of immune tolerance is linked to genetic alterations in tumour cell antigens, leading to the formation of neoantigens that can elicit autoreactive T cells, which may underscore the function of Yo antibodies. In vitro studies indicate that anti-Yo antibodies can induce cell death independent of T lymphocytes. The disease progresses by initial lymphocytic infiltration, followed by a rapid loss of Purkinje cells without significant inflammation. However, in vivo models showcase that anti-Yo PCD is primarily T-cell mediated, with antibodies serving as biomarkers rather than direct effectors of neuronal death. This review examines the mechanisms underlying PCD, focusing on the roles of CDR2 and CDR2L in tumour development and their potential role in the degeneration of cerebellar Purkinje neurons. A comprehensive understanding of these processes is essential for advancing diagnostic, prognostic, and therapeutic strategies for PCD and associated malignancies.
Collapse
Affiliation(s)
- Pablo S. Martínez Lozada
- NeurALL Research Group, Quito 170157, Ecuador;
- Medical School, Universidad Internacional del Ecuador (UIDE), Quito 170411, Ecuador
| | | | | | | | - Jose A. Rodas
- School of Psychology, University College Dublin, D04 V1W8 Dublin, Ireland
- Escuela de Psicología, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Jose E. Leon-Rojas
- Cerebro, Emoción y Conducta, School of Medicine, Universidad de las Américas (UDLA), Quito 170124, Ecuador
| |
Collapse
|
2
|
Bai F, Bono V, Borghi L, Bonazza F, Falcinella C, Vitaletti V, Miraglia F, Trunfio M, Calcagno A, Cusato J, Vegni E, d’Arminio Monforte A, Marchetti G. Association between tight junction proteins and cognitive performance in untreated persons with HIV. AIDS 2024; 38:1292-1303. [PMID: 38704619 PMCID: PMC11216391 DOI: 10.1097/qad.0000000000003923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) still affects persons with HIV (PWH) and their pathogenesis is not completely understood. We aimed to explore the association between plasma and cerebrospinal fluid (CSF) markers of blood-brain barrier (BBB) impairment and HAND in untreated PWH. DESIGN Cross-sectional study. METHODS We enrolled untreated PWH, who underwent blood examinations and lumbar puncture to measure inflammation (IL-15, TNF-α), BBB damage (zonulin and tight junction proteins, tight junction proteins: occludin, claudin-5) and endothelial adhesion molecules (VCAM-1, ICAM-1). A comprehensive neurocognitive battery was used to diagnose HAND (Frascati criteria). RESULTS Twenty-one patients (21/78, 26.9%) patients presented HAND (100% ANI). HAND patients displayed more frequently non-CNS AIDS-defining conditions, lower nadir CD4 + T cells and increased CD4 + T-cell exhaustion (lower CD4 + CD127 + and CD4 + CD45RA + T-cell percentages), in comparison to individuals without cognitive impairment. Furthermore, HAND was characterized by higher plasma inflammation (IL-15) but lower CSF levels of biomarkers of BBB impairment (zonulin and occludin). The association between BBB damage with HAND was confirmed by fitting a multivariable logistic regression. CSF/plasma endothelial adhesion molecules were not associated with HAND but with a poor performance in different cognitive domains. CONCLUSION By showing heightened inflammation and BBB impairment, our study suggests loss of BBB integrity as a possible factor contributing to the development of HAND in untreated PWH.
Collapse
Affiliation(s)
| | | | - Lidia Borghi
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Federica Bonazza
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | - Camilla Falcinella
- Unit of Infectious Diseases, ASST della Valle Olona, Busto Arsizio Hospital, Busto Arsizio
| | | | | | | | | | - Jessica Cusato
- Laboratory of Pharmacology and Pharmacotherapy, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Vegni
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan
| | | | | |
Collapse
|
3
|
Berve K, Michel J, Tietz S, Blatti C, Ivan D, Enzmann G, Lyck R, Deutsch U, Locatelli G, Engelhardt B. Junctional adhesion molecule-A deficient mice are protected from severe experimental autoimmune encephalomyelitis. Eur J Immunol 2024; 54:e2350761. [PMID: 38566526 DOI: 10.1002/eji.202350761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.
Collapse
Affiliation(s)
- Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Julia Michel
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
4
|
Floare ML, Wharton SB, Simpson JE, Aeschlimann D, Hoggard N, Hadjivassiliou M. Cerebellar degeneration in gluten ataxia is linked to microglial activation. Brain Commun 2024; 6:fcae078. [PMID: 38510211 PMCID: PMC10953628 DOI: 10.1093/braincomms/fcae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Gluten sensitivity has long been recognized exclusively for its gastrointestinal involvement; however, more recent research provides evidence for the existence of neurological manifestations that can appear in combination with or independent of the small bowel manifestations. Amongst all neurological manifestations of gluten sensitivity, gluten ataxia is the most commonly occurring one, accounting for up to 40% of cases of idiopathic sporadic ataxia. However, despite its prevalence, its neuropathological basis is still poorly defined. Here, we provide a neuropathological characterization of gluten ataxia and compare the presence of neuroinflammatory markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, major histocompatibility complex II and cluster of differentiation 68 in the central nervous system of four gluten ataxia cases to five ataxia controls and seven neurologically healthy controls. Our results demonstrate that severe cerebellar atrophy, cluster of differentiation 20+ and cluster of differentiation 8+ lymphocytic infiltration in the cerebellar grey and white matter and a significant upregulation of microglial immune activation in the cerebellar granular layer, molecular layer and cerebellar white matter are features of gluten ataxia, providing evidence for the involvement of both cellular and humoral immune-mediated processes in gluten ataxia pathogenesis.
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK
| | - Nigel Hoggard
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, UK
| | - Marios Hadjivassiliou
- Academic Department of Neuroscience, Sheffield Teaching Hospitals NHS Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
5
|
Trevino TN, Fogel AB, Minshall R, Richner JM, Lutz SE. Caveolin-1 mediates neuroinflammation and cognitive impairment in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563024. [PMID: 37905019 PMCID: PMC10614946 DOI: 10.1101/2023.10.18.563024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Leukocyte infiltration of the CNS can contribute to neuroinflammation and cognitive impairment. Brain endothelial cells regulate adhesion, activation, and diapedesis of T cells across the blood-brain barrier (BBB) in inflammatory diseases. The integral membrane protein Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on T cell CNS infiltration in respiratory viral infections is unknown. In this study, we sought to determine the role of Cav-1 at the BBB in neuroinflammation in a COVID-19 mouse model. We used mice genetically deficient in Cav-1 to test the role of this protein in T cell infiltration and cognitive impairment. We found that SARS-CoV-2 infection upregulated brain endothelial Cav-1. Moreover, SARS-CoV-2 infection increased brain endothelial cell vascular cell adhesion molecule-1 (VCAM-1) and CD3+ T cell infiltration of the hippocampus, a region important for short term learning and memory. Concordantly, we observed learning and memory deficits. Importantly, genetic deficiency in Cav-1 attenuated brain endothelial VCAM-1 expression and T cell infiltration in the hippocampus of mice with SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results indicate the importance of BBB permeability in COVID-19 neuroinflammation and suggest potential therapeutic value of targeting Cav-1 to improve disease outcomes.
Collapse
|
6
|
Zheng Z, Chang L, Li Y, Liu K, Mu J, Zhang S, Li J, Wu Y, Zou L, Ni Q, Wan Y. Screening single-cell trajectories via continuity assessments for cell transition potential. Brief Bioinform 2023; 24:bbad356. [PMID: 37864296 PMCID: PMC10589400 DOI: 10.1093/bib/bbad356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023] Open
Abstract
Advances in single-cell sequencing and data analysis have made it possible to infer biological trajectories spanning heterogeneous cell populations based on transcriptome variation. These trajectories yield a wealth of novel insights into dynamic processes such as development and differentiation. However, trajectory analysis relies on an assumption of trajectory continuity, and experimental limitations preclude some real-world scenarios from meeting this condition. The current lack of assessment metrics makes it difficult to ascertain if/when a given trajectory deviates from continuity, and what impact such a divergence would have on inference accuracy is unclear. By analyzing simulated breaks introduced into in silico and real single-cell data, we found that discontinuity caused precipitous drops in the accuracy of trajectory inference. We then generate a simple scoring algorithm for assessing trajectory continuity, and found that continuity assessments in real-world cases of intestinal stem cell development and CD8 + T cells differentiation efficiently identifies trajectories consistent with empirical knowledge. This assessment approach can also be used in cases where a priori knowledge is lacking to screen a pool of inferred lineages for their adherence to presumed continuity, and serve as a means for weighing higher likelihood trajectories for validation via empirical studies, as exemplified by our case studies in psoriatic arthritis and acute kidney injury. This tool is freely available through github at qingshanni/scEGRET.
Collapse
Affiliation(s)
- Zihan Zheng
- Institute of Immunology PLA, Army Medical University, Chongqing, China
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Department of Autoimmune Disease, Chongqing International Institute for Immunology, Chongqing, Chongqing, China
| | - Ling Chang
- Institute of Immunology PLA, Army Medical University, Chongqing, China
| | - Yinong Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Kun Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Jie Mu
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Song Zhang
- College of Life Sciences, Institute for Immunology, Nankai University, Tianjin, China
| | - Jingyi Li
- Department of Autoimmune Disease, Chongqing International Institute for Immunology, Chongqing, Chongqing, China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology PLA, Army Medical University, Chongqing, China
| | - Liyun Zou
- Institute of Immunology PLA, Army Medical University, Chongqing, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- School of Big Data and Software Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Aydin S, Pareja J, Schallenberg VM, Klopstein A, Gruber T, Page N, Bouillet E, Blanchard N, Liblau R, Körbelin J, Schwaninger M, Johnson AJ, Schenk M, Deutsch U, Merkler D, Engelhardt B. Antigen recognition detains CD8 + T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun 2023; 14:3106. [PMID: 37253744 PMCID: PMC10229608 DOI: 10.1038/s41467-023-38703-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions, and antigen (Ag) presentation at the BBB has been proposed to promote CD8+ T cell entry into the CNS. Here, we show that brain endothelial cells process and cross-present Ag, leading to effector CD8+ T cell differentiation. Under physiological flow in vitro, endothelial Ag presentation prevented CD8+ T cell crawling and diapedesis resulting in brain endothelial cell apoptosis and BBB breakdown. Brain endothelial Ag presentation in vivo was limited due to Ag uptake by CNS-resident macrophages but still reduced motility of Ag-specific CD8+ T cells within CNS microvessels. MHC class I-restricted Ag presentation at the BBB during neuroinflammation thus prohibits CD8+ T cell entry into the CNS and triggers CD8+ T cell-mediated focal BBB breakdown.
Collapse
Affiliation(s)
- Sidar Aydin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Javier Pareja
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nicolas Blanchard
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Aaron J Johnson
- Mayo Clinic Graduate School of Biomedical Sciences, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
8
|
Soldati S, Bär A, Vladymyrov M, Glavin D, McGrath JL, Gosselet F, Nishihara H, Goelz S, Engelhardt B. High levels of endothelial ICAM-1 prohibit natalizumab mediated abrogation of CD4 + T cell arrest on the inflamed BBB under flow in vitro. J Neuroinflammation 2023; 20:123. [PMID: 37221552 PMCID: PMC10204262 DOI: 10.1186/s12974-023-02797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION The humanized anti-α4 integrin blocking antibody natalizumab (NTZ) is an effective treatment for relapsing-remitting multiple sclerosis (RRMS) that is associated with the risk of progressive multifocal leukoencephalopathy (PML). While extended interval dosing (EID) of NTZ reduces the risk for PML, the minimal dose of NTZ required to maintain its therapeutic efficacy remains unknown. OBJECTIVE Here we aimed to identify the minimal NTZ concentration required to inhibit the arrest of human effector/memory CD4+ T cell subsets or of PBMCs to the blood-brain barrier (BBB) under physiological flow in vitro. RESULTS Making use of three different human in vitro BBB models and in vitro live-cell imaging we observed that NTZ mediated inhibition of α4-integrins failed to abrogate T cell arrest to the inflamed BBB under physiological flow. Complete inhibition of shear resistant T cell arrest required additional inhibition of β2-integrins, which correlated with a strong upregulation of endothelial intercellular adhesion molecule (ICAM)-1 on the respective BBB models investigated. Indeed, NTZ mediated inhibition of shear resistant T cell arrest to combinations of immobilized recombinant vascular cell adhesion molecule (VCAM)-1 and ICAM-1 was abrogated in the presence of tenfold higher molar concentrations of ICAM-1 over VCAM-1. Also, monovalent NTZ was less potent than bivalent NTZ in inhibiting T cell arrest to VCAM-1 under physiological flow. In accordance with our previous observations ICAM-1 but not VCAM-1 mediated T cell crawling against the direction of flow. CONCLUSION Taken together, our in vitro observations show that high levels of endothelial ICAM-1 abrogate NTZ mediated inhibition of T cell interaction with the BBB. EID of NTZ in MS patients may thus require consideration of the inflammatory status of the BBB as high levels of ICAM-1 may provide an alternative molecular cue allowing for pathogenic T cell entry into the CNS in the presence of NTZ.
Collapse
Affiliation(s)
- Sasha Soldati
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Alexander Bär
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Mykhailo Vladymyrov
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Dale Glavin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, University of Artois, Lens, France
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
- Present Address: Department of Neurotherapeutics, Yamaguchi University, Yamaguchi, Japan
| | | | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Role of DAMPs and cell death in autoimmune diseases: the example of multiple sclerosis. Genes Immun 2023; 24:57-70. [PMID: 36750753 DOI: 10.1038/s41435-023-00198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis is a chronic neuroinflammatory demyelinating disease of the central nervous system (CNS) of unknown etiology and still incompletely clarified pathogenesis. The disease is generally considered a disorder resulting from a complex interplay between environmental risk factors and predisposing causal genetic variants. To examine the etiopathogenesis of the disease, two complementary pre-clinical models are currently discussed: the "outside-in" model proposing a peripherally elicited inflammatory/autoimmune attack against degraded myelin as the cause of the disease, and the "inside-out" paradigm implying a primary cytodegenerative process of cells in the CNS that triggers secondary reactive inflammatory/autoimmune responses against myelin debris. In this review, the integrating pathogenetic role of damage-associated molecular patterns (DAMPs) in these two scenario models is examined by focusing on the origin and sources of these molecules, which are known to promote neuroinflammation and, via activation of pattern recognition receptor-bearing antigen-presenting cells, drive and shape autoimmune responses. In particular, environmental factors are discussed that are conceptually defined as agents which produce endogenous DAMPs via induction of regulated cell death (RCD) or act themselves as exogenous DAMPs. Indeed, in the field of autoimmune diseases, including multiple sclerosis, recent research has focused on environmental triggers that cause secondary events in terms of subroutines of RCD, which have been identified as prolific sources of DAMPs. Finally, a model of a DAMP-driven positive feed-forward loop of chronic inflammatory demyelinating processes is proposed, aimed at reconciling the competing "inside-out" and "outside-in" paradigms.
Collapse
|
10
|
Engelhardt B, Comabella M, Chan A. Multiple sclerosis: Immunopathological heterogeneity and its implications. Eur J Immunol 2022; 52:869-881. [PMID: 35476319 PMCID: PMC9324211 DOI: 10.1002/eji.202149757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.
Collapse
Affiliation(s)
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol 2022; 13:805657. [PMID: 35273596 PMCID: PMC8902072 DOI: 10.3389/fimmu.2022.805657] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa.
Collapse
Affiliation(s)
| | - Houyam Tibar
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | - Wafa Regragui
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | | |
Collapse
|
12
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
13
|
Benincore-Flórez E, El-Azaz J, Solarte GA, Rodríguez A, Reyes LH, Alméciga-Díaz CJ, Cardona C. Iduronate-2-sulfatase interactome: Validation by Yeast Two-Hybrid Assay. Heliyon 2022; 8:e09031. [PMID: 35284671 PMCID: PMC8913312 DOI: 10.1016/j.heliyon.2022.e09031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive disease caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), which activates intracellular accumulation of nonmetabolized glycosaminoglycans such as heparan sulfate and dermatan sulfate. This accumulation causes severe damage to several tissues, principally the central nervous system. Previously, we identified 187 IDS-protein interactions in the mouse brain. To validate a subset of these interactions, we selected and cloned the coding regions of 10 candidate genes to perform a targeted yeast two-hybrid assay. The results allowed the identification of the physical interaction of IDS with LSAMP and SYT1. Although the physiological relevance of these complexes is unknown, recent advances allow us to point out that these interactions could be involved in vesicular trafficking of IDS through the interaction with SYT1, as well as to the ability to form a transcytosis module between the cellular components of the blood-brain-barrier (BBB) through its interaction with LSAMP. These results may shed light on the role of IDS on cellular homeostasis and may also contribute to the understanding of MPS II physiopathology and the development of novel therapeutic strategies to transport recombinant IDS through the brain endothelial cells toward the brain parenchyma.
Collapse
|
14
|
Nishihara H, Engelhardt B. Brain Barriers and Multiple Sclerosis: Novel Treatment Approaches from a Brain Barriers Perspective. Handb Exp Pharmacol 2022; 273:295-329. [PMID: 33237504 DOI: 10.1007/164_2020_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) is considered a prototypic organ specific autoimmune disease targeting the central nervous system (CNS). Blood-brain barrier (BBB) breakdown and enhanced immune cell infiltration into the CNS parenchyma are early hallmarks of CNS lesion formation. Therapeutic targeting of immune cell trafficking across the BBB has proven a successful therapy for the treatment of MS, but comes with side effects and is no longer effective once patients have entered the progressive phase of the disease. Beyond the endothelial BBB, epithelial and glial brain barriers establish compartments in the CNS that differ in their accessibility to the immune system. There is increasing evidence that brain barrier abnormalities persist during the progressive stages of MS. Here, we summarize the role of endothelial, epithelial, and glial brain barriers in maintaining CNS immune privilege and our current knowledge on how impairment of these barriers contributes to MS pathogenesis. We discuss how therapeutic stabilization of brain barriers integrity may improve the safety of current therapeutic regimes for treating MS. This may also allow for the development of entirely novel therapeutic approaches aiming to restore brain barriers integrity and thus CNS homeostasis, which may be specifically beneficial for the treatment of progressive MS.
Collapse
|
15
|
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel) 2021; 13:5367. [PMID: 34771532 PMCID: PMC8582389 DOI: 10.3390/cancers13215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.
Collapse
Affiliation(s)
- Kirit Singh
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| | | | | | | | | | | | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| |
Collapse
|
16
|
Bernard-Valnet R, Koralnik IJ, Du Pasquier R. Advances in Treatment of Progressive Multifocal Leukoencephalopathy. Ann Neurol 2021; 90:865-873. [PMID: 34405435 PMCID: PMC9291129 DOI: 10.1002/ana.26198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Progressive multifocal encephalopathy (PML) is a severe demyelinating disease of the central nervous system (CNS) caused by JC virus (JCV), which occurs in immunocompromised individuals. Management of PML relies on restoration of immunity within the CNS. However, when this restoration cannot be readily achieved, PML has a grim prognosis. Innovative strategies have shown promise in promoting anti‐JCV immune responses, and include T‐cell adoptive transfer or immune checkpoint inhibitor therapies. Conversely, management of immune reconstitution inflammatory syndrome, particularly in iatrogenic PML, remains a major challenge. In this paper, we review recent development in the treatment of PML. ANN NEUROL 2021;90:865–873
Collapse
Affiliation(s)
- Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Igor J Koralnik
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Renaud Du Pasquier
- Service of Neurology, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Ziani W, Shao J, Fang A, Connolly PJ, Wang X, Veazey RS, Xu H. Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIV-infected rhesus macaques. FASEB J 2021; 35:e21282. [PMID: 33484474 PMCID: PMC7839271 DOI: 10.1096/fj.202002235r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cellular viral reservoirs are rapidly established in tissues upon HIV‐1/SIV infection, which persist throughout viral infection, even under long‐term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut‐associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV‐1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR‐14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post‐SIV inoculation. The results showed that blockade of α4β7/α4β1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell‐associated SIV RNA/DNA to controls. Surprisingly, TR‐14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV‐1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.
Collapse
Affiliation(s)
- Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Angela Fang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Patrick J Connolly
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
18
|
Cell Surface Profiling of Retinal Müller Glial Cells Reveals Association to Immune Pathways after LPS Stimulation. Cells 2021; 10:cells10030711. [PMID: 33806940 PMCID: PMC8004686 DOI: 10.3390/cells10030711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal Müller glial cells (RMG) are involved in virtually every retinal disease; however, the role of these glial cells in neuroinflammation is still poorly understood. Since cell surface proteins play a decisive role in immune system signaling pathways, this study aimed at characterizing the changes of the cell surface proteome of RMG after incubation with prototype immune system stimulant lipopolysaccharide (LPS). While mass spectrometric analysis of the human Müller glia cell line MIO-M1 revealed 507 cell surface proteins in total, with 18 proteins significantly more abundant after stimulation (ratio ≥ 2), the surfaceome of primary RMG comprised 1425 proteins, among them 79 proteins with significantly higher abundance in the stimulated state. Pathway analysis revealed notable association with immune system pathways such as “antigen presentation”, “immunoregulatory interactions between a lymphoid and a non-lymphoid cell” and “cell migration”. We could demonstrate a higher abundance of proteins that are usually ascribed to antigen-presenting cells (APCs) and function to interact with T-cells, suggesting that activated RMG might act as atypical APCs in the course of ocular neuroinflammation. Our data provide a detailed description of the unstimulated and stimulated RMG surfaceome and offer fundamental insights regarding the capacity of RMG to actively participate in neuroinflammation in the retina.
Collapse
|
19
|
Ayer M, Burri O, Guiet R, Seitz A, Kaba E, Engelhardt B, Klok HA. Biotin-NeutrAvidin Mediated Immobilization of Polymer Micro- and Nanoparticles on T Lymphocytes. Bioconjug Chem 2021; 32:541-552. [PMID: 33621057 DOI: 10.1021/acs.bioconjchem.1c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to bind nanoparticles to cell surfaces, only relatively little is known about the effects of particle size and cell type on the surface immobilization of nanoparticles. This study investigates the biotin-NeutrAvidin mediated immobilization of model polymer nanoparticles with sizes ranging from 40 nm to 1 μm on two different T cell lines, viz., human Jurkat cells as well as mouse SJL/PLP7 T cells, which are of potential interest for drug delivery across the blood-brain barrier. The nanoparticle cell surface immobilization and the particle surface concentration and distribution were analyzed by flow cytometry and confocal microscopy. The functional properties of nanoparticle-modified SJL/PLP7 T cells were assessed in an ICAM-1 binding assay as well as in a two-chamber setup in which the migration of the particle-modified T cells across an in vitro model of the blood-brain barrier was studied. The results of these experiments highlight the effects of particle size and cell line on the surface immobilization of nanoparticles on living cells.
Collapse
Affiliation(s)
- Maxime Ayer
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Olivier Burri
- École Polytechnique Fédérale de Lausanne (EPFL), Faculté des Sciences de la Vie, Bioimaging and Optics Platform, Bâtiment AI, Station 15, CH-1015 Lausanne, Switzerland
| | - Romain Guiet
- École Polytechnique Fédérale de Lausanne (EPFL), Faculté des Sciences de la Vie, Bioimaging and Optics Platform, Bâtiment AI, Station 15, CH-1015 Lausanne, Switzerland
| | - Arne Seitz
- École Polytechnique Fédérale de Lausanne (EPFL), Faculté des Sciences de la Vie, Bioimaging and Optics Platform, Bâtiment AI, Station 15, CH-1015 Lausanne, Switzerland
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W, Lemieux M, Da Mesquita S, Cugurra A, Fitzpatrick J, Sviben S, Kossina R, Bayguinov P, Townsend RR, Zhang Q, Erdmann-Gilmore P, Smirnov I, Lopes MB, Herz J, Kipnis J. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 2021; 184:1000-1016.e27. [PMID: 33508229 PMCID: PMC8487654 DOI: 10.1016/j.cell.2020.12.040] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Antoine Drieu
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kalil Alves de Lima
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Taitea Dykstra
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Morgan Wall
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Zachary Papadopoulos
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mitsuhiro Kanamori
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrea Francesca Salvador
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Wendy Baker
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mackenzie Lemieux
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program (MSTP), School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Andrea Cugurra
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - James Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ross Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Reid R Townsend
- Department of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Maria-Beatriz Lopes
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jasmin Herz
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
21
|
Jurberg AD, Chaves B, Pinho LG, da Silva JHM, Savino W, Cotta-de-Almeida V. VLA-4 as a Central Target for Modulating Neuroinflammatory Disorders. Neuroimmunomodulation 2021; 28:213-221. [PMID: 34515173 DOI: 10.1159/000518721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
The complex steps leading to the central nervous system (CNS) inflammation and the progress to neuroinflammatory and neurodegenerative disorders have opened up new research and intervention avenues. This review focuses on the therapeutic targeting of the VLA-4 integrin to discuss the clear-cut effect on immune cell trafficking into brain tissues. Besides, we explore the possibility that blocking VLA-4 may have a relevant impact on nonmigratory activities of immune cells, such as antigen presentation and T-cell differentiation, during the neuroinflammatory process. Lastly, the recent refinement of computational techniques is highlighted as a way to increase specificity and to reduce the detrimental side effects of VLA-4 immunotherapies aiming at developing better clinical interventions.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Beatriz Chaves
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Lia Gonçalves Pinho
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - João Hermínio Martins da Silva
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Nazerai L, Schøller AS, Bassi MR, Buus S, Stryhn A, Christensen JP, Thomsen AR. Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Front Immunol 2020; 11:1977. [PMID: 32973802 PMCID: PMC7461798 DOI: 10.3389/fimmu.2020.01977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, came into the spotlight in 2016 when it was found to be associated with an increased rate of microcephalic newborns in Brazil. The virus has further been recognized to cause neurologic complications in children and adults in the form of myelitis, encephalitis, acute disseminated encephalomyelitis (ADEM) and Guillain Barre Syndrome in a fraction of infected individuals. With the ultimate goal of identifying correlates of protection to guide the design of an effective vaccine, the study of the immune response to ZIKV infection has become the focus of research worldwide. Both innate and adaptive immune responses seem to be essential for controlling the infection. Induction of sufficient levels of neutralizing antibodies has been strongly correlated with protection against reinfection in various models, while the role of CD8 T cells as antiviral effectors in the CNS has been controversial. In an attempt to improve our understanding regarding the role of ZIKV-induced CD8 T cells in protective immunity inside the CNS, we have expanded on previous studies in intracranially infected mice. In a recent study, we have demonstrated that, peripheral ZIKV infection in adult C57BL/6 mice induces a robust CD8 T cell response that peaks within a week. In the present study, we used B cell deficient as well as wild-type mice to show that there is a race between CXCR3-dependent recruitment of the effector CD8 T cells and local ZIKV replication, and that CD8 T cells are capable of local viral control if they arrive in the brain early after viral invasion, in appropriate numbers and differentiation state. Our data highlight the benefits of considering this subset when designing vaccines against Zika virus.
Collapse
Affiliation(s)
- Loulieta Nazerai
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie Skak Schøller
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Yshii L, Bost C, Liblau R. Immunological Bases of Paraneoplastic Cerebellar Degeneration and Therapeutic Implications. Front Immunol 2020; 11:991. [PMID: 32655545 PMCID: PMC7326021 DOI: 10.3389/fimmu.2020.00991] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare immune-mediated disease that develops mostly in the setting of neoplasia and offers a unique prospect to explore the interplay between tumor immunity and autoimmunity. In PCD, the deleterious adaptive immune response targets self-antigens aberrantly expressed by tumor cells, mostly gynecological cancers, and physiologically expressed by the Purkinje neurons of the cerebellum. Highly specific anti-neuronal antibodies in the serum and cerebrospinal fluid represent key diagnostic biomarkers of PCD. Some anti-neuronal antibodies such as anti-Yo autoantibodies (recognizing the CDR2/CDR2L proteins) are only associated with PCD. Other anti-neuronal antibodies, such as anti-Hu, anti-Ri, and anti-Ma2, are detected in patients with PCD or other types of paraneoplastic neurological manifestations. Importantly, these autoantibodies cannot transfer disease and evidence for a pathogenic role of autoreactive T cells is accumulating. However, the precise mechanisms responsible for disruption of self-tolerance to neuronal self-antigens in the cancer setting and the pathways involved in pathogenesis within the cerebellum remain to be fully deciphered. Although the occurrence of PCD is rare, the risk for such severe complication may increase with wider use of cancer immunotherapy, notably immune checkpoint blockade. Here, we review recent literature pertaining to the pathophysiology of PCD and propose an immune scheme underlying this disabling disease. Additionally, based on observations from patients' samples and on the pre-clinical model we recently developed, we discuss potential therapeutic strategies that could blunt this cerebellum-specific autoimmune disease.
Collapse
Affiliation(s)
- Lidia Yshii
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France
| | - Chloé Bost
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| | - Roland Liblau
- INSERM U1043, CNRS UMR 5282, Université Toulouse III, Center for Pathophysiology Toulouse Purpan, Toulouse, France.,Department of Immunology, Purpan University Hospital Toulouse, Toulouse, France
| |
Collapse
|
24
|
Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. VASCULAR BIOLOGY 2020; 2:H1-H18. [PMID: 32923970 PMCID: PMC7439848 DOI: 10.1530/vb-19-0033] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
To maintain the homeostatic environment required for proper function of CNS neurons the endothelial cells of CNS microvessels tightly regulate the movement of ions and molecules between the blood and the CNS. The unique properties of these blood vascular endothelial cells are termed blood-brain barrier (BBB) and extend to regulating immune cell trafficking into the immune privileged CNS during health and disease. In general, extravasation of circulating immune cells is a multi-step process regulated by the sequential interaction of adhesion and signalling molecules between the endothelial cells and the immune cells. Accounting for the unique barrier properties of CNS microvessels, immune cell migration across the BBB is distinct and characterized by several adaptations. Here we describe the mechanisms that regulate immune cell trafficking across the BBB during immune surveillance and neuroinflammation, with a focus on the current state-of-the-art in vitro and in vivo imaging observations.
Collapse
Affiliation(s)
- Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
25
|
Gross CC, Meyer C, Bhatia U, Yshii L, Kleffner I, Bauer J, Tröscher AR, Schulte-Mecklenbeck A, Herich S, Schneider-Hohendorf T, Plate H, Kuhlmann T, Schwaninger M, Brück W, Pawlitzki M, Laplaud DA, Loussouarn D, Parratt J, Barnett M, Buckland ME, Hardy TA, Reddel SW, Ringelstein M, Dörr J, Wildemann B, Kraemer M, Lassmann H, Höftberger R, Beltrán E, Dornmair K, Schwab N, Klotz L, Meuth SG, Martin-Blondel G, Wiendl H, Liblau R. CD8 + T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome. Nat Commun 2019; 10:5779. [PMID: 31852955 PMCID: PMC6920411 DOI: 10.1038/s41467-019-13593-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
Neuroinflammation is often associated with blood-brain-barrier dysfunction, which contributes to neurological tissue damage. Here, we reveal the pathophysiology of Susac syndrome (SuS), an enigmatic neuroinflammatory disease with central nervous system (CNS) endotheliopathy. By investigating immune cells from the blood, cerebrospinal fluid, and CNS of SuS patients, we demonstrate oligoclonal expansion of terminally differentiated activated cytotoxic CD8+ T cells (CTLs). Neuropathological data derived from both SuS patients and a newly-developed transgenic mouse model recapitulating the disease indicate that CTLs adhere to CNS microvessels in distinct areas and polarize granzyme B, which most likely results in the observed endothelial cell injury and microhemorrhages. Blocking T-cell adhesion by anti-α4 integrin-intervention ameliorates the disease in the preclinical model. Similarly, disease severity decreases in four SuS patients treated with natalizumab along with other therapy. Our study identifies CD8+ T-cell-mediated endotheliopathy as a key disease mechanism in SuS and highlights therapeutic opportunities.
Collapse
Affiliation(s)
- Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Céline Meyer
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France
| | - Urvashi Bhatia
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lidia Yshii
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France
| | - Ilka Kleffner
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Henrike Plate
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, University of Münster, Pottkamp 2, 48149, Münster, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37099, Göttingen, Germany
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - David-Axel Laplaud
- UMR 1064, INSERM, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, CHU Nantes - Hôtel Dieu Bd Jean Monnet, 44093, Nantes Cedex 01, France
- Service Neurologie, CHU Nantes, Nantes, France
| | - Delphine Loussouarn
- Service d'Anatomo-Pathologie, CHU Nantes, Hôtel-Dieu, rez-de-jardin, 44093, Nantes Cedex 1, France
| | - John Parratt
- Department of Neurology, Royal North Shore Hospital, Sydney, Australia
- Australia Northern Clinical School, University of Sydney, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia
| | - Michael Barnett
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Michael E Buckland
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, 94, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Todd A Hardy
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
- Department of Neurology, Concord Hospital, University of Sydney, Sydney, NSW, 2139, Australia
| | - Stephen W Reddel
- Brain and Mind Centre, Medical Faculty, University of Sydney, Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
- Department of Neurology, Concord Hospital, University of Sydney, Sydney, NSW, 2139, Australia
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Neurology, Center of Neurology und Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Jan Dörr
- Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure, Experimental and Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Markus Kraemer
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Neurology, Alfried Krupp Hospital, Alfried-Krupp-Strasse 21, 45130, Essen, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the Ludwig-Maximilians-University Munich, Großhaderner Straße 9, Martinsried, 82152, Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the Ludwig-Maximilians-University Munich, Großhaderner Straße 9, Martinsried, 82152, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Cells in Motion (CiM), Münster, Germany
| | - Guillaume Martin-Blondel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France
- Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, France
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- Australia Northern Clinical School, University of Sydney, Reserve Road, St Leonards, Sydney, NSW, 2065, Australia.
- Cells in Motion (CiM), Münster, Germany.
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, CHU Purpan - BP 3028 - 31024, Toulouse Cedex 3, Toulouse, France.
| |
Collapse
|
26
|
Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B. Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers. Int J Mol Sci 2019; 20:E5372. [PMID: 31671721 PMCID: PMC6862204 DOI: 10.3390/ijms20215372] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
The homeostasis of the central nervous system (CNS) is ensured by the endothelial, epithelial, mesothelial and glial brain barriers, which strictly control the passage of molecules, solutes and immune cells. While the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) have been extensively investigated, less is known about the epithelial and mesothelial arachnoid barrier and the glia limitans. Here, we summarize current knowledge of the cellular composition of the brain barriers with a specific focus on describing the molecular constituents of their junctional complexes. We propose that the brain barriers maintain CNS immune privilege by dividing the CNS into compartments that differ with regard to their role in immune surveillance of the CNS. We close by providing a brief overview on experimental tools allowing for reliable in vivo visualization of the brain barriers and their junctional complexes and thus the respective CNS compartments.
Collapse
Affiliation(s)
| | | | | | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
27
|
Garnier A, Laffont S, Garnier L, Kaba E, Deutsch U, Engelhardt B, Guéry J. CD49d/CD29‐integrin controls the accumulation of plasmacytoid dendritic cells into the CNS during neuroinflammation. Eur J Immunol 2019; 49:2030-2043. [DOI: 10.1002/eji.201948086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/28/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Arnaud Garnier
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| | - Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| | - Laure Garnier
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| | - Elisa Kaba
- Theodor Kocher Institute University of Bern Bern Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute University of Bern Bern Switzerland
| | | | - Jean‐Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| |
Collapse
|
28
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Yshii L, Pignolet B, Mauré E, Pierau M, Brunner-Weinzierl M, Hartley O, Bauer J, Liblau R. IFN-γ is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight 2019; 4:127001. [PMID: 30944244 DOI: 10.1172/jci.insight.127001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Paraneoplastic neurological disorders result from an autoimmune response against neural self-antigens that are ectopically expressed in neoplastic cells. In paraneoplastic disorders associated to autoantibodies against intracellular proteins, such as paraneoplastic cerebellar degeneration (PCD), current data point to a major role of cell-mediated immunity. In an animal model, in which a neo-self-antigen was expressed in both Purkinje neurons and implanted breast tumor cells, immune checkpoint blockade led to complete tumor control at the expense of cerebellum infiltration by T cells and Purkinje neuron loss, thereby mimicking PCD. Here, we identify 2 potential therapeutic targets expressed by cerebellum-infiltrating T cells in this model, namely α4 integrin and IFN-γ. Mice with PCD were treated with anti-α4 integrin antibodies or neutralizing anti-IFN-γ antibodies at the onset of neurological signs. Although blocking α4 integrin had little or no impact on disease development, treatment using the anti-IFN-γ antibody led to almost complete protection from PCD. These findings strongly suggest that the production of IFN-γ by cerebellum-invading T cells plays a major role in Purkinje neuron death. Our successful preclinical use of neutralizing anti-IFN-γ antibody for the treatment of PCD offers a potentially new therapeutic opportunity for cancer patients at the onset of paraneoplastic neurological disorders.
Collapse
Affiliation(s)
- Lidia Yshii
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Béatrice Pignolet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.,Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Emilie Mauré
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Mandy Pierau
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| |
Collapse
|
30
|
Tietz S, Périnat T, Greene G, Enzmann G, Deutsch U, Adams R, Imhof B, Aurrand-Lions M, Engelhardt B. Lack of junctional adhesion molecule (JAM)-B ameliorates experimental autoimmune encephalomyelitis. Brain Behav Immun 2018; 73:3-20. [PMID: 29920328 DOI: 10.1016/j.bbi.2018.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/11/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) autoaggressive CD4+ T cells cross the blood-brain barrier (BBB) and cause neuroinflammation. Therapeutic targeting of CD4+ T-cell trafficking into the CNS by blocking α4-integrins has proven beneficial for the treatment of MS but comes with associated risks, probably due to blocking CD8+ T cell mediated CNS immune surveillance. Our recent observations show that CD8+ T cells also rely on α4β1-integrins to cross the BBB. Besides vascular cell adhesion molecule-1 (VCAM-1), we identified junctional adhesion molecule-B (JAM-B) as a novel vascular α4β1-integrin ligand involved in CD8+ T-cell migration across the BBB. This prompted us to investigate, if JAM-B also mediates CD4+ T-cell migration across the BBB. We first ensured that encephalitogenic T cells can bind to JAM-B in vitro and next compared EAE pathogenesis in JAM-B-/- C57BL/6J mice and their wild-type littermates. Following immunization with MOGaa35-55 peptide, JAM-B-/- mice developed ameliorated EAE compared to their wild-type littermates. At the same time, we isolated higher numbers of CD45+ infiltrating immune cells from the CNS of JAM-B-/- C57BL/6J mice suffering from EAE. Immunofluorescence staining revealed that the majority of CD45+ inflammatory cells accumulated in the leptomeningeal and perivascular spaces of the CNS behind the BBB but do not gain access to the CNS parenchyma. Trapping of CNS inflammatory cells was not due to increased inflammatory cell proliferation. Neither a loss of BBB integrity or BBB polarity potentially affecting local chemokine gradients nor a lack of focal gelatinase activation required for CNS parenchymal immune cell entry across the glia limitans could be detected in JAM-B-/- mice. Lack of a role for JAM-B in the effector phase of EAE was supported by the observation that we did not detect any role for JAM-B in EAE pathogenesis, when EAE was elicited by in vitro activated MOG aa35-55-specific CD4+ effector T cells. On the other hand, we also failed to demonstrate any role of JAM-B in in vivo priming, proliferation or polarization of MOGaa35-55-specific CD4+ T cells in peripheral immune organs. Finally, our study excludes expression of and thus a role for JAM-B on peripheral and CNS infiltrating myeloid cells. Taken together, although endothelial JAM-B is not required for immune cell trafficking across the BBB in EAE, in its absence accumulation of inflammatory cells mainly in CNS leptomeningeal spaces leads to amelioration of EAE.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Cell Movement/physiology
- Central Nervous System/metabolism
- Central Nervous System/physiology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelium, Vascular/metabolism
- Female
- Integrin alpha4beta1/metabolism
- Junctional Adhesion Molecule B/genetics
- Junctional Adhesion Molecule B/metabolism
- Junctional Adhesion Molecule B/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/physiopathology
- Myelin-Oligodendrocyte Glycoprotein/pharmacology
- Myeloid Cells/metabolism
- Myeloid Cells/physiology
- Tight Junctions/metabolism
Collapse
Affiliation(s)
- Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Therese Périnat
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gretchen Greene
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ralf Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Beat Imhof
- Department of Pathology and Immunology, University of Geneva, CMU Geneva, Switzerland
| | - Michel Aurrand-Lions
- Centre de Recherche en Cancerologie de Marseille, INSERM, CNRS, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
31
|
Kubick N, Brösamle D, Mickael ME. Molecular Evolution and Functional Divergence of the IgLON Family. Evol Bioinform Online 2018; 14:1176934318775081. [PMID: 29844654 PMCID: PMC5967153 DOI: 10.1177/1176934318775081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022] Open
Abstract
IgLON family is a subgroup of cell adhesion molecules which is known to have diverse roles in neuronal development. IgLONs are characterized by possessing 3 Ig-like C2 domains, which play a part in mediating various cellular interactions. Recently, IgLONs have been shown to be expressed at the blood-brain barrier (BBB). However, our understanding of the genetic divergence patterns and evolutionary rates of these proteins in relation to their functions, in general, and at the BBB, in particular, remains inadequate. In this study, 12 species were explored to shed more light on the phylogenetic origins, structure, functional specificity, and divergence of this family. A total of 40 IgLON genes were identified from vertebrates and invertebrates. The absence of IgLON family genes in Hydra vulgaris and Nematostella vectensis but not in Drosophila melanogaster suggests that this family appeared during the time of divergence of Arthropoda 455 Mya. In general, IgLON genes have been subject to strong positive selection in vertebrates. Our study, based on IgLONs’ structural similarity, suggests that they may play a role in the evolutionary changes in the brain anatomy towards complexity including regulating neural growth and BBB permeability. IgLONs’ functions seem to be performed through complex interactions on the level of motifs as well as single residues. We identified several IgLON motifs that could be influencing cellular migration and proliferation as well as BBB integrity through interactions with SH3 or integrin. Our motif analysis also revealed that NEGR1 might be involved in MAPK pathway as a form of a signal transmitting receptor through its motif (KKVRVVVNF). We found several residues that were both positively selected and with highly functional specificity. We also located functional divergent residues that could act as drug targets to regulate BBB permeability. Furthermore, we identified several putative metalloproteinase cleavage sites that support the ectodomain shedding hypothesis of the IgLONs. In conclusion, our results present a bridge between IgLONs’ molecular evolution and their functions.
Collapse
Affiliation(s)
- Norwin Kubick
- Institute of Biochemistry, Molecular Cell Biology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Brösamle
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Michel-Edwar Mickael
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Lindner M, Klotz L, Wiendl H. Mechanisms underlying lesion development and lesion distribution in CNS autoimmunity. J Neurochem 2018; 146:122-132. [PMID: 29574788 DOI: 10.1111/jnc.14339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
It is widely accepted that development of autoimmunity in the central nervous system (CNS) is triggered by autoreactive T cells, that are activated in the periphery and gain the capacity to migrate through endothelial cells at the blood-brain barrier (BBB) into the CNS. Upon local reactivation, an inflammatory cascade is initiated, that subsequently leads to a recruitment of additional immune cells ultimately causing demyelination and axonal damage. Even though the interaction of immune cells with the BBB has been in the focus of research for many years, the exact mechanisms of how immune cells enter and exit the CNS remains poorly understood. In this line, the factors deciding immune cell entry routes, lesion formation, cellular composition as well as distribution within the CNS have also not been elucidated. The following factors have been proposed to represent key determinants for lesion evaluation and distribution: (i) presence and density of (auto) antigens in the CNS, (ii) local immune milieu at sites of lesion development and resolution, (iii) trafficking routes and specific trafficking requirements, especially at the BBB and (iv) characteristics and phenotypes of CNS infiltrating cells and cell subsets (e.g. features of T helper subtypes or CD8 cells). The heterogeneity of lesion development within inflammatory demyelinating diseases remains poorly understood until today, but here especially orphan inflammatory CNS disorders such as neuromyelitis optica spectrum disorder (NMOSD), Rasmussen encephalitis or SUSAC syndrome might give important insights in critical determinants of lesion topography. Finally, investigating the interaction of T cells with the BBB using in vitro approaches or tracking of T cells in vivo in animals or even human patients, as well as the discovery of lymphatic vasculature in the CNS are teaching us new aspects during the development of CNS autoimmunity. In this review, we discuss recent findings which help to unravel mechanisms underlying lesion topography and might lead to new diagnostic or therapeutic approaches in neuroinflammatory disorders including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Maren Lindner
- Department of Neurology, University Hospital Münster, Münster, DE, Germany
| | - Luisa Klotz
- Department of Neurology, University Hospital Münster, Münster, DE, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Münster, DE, Germany.,Sydney Medical School, University of Sydney, Sydney, AU, Australia
| |
Collapse
|
33
|
Bertoni A, Alabiso O, Galetto AS, Baldanzi G. Integrins in T Cell Physiology. Int J Mol Sci 2018; 19:E485. [PMID: 29415483 PMCID: PMC5855707 DOI: 10.3390/ijms19020485] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 11/16/2022] Open
Abstract
From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Oscar Alabiso
- Department of Translational Medicine, University of Eastern Piedmont, Novara-Italy and Oncology Division, University Hospital "Maggiore della Carità", 28100 Novara, Italy.
| | - Alessandra Silvia Galetto
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100-Italy and Palliative Care Division, A.S.L., 13100 Vercelli, Italy.
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy.
| |
Collapse
|
34
|
Endothelial cells and lymphatics at the interface between the immune and central nervous systems: implications for multiple sclerosis. Curr Opin Neurol 2018; 30:222-230. [PMID: 28323646 DOI: 10.1097/wco.0000000000000454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The central nervous system (CNS) has a unique relationship with the immune system. This review highlights the distinct roles of lymphatic vessels and endothelial cells in the interface between CNS and immune cells and invites to revisit the concept of CNS immune privilege. RECENT FINDINGS T cells can follow several routes to penetrate the CNS parenchyma but may also benefit, together with antigen-loaded presenting cells, from the newly described lymphatic network to exit the CNS. CNS endothelial cells (EC) critically positioned at the interface between circulating immune cells and the CNS regulate the multistep cascade for immune cell trafficking into the CNS. They can also be considered as semiprofessional antigen-presenting cells through their ability to present antigens to T cells and to regulate their activation through co-stimulatory and inhibitory molecules. SUMMARY The lymphatic network linking the CNS to draining lymph nodes may contribute to the inflammatory reaction occurring in multiple sclerosis (MS). The abundance and strategic positioning of endothelial cells at the blood-brain barrier level most likely endow them with an important role in controlling local adaptive immune responses, rendering them potential therapeutic targets in neuro-inflammatory such as MS.
Collapse
|
35
|
Ptaschinski C, Lukacs NW. Acute and Chronic Inflammation Induces Disease Pathogenesis. MOLECULAR PATHOLOGY 2018:25-43. [DOI: 10.1016/b978-0-12-802761-5.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Yshii LM, Gebauer CM, Pignolet B, Mauré E, Quériault C, Pierau M, Saito H, Suzuki N, Brunner-Weinzierl M, Bauer J, Liblau R. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 2017; 139:2923-2934. [PMID: 27604307 DOI: 10.1093/brain/aww225] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
CTLA4 is an inhibitory regulator of immune responses. Therapeutic CTLA4 blockade enhances T cell responses against cancer and provides striking clinical results against advanced melanoma. However, this therapy is associated with immune-related adverse events. Paraneoplastic neurologic disorders are immune-mediated neurological diseases that develop in the setting of malignancy. The target onconeural antigens are expressed physiologically by neurons, and aberrantly by certain tumour cells. These tumour-associated antigens can be presented to T cells, generating an antigen-specific immune response that leads to autoimmunity within the nervous system. To investigate the risk to develop paraneoplastic neurologic disorder after CTLA4 blockade, we generated a mouse model of paraneoplastic neurologic disorder that expresses a neo -self antigen both in Purkinje neurons and in implanted breast tumour cells. Immune checkpoint therapy with anti-CTLA4 monoclonal antibody in this mouse model elicited antigen-specific T cell migration into the cerebellum, and significant neuroinflammation and paraneoplastic neurologic disorder developed only after anti-CTLA4 monoclonal antibody treatment. Moreover, our data strongly suggest that CD8 + T cells play a final effector role by killing the Purkinje neurons. Taken together, we recommend heightened caution when using CTLA4 blockade in patients with gynaecological cancers, or malignancies of neuroectodermal origin, such as small cell lung cancer, as such treatment may promote paraneoplastic neurologic disorders.
Collapse
Affiliation(s)
- Lidia M Yshii
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France.,Department of Pharmacology, Institute of Biomedical Sciences I, University of São Paulo, 05508-900, Brazil
| | - Christina M Gebauer
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| | - Béatrice Pignolet
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France.,Department of Clinical Neurosciences, Toulouse University Hospital, 31059, France
| | - Emilie Mauré
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| | - Clémence Quériault
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| | - Mandy Pierau
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Hiromitsu Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Monika Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090, Austria
| | - Roland Liblau
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, 31300, France
| |
Collapse
|
37
|
Mathias A, Perriot S, Canales M, Blatti C, Gaubicher C, Schluep M, Engelhardt B, Du Pasquier R. Impaired T-cell migration to the CNS under fingolimod and dimethyl fumarate. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e401. [PMID: 29075657 PMCID: PMC5639463 DOI: 10.1212/nxi.0000000000000401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/14/2017] [Indexed: 11/26/2022]
Abstract
Objective: To evaluate the long-term effects of treatments used in MS on the T-cell trafficking profile. Methods: We enrolled 83 patients with MS under fingolimod (FTY), natalizumab (NTZ), dimethyl fumarate (DMF), or other disease-modifying treatments (DMTs). Blood was drawn before treatment onset and up to 36–48 months. The ex vivo expression of CNS-related integrins (α4β1 and αL subunit of LFA-1) and the gut-related integrin (α4β7) was assessed using flow cytometry on CD4+ and CD8+ T cells. The adhesion profiles of CD3+ T cells to specific integrin ligands (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and mucosal vascular addressin cell adhesion molecule-1 [MAdCAM-1]) were measured in vitro before and after 12 and 36–48 months. Results: NTZ decreased the frequency of α4β1+ and α4β7+ integrin expressing T cells and the binding of these cells to VCAM-1 and MAdCAM-1, respectively. After 12 months, DMF induced a decreased frequency of αLhighCD4+ T cells combined with reduced binding to ICAM-1. By contrast, with FTY, there was a doubling of the frequency of α4β1+ and αLhigh, but a decreased frequency of α4β7+ T cells. Strikingly, the binding of α4β1+, α4β7+, and to a lesser extent of αLhigh T cells to VCAM-1, MAdCAM-1, and ICAM-1, respectively, was decreased at month 12 under FTY treatment. The presence of manganese partially restored the binding of these T cells to VCAM-1 in vitro, suggesting that FTY interferes with integrin activation. Conclusions: In addition to NTZ, DMF and FTY but not other tested DMTs may also decrease T-cell–mediated immune surveillance of the CNS. Whether this mechanism may contribute to the onset of CNS opportunistic infections remains to be shown.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Sylvain Perriot
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Mathieu Canales
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Claudia Blatti
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Coline Gaubicher
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Myriam Schluep
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Britta Engelhardt
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology (A.M., S.P., M.C., C.G., R.D.P.), Center of Research in Neurosciences, Service of Neurology (M.S., R.D.P.), Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; and Theodor Kocher Institute (C.B., B.E.), University of Bern, Switzerland
| |
Collapse
|
38
|
Halle S, Halle O, Förster R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends Immunol 2017; 38:432-443. [PMID: 28499492 DOI: 10.1016/j.it.2017.04.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are critical in the elimination of infected or malignant cells and are emerging as a major therapeutic target. How CTLs recognize and kill harmful cells has been characterized in vitro but little is known about these processes in the living organism. Here we review recent insights into CTL-mediated killing with an emphasis on in vivo CTL biology. Specifically, we focus on the possible rate-limiting steps determining the efficiency of CTL-mediated killing. We also highlight the need for cell-based datasets that permit the quantification of CTL dynamics, including CTL location, migration, and killing rates. A better understanding of these factors is required to predict protective CD8 T cell immunity in vivo and to design optimized vaccination protocols.
Collapse
Affiliation(s)
- Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Olga Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
39
|
Barbarin A, Cayssials E, Jacomet F, Nunez NG, Basbous S, Lefèvre L, Abdallah M, Piccirilli N, Morin B, Lavoue V, Catros V, Piaggio E, Herbelin A, Gombert JM. Phenotype of NK-Like CD8(+) T Cells with Innate Features in Humans and Their Relevance in Cancer Diseases. Front Immunol 2017; 8:316. [PMID: 28396661 PMCID: PMC5366313 DOI: 10.3389/fimmu.2017.00316] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T lymphocytes could be controlled by immune checkpoints. This study significantly contributes to understanding of the role of NK-like CD8(+) T cells and raises the question of the possible involvement of an iNKT/innate CD8(+) T cell axis in cancer.
Collapse
Affiliation(s)
- Alice Barbarin
- INSERM 1082, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Emilie Cayssials
- INSERM 1082, Poitiers, France; CHU de Poitiers, Poitiers, France; Service d'Hématologie et d'Oncologie Biologique, CHU de Poitiers, Poitiers, France; Université de Poitiers, Poitiers, France
| | - Florence Jacomet
- INSERM 1082, Poitiers, France; CHU de Poitiers, Poitiers, France; Université de Poitiers, Poitiers, France; Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Nicolas Gonzalo Nunez
- Institut Curie, PSL Research University, INSERM U932, Paris, France; SiRIC Translational Immunotherapy Team, Translational Research Department, Research Center, Institut Curie, PSL Research University, Paris, France; Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Sara Basbous
- INSERM 1082, Poitiers, France; Université de Poitiers, Poitiers, France
| | | | - Myriam Abdallah
- INSERM 1082, Poitiers, France; CHU de Poitiers, Poitiers, France
| | | | | | - Vincent Lavoue
- INSERM U1242, Rennes, France; CHU de Rennes, Rennes, France
| | - Véronique Catros
- CHU de Rennes, Rennes, France; INSERM U991, Rennes, France; CRB Santé de Rennes, Rennes, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France; SiRIC Translational Immunotherapy Team, Translational Research Department, Research Center, Institut Curie, PSL Research University, Paris, France; Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - André Herbelin
- INSERM 1082, Poitiers, France; CHU de Poitiers, Poitiers, France; Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- INSERM 1082, Poitiers, France; CHU de Poitiers, Poitiers, France; Université de Poitiers, Poitiers, France; Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
40
|
Gebauer C, Pignolet B, Yshii L, Mauré E, Bauer J, Liblau R. CD4+ and CD8+ T cells are both needed to induce paraneoplastic neurological disease in a mouse model. Oncoimmunology 2016; 6:e1260212. [PMID: 28344867 DOI: 10.1080/2162402x.2016.1260212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023] Open
Abstract
Paraneoplastic neurological disorders (PNDs) are rare human autoimmune diseases that mostly affect the central nervous system (CNS). They are triggered by an efficient immune response against a neural self-antigen that is ectopically expressed in neoplastic tumors. Due to this shared antigenic expression, the immune system reacts not only to tumor cells but also to neural cells resulting in neurological damage. Growing data point to a major role of cell-mediated immunity in PNDs associated to autoantibodies against intracellular proteins. However, its precise contribution in the pathogenesis remains unclear. In this context, our study aimed at investigating the impact of anti-tumor cellular immune responses in the development of PND. To this end, we developed an animal model mimicking PND. We used a tumor cell line expressing the hemagglutinin (HA) of influenza virus to induce an anti-tumor response in CamK-HA mice, which express HA in CNS neurons. To promote and track the T cell response against the HA antigen, naïve HA-specific CD8+ and/or CD4+ T cells, originating from TCR-transgenic animals, were transferred into these mice. We demonstrate that HA-expressing tumors, but not control tumors, induce in vivo activation, proliferation and differentiation of naïve HA-specific CD4+ and CD8+ T cells into effector cells. Moreover, both T cell subsets were needed to control tumor growth and induce CNS inflammation in CamK-HA mice. Thus, this new mouse model provides further insight into the cellular mechanisms whereby a potent anti-tumor immunity triggers a cancer-associated autoimmune disease, and may therefore help to develop new therapeutic strategies against PND.
Collapse
Affiliation(s)
- Christina Gebauer
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France
| | - Béatrice Pignolet
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France; Department of Clinical Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Lidia Yshii
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France; Institute of Biomedical Sciences I, University of São Paulo, São Paulo, Brazil
| | - Emilie Mauré
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna , Vienna, Austria
| | - Roland Liblau
- INSERM UMR1043 - CNRS U5282, Centre de Physiopathologie Toulouse-Purpan, Toulouse, France; Université Toulouse III, Tolouse, France
| |
Collapse
|
41
|
Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 2016; 132:317-38. [PMID: 27522506 PMCID: PMC4992028 DOI: 10.1007/s00401-016-1606-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022]
Abstract
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood–brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer’s disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012, Bern, Switzerland
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Alexander Flügel
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, 37073, Göttingen, Germany
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Roy O Weller
- Faculty of Medicine, University of Southampton, Southampton, UK.
- Neuropathology, Mailpoint 813, Level E, South Block, Southampton University Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
42
|
Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol 2016; 46:2187-203. [PMID: 27338806 PMCID: PMC5113696 DOI: 10.1002/eji.201546251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023]
Abstract
Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Isabelle Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|